
On 3* -connected graphs 

Michael Albert, R.E.L. Aldred, Derek Holton 

Department of Mathematics and Statistics, 
University of Otago 

John Sheehan 

Department of Mathematical Sciences, 
University of Aberdeen 

Abstract 

Menger's Theorem states that in a 3-connected graph, any two vertices are 
joined by three openly disjoint paths. Here we consider 3-connected cubic 
graphs where two vertices exist so that the three disjoint paths between 
them contain all of the vertices of the graph (we call these graphs 3*­
connected); and also where the latter is true for ALL pairs of vertices 
(globally 3*-connected). A necessary condition for 3*-connectedness is 
that the circumference of the graph be at least 2(n + 1)/3 where n is the 
size of the vertex set. 
Global 3*-connectedness is not as strong as it might first appear. Many 
graphs have this property. In particular the generalized Petersen graphs, 
P(n, 2), are globally 3*-connected if and only if n 1, 3 (mod 6). The 
exceptions here are 3* -connected. 

1. Introduction 

A famous result on connectivity, Menger's Theorem (see [3]), states that in a k­
connected graph, there exist k openly disjoint paths between any pair of vertices. We 
are interested here in graphs where this configuration' of the pair of vertices and the 
openly disjoint paths between them span the graph. OUf discussion in this paper will be 
restricted to the case where k = 3 and the graphs are cubic. Hence we say that a 3-
connected cubic graph a is 3*-connected if there exists a pair of vertices u, v E Y(O) 

such that u, v are the end vertices of three openly disjoint paths PI , P2, P3 such that 
3 

Y(O) ::: UV(Pi ). We say that P" P2, P3 are covering paths of G. 
i=l 

The Petersen graph, P, is an example of a 3*-connected graph. The covering paths are 
indicated in Figure 1. Many other examples exist. However, not all 3-connected cubic 
graphs are 3*-connected. In fact we can obtain an infinite class of non 3*-connected 
graphs by first taking three non-Hamiltonian graphs A, Band C. Let a E YeA), b E 

Y(B) and c E Vee) with neighbours N(a) = {al'~' a3}, N(b) = {bl' b2, b3} and N(e) = 
{c l • c2• c3 }· 
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Figure 1 

PI = (u, 1, v) 
P2 = (u, 2, 3,4,5,6, v) 

P 3 = (u, 7, 8, v) 

Now form the graph Q with V(Q) = (V(A) \ {al) u (V(B) \ {b}) u (v(e) \ {cD u {w} 

and E(Q) = E(A \ {a}) u E(B \ {b}) u E(e \ {c}) u {w~, wb2 , wc2• alc3, c j b3, b la3 }. The 

graph is shown schematically in Figure 2. 

An infinite family of non 3*-connected graphs 
Figure 2 
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The graph Q is not 3*-connected. To see this assume Q is 3*-connected and u E 

VCA)\{a} and v E V(B)\{b}. Then one of the covering paths of Q has to contain the 

path a2wb2• This forces a Hamiltonian path in C\{ c} between c1 and c3• Hence C 
has a Hamiltonian cycle, which contradicts the assumption on C. A similar argument 
applies to any pair of vertices u, v in V(Q) including u = w. 

The smallest such non 3*-connected graph is formed by letting A = B = C = P. This 
graph has order 28. 

By globally 3*-connected we mean a 3-connected cubic graph G for which every 
distinct pair of vertices in V(O) are the endvertices of some three openly disjoint 
covering paths. Clearly globally 3*-connected is a stronger concept than 3*-connected. 
This can be seen from the fact that P is not globally 3*-connected. If it were, then the 
vertices u, 1 would be endvertices of three openly disjoint paths which span P. 
However, one of those paths would have to be the edge ul. Then the other two paths 
would together form a Hamiltonian cycle in P. 

This latter example easily generalizes to the following result. 

Lemma 1. If G is globally 3*-connected, then G is Hamiltonian. 

