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Abstract

A Mendelsohn design M D(v,k, \) is a pair (X,B), where X is a v-
set together with a collection B of ordered k-tuples from X such that
each ordered pair from X is contained in exactly A k-tuples of B. An
MD(v,k,A) is said to be self-converse, denoted by SCMD(v,k,\) =
(X, B, f), if there is an isomorphism f from (X, B) to (X,B~!), where
B' = {(zk, Tko1, T, 1) 5 (21, z) € B},  The existence of
SCMD(v,3,\), SCMD(v,4,1), SCMD(v,5,1) and SCM D(v, 4t +2,1)
has been completely settled, where 2t 4+ 1 is a prime power. But up to
now, there is no result about odd block size larger than five. In this pa-
per, we give a constructive proof for the existence of k-SC M D(v), where
kisodd and k > 5, v =1 (mod k).

1 Introduction

Let X be a v-set and 3 < k < v. A eyclic k-tuple from X is a collection of k
ordered pairs (2o, 71), (£, T2), - -, (Tx—2, 2k—1) and (Tx_,, 20), where zg, 7y, - - -, Tp_,
are distinct elements of X. It is denoted by (zo,%;, -+, 75;) or any cyclic shift
(TiyTist, o The1, o, -, Timr). A (v, k, A)-Mendelsohn design is a pair (X, B), where
B is a collection of cyclic k—tuples (called blocks) from X, such that each ordered
pair of distinct elements of X belongs to exactly A blocks of B. It is denoted by
MD(v, k, \). :

Let (X, B) be an MD(v,k, \). Define

B~ = {(zx—1, %52, -, 21, %0} ; (To,T1, -+, 25_1) € B}.
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Obviously (X, B™!) is also an M D(v, k, \), which is called the converse of (X, B). If
there exists an isomorphism f from (X, B) to (X, B~!), then the M D(v, k, \) is called
self-converse and this is denoted by SCM D(v, k, \) = (X, B, f). In particular, it is
denoted by k-SCMD(v) when A = 1. It is easy to show that necessary conditions
for the existence of both an M D(v,k, A) and an SCM D(v, k, \) are

Av(v —1) =0 (mod k).

C.J. Colbourn and A. Rosa [2] posed the open problem about the existence of self-
converse M D(v, 3,)). Yanxun Chang, Guihua Yang and Qingde Kang [3] have
solved the case for A = 1. Jie Zhang [4] solved the case for any A. Qingde Kang et
al. [5],[6] have completely solved the cases for k = 4,5 and 4¢ + 2, where 2t + 1 is
prime power. But, up to now, there is no result about odd block size larger than
five. In this paper, the following results are obtained.

Theorem 1.1 For odd k > 5, there exists a k-SCMD(v) if v = 0 (mod 4) and
v=1 (mod k).

Theorem 1.2 There ezists a (2t +1)-SCM D(4t + 2) for any positive integer t > 2.
Theorem 1.3 There exzists a k-SCM D(v) for odd k > 5 and v = 1 (mod k), except

for (4t + 1)-SCM D(4t + 2) for any integert > 2.
2 Definition and Remarks

Let Z, be the ring of integers modulo v and let d;, ds, - - -, d,,, be elements of Z, \ {0}.
The ordered sequence D = (dy,da, - -,dy,) is called a difference tuple on Z,. The

m o~
corresponding number tuple (i,7+dy,---,i+ 3. d;) is denoted by D, i € Z,. For
i=1

—~ — m
convenience, we define head(D;) =i and tail(D;) =i+ ) d;. Furthermore, define:
=1

j=
=D = (~di,~dy,- -, —dn);
Dl = (d,n,dm._l,"',(ll);
A(D) - (dl, —dg, (13, ety (”l)mmldm);
—AD)" = —(AD)™Y
s (D) = (] lly bl
abé(Dl) = {1“’17;‘*—(11""‘:|7;+ngdjl};

Sla,a+3] = (a+2,—(a+1),a,—(a+3));
Sla,a+ 4t —1] = (Sla,a+3],---,Sla+ 4t — 4,a + 4t — 1]);
Sla,a+4t—1]"' = (Sla,a+4t—1])71

If the points in Dy are distinct, then D is called a difference path and this is denoted
by DP(D). Obviously, if D is a DP then —D and D! are both DPs. If the head
and the tail of Dy both are 0, then D is called a difference cycle and this is denoted
by DC(D). 1t is easy to see that if M is a DC, then —M ™" is a DC too. Let a,b,d, k
be positive integers with a < d < b. Define:
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[a, bl = (a,a+k, -, b),
[a, D \{d} = (a, -, d— k,d+ k,---,b),
where ¢ = b = d (mod k) and the subscript & may be omitted when k = 1.

For given point set X = Z,, let T be the set of all cyclic k-tuples on X and
let f be a bijection on X. Denote P = {(z,y); z,y € X, 7 # y}. The point set
X is partitioned into point-orbits under the action of f. Two distinct points z and
y are in the same point-orbit if and only if there is a positive integer s such that
J*(x) = y. The point-orbit containing the point z is denoted by O;(z). The number
of points in Of(x) is called the length of Oy(z). The mappings induced by f are
f(z,9) = (f(2), f(y)) on P and f({zo, z1,- -, zk-1)) = (f(x0), f(z1), - - S f(@-1))
on 7. Denote

Rf(P)=(f(P))"',YPeP; Rf(B)=(f(B)™!, VBeT.

Then the finite permutation group on P (or T) generated by Rf gives an orbit
partition of P (or 7). Bach orbit in P containing the pair P is called the pair-orbit
O(P). Each orbit in 7 containing the block B is called the block-orbit O(B). The
number of pairs (or blocks) in a pair-orbit (or block-orbit) is called the length of the
orbit. Call a block B self-converse if Rf(B) = B.

Let d (or D) be the difference (or difference cycle) corresponding to pair P (or
block B). Then, the difference —d (or difference cycle (