The converse is not true as can be seen from the Hamiltonian graph in Figure 3. For 
suppose that graph were globally 3*-connected, then there would be three openly disjoint 
paths between the vertices u and v. Two of those paths would be PI = (u, 1, v) and P2 
= (u, 2, v). The third path, starting from u, would need to begin u, 3, 4, 5, 6, 7, 8,9, 10, 
11, 12 and end 13, v. However, this would omit the vertex 14. Hence, although the 
graph of Figure 3 is Hamiltonian, it is not globally 3*-connected. Nevertheless, the 
following lemma does hold. 

3 14 

6 11 

7 10 

Figure 3 
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Lemma 2. If G is 3-connected cubic and Hamiltonian, then G is 3*-connected. 

Proof. Any Hamiltonian cycle H in a has a chord between vertices u,v say. This 
chord along with the paths from u to v which comprise H, give the three required 
openly disjoint covering paths. 0 

Now the reason that the graph of Figure 3 is not globally 3*-connected is that it is 
bipartite. Before we can prove this result (the Corollary to Lemma 3) we consider a new 
definition. We say that a is Hyperhamiltonian if a is Hamiltonian and 0\ {v} is 
Hamiltonian for all v EVa. 

Lemma 3. If G is globally 3*-connected, then G is Hyperhamiltonian. 

Proof: a is Hamiltonian by Lemma 1. 

Let w be any vertex in a and let (u, w, v) be a path of length 2 in O. Then, since a 
is globally 3*-connected there exist openly disjoint paths PI == (u, w, v), P2' P3 such that 

3 

UV(Pi ) = V(O). Hence V(Pi) U V(P3) = V(G) \{w} and P2 u P3 is a cycle. So 0\ 
i=1 

{w} is Hamiltonian for all vertices W E va and so G is Hyperhamiltonian. 

o 

Corollary. If G is 3-connected cubic bipartite, then G is not globally 3*··connected. 

Proof. Suppose that a is a 3-connected cubic bipartite graph that is globally 
3*-connected. Then a is Hyperhamiltonian. But 0\ {v} is non-hamiltonian since it is 
bipartite and has an odd number of vertices. 0 

One further elementary result concerns the circumference, c(G), of 3*-connected graphs, 
G. Recall that the circumference of a graph is the length of its longest cycle. 

Lemma 4. If G is 3*-connected, then c(G)? rj(n.+ 1)1- where n = IV(G)I· 

(1) 

Hence from (1), 

1 2 
c(O) ? n - -en -2) = -en + 1). 

3 3 
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The result follows since c(G) is an integer. D 

In [2], Bondy and Simonovits constructed an infinite class of 3-connected cubic graphs 
such that, for n = IV(G)I sufficiently large, 

c(G) :::; IV(G)It. where 0 < t < 1. 

It can be shown that these graphs are not 3*-connected for n ~ 90. This provides us with 
a further set of non 3*-connected graphs in addition to those of Figure 2. 

On the other hand, there are also infinite sets of globally 3*-connected graphs. The 
graph of Figure 3 is an even prism. We know that none of these are globally 3*­
connected because they are bipartite. However, the odd prisms are all globally 3*­
connected. We note that G is a prism if V(G) = {ai' b i : 1, 2, ... , n} and E(G) = 
{aia j + I' bib i + I' ajb j , i = 1,2, ... , n} where ~~+ I = ~al and bnbn+ I = bnb l . A prism is 
odd if IV(G)I = 2n, where n is odd. 

LemmaS. The odd prisms are globally 3 *-connected. 

Proof 

Case 1: Let u = ~ and v = aj' where j > i. Then, since n is odd, we may assume 
without loss of generality, that j - i is odd. The three covering paths are then 

(~, ~-I' ~-2' "', al'~' ... , aj+ I' 3..i), 
(~, ai+ I' bi+ I' b i+ 2. ~ +2' ~ +3' bi + 3' bi +4' ~ +4' ... , aj), 

(ai' bi> bi I"'" bj+ I' bj , aj ). 

Case 2: Let u = ~ and v = bj • If j = i, then the covering paths are 
(~, bi)' 
(~, ai-I' bi_I' bi)' 
(ai' ~+I' ... , ai - 2, bj _ 2, bi - 3, ... , bi + l , bJ 

If j:¢: i, then we may assume that j - i is odd. In this case, covering paths are 

(~, ~+ I' ... , aj , bj)' 
(~. bi' ,bi + I' ... , bj_l , bj), 
(~, ai-I, bi_I' b i _2, ~-2' ... , 3..i+3' bj+3, bj + 2, a j +2, 3..i+I' bj+1, bj)' D 

The ladders form another infinite set of globally 3*-connected graphs. A graph G is a 
ladder if V(G) ={ a, b, ai' bi ; i = 1, 2, ... , n} and E(G) = {aa1, ab l , ban, bbn, ab} u 
{~ai+l' bjbi + 1, ~bi~ i = 1,2, ... , n - I}. 

Lemma 6. The ladders are globally 3*-connected. 

Proof: We use a number of cases to find the covering paths Pi' i = 1, 2, 3 with 
endvertices u and v. 
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Case 1: 

Case 1.1: 
bn,v). 

u==a. 

v == b. Then PI == (u, v), P2 = (u, ai' a2, ... , ~,v) and P3 == (u, b l • b2, ... , 

Case 1.2: v == ai. Then p\ = (u, ai' a2, ... , v) and P2 = (u, bl' b2, ... , bi' v). If 
n - i is even, then P 3 = (u, b, an, bn, bn _ I' ~ _ I' an _ 2' bn _ 2' bn _ 3' an _ 3' ... ,bi + 2' bi + l' 3.j + I' v). 
If n - i is odd, then P 3 == (u, b, bn• ~, an _ I' bn _ I' bn _ 2' ~ _ 2' ~ _ 3' bn _ 3' .•. , bi + 2' bi + I' 3.j + I' 
v). 

(The case where u = b follows by symmetry.) 

Case 2: 

Here let PI == (u, ai+i, a i+2 •. ,,' aj-I' v) and P2 == (u, bi' bi +1, ... , bj , v). Now let Q(aj , b) 
be one of the paths P3 from Case 1.2 and Q'(aj> a) be the corresponding path from at 

to a. Then here P3 == Q'(ai , a) u (a, b) u Q(b, aj ), where Q(b, aj ) is the path Q(aj , b) 

traversed in the other direction., 

Case 3: u == ~, v == bj, where j ~ i without loss of generality. Here let PI == (u, 3.j + I' 
ai+ 2, ••• ,aj ,v) and P2==(u,bj,bi+i .... ,bj.i'V). The path P3 is the same as P3 from 
Case 2, except that that part of P 3 from b to v is reflected about the line of symmetry 
~. D 

Note that in the above proof, PI is always a geodesic (a path of shortest distance 
between its end vertices). Hence we could say that the ladders are geodesically globally 
3*-connected. On the other hand, the odd prisms are not geodesically globally 3*­
connected. This can be seen by considering the two vertices ~,~ + 3' 

Given any two globally 3*-connected graphs it is possible to find a new globally 3*­
connected graph using the following construction. Let G, H be 3-connected cubic 
graphs and let x E V(G) and y E V(H). Suppose No(x) == {XI' X2• x3} and NH(y) == {YI' 

Y2. Y3}' We define the xy-join of G and H to be the graph G*H with vertex set 
(V(G) \{x}) u V(H \{y}) and edge set E(G\{x}) u E(H\{y}) U {XiYi : i == 1,2, 3}. 

Lemma 7. If G, H are globally 3*-connected, then so is G*H. 

Proof: Let u, v E V(G*H) n V(O). Let PI P2, P3 be paths with endvertices u, v, such 
3 

that UV(PJ == V(G), Suppose, without loss of generality. that XXl' xX2 E E(P3). Since 
i=\ -

H is globally 3*-connected it contains a Hamiltonian cycle C avoiding the edge YY3' 

Then P( == PI' P; == P2 and P; derived from (P3 \ {XXI' XX2}) U (C \ {YYI' yY2}) U 

{x1y\, X2Y2}, are the appropriate covering paths in G*H. 
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Let u E V(O*H) n V(O) and v E V(O*H) n V(H). Then there exist paths PI' P2, P3 

with endvertices, u and x which cover G and paths Q" Q2' Q3 with endvertices Y 
and v which cover H. Without loss of generality assume that XXj E E(P j), YYi E E(Qj), 

i = 1,2,3. Then P( derived from (Pi \ {xxJ) u{ XiYi} U (Qi \ {yyJ), i = 1,2,3, are the 

appropriate covering paths in O*H. 0 

On the other hand, if the 3-connected cubic graph K contains a cyclic edge cut of size 3, 
then K can be considered as isomorphic to G*H for some 0 and H. (A cyclic edge 
cut is an edge cut whose removal breaks the graph into two components, each of which 
contains a cycle.) If K is globally 3*-connected, then so are G and H. The proof 
follows in a similar way to that of Lemma 7. 

Corollary: Suppose K = G*H. Then K is globally 3*-connected if and only if both 
G and H are globally 3*-connected. 

This Corollary suggests that we should concentrate our investigation on cyclically 4-
edge connected cubic graphs. These are graphs with cyclic edge cuts of size greater than 
3. As a step in this direction,. in the next section, we look at the generalized Petersen 
graphs Pen, 2). 

2. Generalized Petersen Graphs 

For the remainder of this paper we consider the 3*-connected properties of the 
generalized Petersen graph P(n, 2). The generalized Petersen graph Pen, k) for n ~ 5, 
has vertex set {i, i' : i = 1,2, ... , nJ and edge set 

{i(i + 1), i if: i = 1,2, ... , n} U {i'(i + k)' : i = 1,2, ... , nJ, 

where the subscripts larger than n are to be read modulo n. 

We first show that P(n,2) is Hyperhamiltonian if and only if n == 1,3 (mod 6). 

LemmaS. Let n == 1, 3 (mod 6), n 25. Then pen, 2) is Hyperhamiltonian. 

Proof: Suppose n == 1,3 (mod 6). From Bondy [1] we know that P(n,2) is Hamiltonian 

since n:l= 5 (mod 6). 

Now the automorphism group of P(n,2) has at most two orbits. These are {i: i = 1,2, 
... , n}, the outer rim vertices, and Ii': i = 1,2, .'" n}, the inner rim vertices. Hence we 

only have to show that Pen, 2) \ {I} and Pen, 2) \ {I'} are Hamiltonian. This follows 

since 

(2,3, ... , n, n', (n - 2)" (n - 4)', ... ,5',3', 1', (n - 1)', ".,6',4',2', 2) and 
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(1,2,2',4',6',8', 10', ... , (n - 1) I, n - 1, n - 2, ... ,3,3',5', 7', ... , n', n, 1) 

are the required Hamiltonian cycles. (This is illustrated in Figures 4 and 5 for n = 15. 
Actually these cycles exist in P(n, 2) less the appropriate vertex for all odd n.) 0 

2 

! ... 

". ,,' , 'l~ 
... ~"."""""'.'.' .. < ..... ?' .... 

14~ .•..•. ..)-.... . .. \ ... , .. :~ 5 

14' .... 

10 9 

a Hamiltonian cycle in P(15, 2)\1 
Figure 4 

2 

,,///~""""""'r7~ . 
/J<r:\ 

H;;~::) ········.·.'.:.·;.: ..•... : .. ;., ... :.:.;:5" \. \.':.:, " 6 
13~<.' ... :; .--

,:'" 

' ......... /.~, .... >\.......... / ....... J: ..... :~:/ 

"y(;!.:<.:.' .. ~~.:.:: ..... :: .. \<)./ 
............................ "., 

10 

a Hamiltonian cycle in P(15, 2)\1' 

Figure 5 
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In the proof of the following lemma we omit some of the tedious details. 

Lemma 9. Let n :t= 1,3 (mod 6) and n ~ 5. Then P(n,2) is not Hyperhamiltonian. 

Proof. From Bondy [1], we see that Pen, 2) is not Hamiltonian if and only if n == 5 
(mod 6). So we now suppose that n == 0, 2, 4 (mod 6). We know that Pen, 2) is 
Hamiltonian for these values of n so we will concentrate on G == Pen, 2) \ {I} and 
G' == Pen, 2) \ {I'}. We will show that for n == 0,4 (mod 6), G is not Hamiltonian and 
for n == 2 (mod 6), G' is not Hamiltonian. In each case the proof is by contradiction. In 
the style of Bondy [1] we make a series of observations (Ai, Bj), which can be 
confirmed by reference to specific cases. 

Case 1: n == 0, 4 (mod 6). Suppose that G has a Hamiltonian cycle C. Then the edges 
of C naturally partition the outer rim of G into paths PI' P2 , ... , Pk of lengths n) - 1, n2 

- 1, ... , nk - 1, respectively, where the paths are sequentially labelled so that 2 E Yep)). 

The following general observations can be deduced. 

Ie 

(Al) L.ni == n -1 == 1 (mod 2); 
j=) 

(A2) k ~ 2; 

(A3) nj ~ 2; 

(A4) nj == l(mod 2) implies nj == 3; 

(A6) n l ~ 4 implies n2 == 2; 

(A7) nk ~ 4 implies nk _) == 2; 

(A9) nj~ 4 (l ~ i ~ k) implies nj =1= 3 (1 ~j ~ k); 

(AI0) 2 ~ nj ~ 3. 

Observation A 1 follows since in G there are only an odd number of outer rim vertices 
remaining. If k == 1, then C is not Hamiltonian and so A2 follows. Clearly, A3, nj =1= 1, 
since C is a cycle. If nj is odd and nj> 3, then C contains a sub-cycle (k, k + 1, 

/ 3 / k' k) f d (3nj + 1) H A4 . k + nj - 1, (k + nj - 1) , (k + nj - ) , ... , , 0 or er . ence IS true. 
2 

Consider A5. Suppose n) = nk == 2. Then 2'n' It: B(C) since C is a Hamiltonian cycle. 
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Hence n2 = nk _ 1 = 2. By Al there must be an odd nj and by A4 such an nj = 3. 
Because of the pattern developed in producing C we may assume that this odd path 
includes 6',6, 7 or 8',8,9. In each case we contradict the fact that C is Hamiltonian. 

Observations A6, A 7 and A8 quickly follow from A4 and drawing any special case. 
For A9 we may as well suppose ni _ 2 = 3, because otherwise the pattem of C continues 
until an odd nj is reached. But then we have a 5-cycle in C. By A9, if nj ~ 4 there is 
no j with nj = 3 and so Al is contradicted. Hence AIO is proved. 

Now suppose that 2'n' ~ E(C). Then nl "# 3, nk "# 3 because otherwise C contains a 

5-cycle including 2 or n. By AIO, nl = nk = 2. But this contradicts A4. Hence 
suppose that 2'n' E E(C). From A5 and AlO there is no loss of generality in assuming 

that n l = 3. If nj = 3 for each i then C contains the smaller cycle (2,3,4,4',6', 8', 8, 

9 10, ... , (n - 2) " n - 2, n - 1, n, n', 2', 2) which is impossible. Therefore we may 

assume, using AIO, that there exists 1::; t < k such that n l = n2 = ... = nt = 3 and 
nl + I = 2. This easily implies that nt + 2 = 2. To avoid a further "closed" sequence in C, it 

k 

now follows that nj = 3, t + 3 ':5 j :5 k. Hence, Lni = 3k - 2 == I (mod 2) from AI. So 
t=1 

k == 1 (mod 2) and n == 2 (mod 6). We have therefore proved that Pen, 2) is not 

Hyperhamiltonian when n == 0, 4 (mod 6). 

Case 2: n:: 2 (mod 6). Suppose that G' has a Hamiltonian cycle C. Then the edges of 

C naturally partition the outer rim of G' into paths Pi of length nj - I where, as above, 

the paths are sequentially labelled but in this case 1 E V(p). As above, we now make a 

number of observations. 

Ie 

(BI) Lnj = n == 2 (mod 6); 
i=! 

(B2) k ~ 2; 

(B4) 3:5 n l :5 5; 

(B5) n l = 3 implies n2:t 3, nk "# 3; 

(B6) n l = 4 implies {n2' nk } = {2, 3}; 

(B8) nj == 1 (mod 2), i"# 1 implies nj = 3; 
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(B9) n2 ~ 4 implies nJ :::: 3, n3 :::: 2; 

(BI0) nk ~ 4 implies n,:::: 3, nk _,:::: 2; 

(B 11) nj ~ 4 (3::;; i < k) implies nj _ 1 :::: nj + , :::: 2; 

(BI2) nj ~ 4 (i"# 1) implies nj "# 3 for all j"# i, (2 $j $ k). 

Now suppose that nj ~ 4 (i -:I-: 1). If n, :::: 5, then B7 and B12 give a contradiction. If 
n, :::: 4 then B6 and B12 give a contradiction. Finally if n, :::: 3 then B8 together with 
B 12 imply n 1 (mod 2) which contradicts B 1. Hence 

(BI3) 2$nj $3 (i-:l-:l); 

(BI4) nj:::: 3 (i ¢; 1) implies n j _, + nj+1 ~ 5 (integers modulo k); 

(B 15) nj _ , :::: 2 ~i ¢; 1) implies nj -:I-: 3. 

We prove B 15 as follows. Suppose that nj:::: 3. Then it follows easily that nj + I :::: nj + 2 :::: 

... :::: nk :::: 3. Since the vertex n - 1 cannot belong to a Pj with nj:::: 3, it follows that Pk 

:::: (n - 4, n - 3, n - 2) and 

(i) PI = (n - 1, n, 1, 2) or (ii) PI = (n - 1, n, 1,2,3). 

If (i) is true n2 :::: 2, n3 = 3 and n:::: 3(k - 2) + 4 + 2 :::: 3k. This contradicts B 1. So we 
may suppose (ii) to be the case. It then follows that all of the nj's equal 3 apart from 
n, which is 5 and exactly one or two of the nj's which equal 2. In both cases Bl is 
contradicted. Similarly 

(B 16) nj:::: 2 (i ¢; 1) implies nj _ I -:I-: 3; 

(BI7) nj = 2 (i -:I-: 1). 

We prove B 17 as follows. Suppose that nj:::: 3 for some 1< i $ k. Then, from B 15 
and B16, nj::: 3 for 1$ i $ k. Hence from B5, B6 and B7, n,:::: 5 and in this case C 
contains the closed sequence: 

(I, 2, 3, 3', 5', 7', 7, 8,9, 9', ... , n - 7, n - 6, n - 5, (n - 5) " (n - 3) " (n - 1) " n - 1, n, 1) 

which is impossible. 

Finally, from B5, B6 and B17, n, :::: 3 and hence n == 1 (mod 2) which contradicts B1. 

o 
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Theorem 10 P(n,2) is globally 3*-connected if and only if n == 1, 3 (mod 6), 

To help simplify the proof. we adopt the following notation for paths, Each square 
bracket represents a repeating pattern. 

[i, j] == (i, i + 1, i + 2, .'" j); 

[i', Y]2 == (if, (i + 2)', (i + 4)" "" j'); 

[i, j]* == (i, i + 1, (i + 1)', (i + 3)', i + 3, i + 2, (i + 2)',(i + 4)', i + 4, i + 5, , .. , j); 

[i, jh == (i, i + 1, i + 2, (i + 2)', (i + 4)', (i + 6)', i + 6, i + 7, i + 8, ... , j); 

[u, v t is any of the paths above traced in an anti-clockwise direction in the sense that 

[i,jr l == G,j + I,j + 2, "" i-I, i), 

The paths [i, j] and [ii, Yh consist solely of vertices in the outer and inner rims, 

respectively. This is not the case for paths [i, j]* and [i, j]3' It turns out that we often 
require a subpath of these paths which may start and end on outer or inner vertices, For 
instance 

[i', j]* = (i', (1 + 2)" i + 2, i + 1, (i + 1)', (i + 3)', i + 4, ... , j), and 

[i',j'h = (i', (i + 2)', (i + 4)', i + 4, i + 5, i + 6, (i + 6)', (i + 8) I, (i + 10)', (i + 10), ... ,j'). 

No matter what the end vertices of these subpaths, the pattern of the path is followed. 

Proof: By Lemma 9, P(n,2) is not Hyperhamiltonian for n ;J: 1, 3 (mod 6). So if n;J: 
1,3 (mod 6), Pen, 2) is not globally 3*-connected. We may therefore assume that n == 1, 

3 (mod 6). 

Since Pen, 2) has two orbits, the inner and outer rim vertices, the proof only requires us 
to consider the three cases of covering paths between (1) a fixed vertex, u, on the outer 
rim and any vertex, v, on the outer rim; (2) a fixed vertex on the outer rim, u, and any 
vertex, v, on the inner rim; and (3) a fixed vertex, u, on the inner rim and any vertex, v, 
on the inner rim. By Lemma 8 we know that Pen, 2) is Hamiltonian. Since there are at 
most three different kinds of edges in Pen, 2) and at least one of every kind must be 
absent from a Hamiltonian cycle in Pen, 2), then there are three covering paths joining 
two neighbouring vertices. If u and v are a distance two apart, let w be the vertex 
such that (u, w, v) is a path in P(n,2), Then by Lemma 8 there is a Hamiltonian cycle 
in Pen, 2) \ {w}, Hence we may take two of the covering paths from the Hamiltonian 
cycle and the other is (u, w, v). Hence in what follows we do not have to consider 
neighbouring vertices or vertices which are a distance two apart. 
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We also note here that the permutation cr defined by cr( 1) = 1, 0'( I') = 1', cr(i) == n - i + 2 

and cr(r) == (n i + 2) I is an automorphism of G. Since n is odd, if k is even, then 

cr(k) and O'(k') are odd. So if we find covering paths for 1 and k, 1 and k' or 1 f 

and k' for k even, the corresponding paths for k odd follow by applying cr. Hence in 

the three cases below may assume that k is even. 

Case 1. 
v= k. 

Here we consider covering paths between the vertex u = 1 and the vertex 

If k == 0 (mod 6), then PI = [1, kf, P2 = (1, [I' ,k/E, k)and P3 = (1, 2, 3, [3', (k + 1)']3' 

[(k + 3)', 4']2' [4, kh). 

We show these paths in Figure 6, for n = 25 and k = 12. 

1 

Figure 6 

If k == 2 (mod 6) and n == 1 (mod 6), then PI = [1, k], P2 = (1, [I',(k + 1)']2' k + 1, k) 

and P3 == ([1, k + 4];-, (k + 4)', (k + 2)', k + 2, k + 3, [(k + 3)', 2'h, [4', k'b k). 

Ifk == 2 (mod 6) and n == 3 (mod 6), then PI = [1, k]3'. P2 == (1, [1', (k - 3)'b k - 3, k -- 2, 

(k - 2)', k/, k) and P3 = ([1, k - 4], [(k - 4)', 4'J;-, [2', (k -1)'] 3' k - 1, k). 
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If k == 4 (mod 6), then PI = [1, kf, P2 :: (1, [I', k'] 2' k) and P3 = (1, 2, [2', (k + 3)'] 2' 

[(k + 1)', 5'];, 3', 3,4, [4/, kh). (Note here that [4', kh is a proper subpath of [4', k'h 

which has endvertices 4' and k. This path is empty if k:: 4. Similarly, if k = 4, 

[(k + 1)', 5'] ~ is the single vertex 5'. Below we will not comment on similar 

redundancies when k is small.) 

Case 2. 
v=k'. 

Here we consider covering paths between the vertex u = 1 and the vertex 

If k == 0 (mod 6) and n == l(mod 6), then PI = (1, 2, [2', k'h), P2 :: (1, I', (n - 1) " 

n - 1, n - 2, n - 3, [en - 3)',k'];) and P3 :: (1, n, [n', (k - 3)'E, [(k - 5)', 31;, [3, k], k'). 

If k == 0 (mod 6) and n == 3 (mod 6), then PI = ([1, k], k'), P2 :: (1, n, [n/, k'h) and P3 :: 

(1, [I', (k - 5)'h, [(k - 3)', (n - 2)']3' n - 2, n - 1, (n - 1)', (n - 3)', [en - 3), k'E). 

If k == 2 (mod 6), then PI:: ([I, kr, k'), P2 = (1, [1', k'E) and P3 :: ([1, k - 5h, (k - 5)', 

(k - 3)', k - 3, k - 4, [(k - 4)', n'E, [en - 2)', (k -1)']2, k - 1, k - 2, (k - 2)', k'). 

If k == 4 (mod 6), then PI:: ([1, kr, k'), P2 :: (1, [1' ,k'];) and P3 = ([I, k - Ih, 

[(k -1)', (n - 2)']2' [n', k/l3). 

Case 3. 

v =k'. 

Here we consider covering paths between the vertex u :: I' and the vertex 

If k == 0 (mod 6), then PI:: (1', [I, kr, k'), P2 = [1', k/E and P3 :: (1', 3',3,2, 

[2', (k + 3)');, [(k + 3)" 5'];,5,4,4',6', [6, k/l 3). 

If k == 2 (mod 6), then PI :: (1', [1, kf, k'), P2 = [1'., k'E and P3 :: ([I', (k + 3)'h, 

[(k + 3)', 2'h, [2, k']3)' 

If k == 4 (mod 12) and n == 1 (mod 6), then PI = (1', [1, k], k'), P2 :: [I', k'lJ and P3 :: 

([1', (k - 3) 'lz, [(k - 3) " n/]3' [n/, k'h). 

If k == 4 (mod 12) and n == 3 (mod 6), then PI = (I', 3', 3, 2, 2', 4', [4, k']*), P2 :: (1', 1, 

n, [n/, (k + 1)']3", k + 1, k, k') and P3 = (1', (n -1)', [en -1), (k + 2)'E, k'). 

If k == 10 (mod 12) and n == 1 (mod 6), then PI == (1', 3', [3, k']*), P2 == [I', k/E and P3 

:: (1', 1,2,2', [n', (k + 3)/]~, [k + 3, k + lr, (k + 1) I, (k --1)', k - 1, k, k'). 
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If k == 10 (mod 12) and n == 3 (mod 6), then PI = (1', 3', 5', [5, 2r, 2',4',6', [6, k']*), P2 

= (1', 1, n, [n', (k + 1)']3, k + 1, k, k') and P3 == (1', (n - 1)', [(n -1), k/E. 0 

When we first considered the concept of globally 3*-connected cubic graphs, we 
anticipated that the set would be quite restricted and that a simple characterization might 
be obtained. To date we have only shown that hyperhamiltonicity, non-biparticity and a 
circumference condition are necessary conditions. The very large number of small 
graphs which are globally 3*-connected suggests that a simple characterization may not 
be possible. 
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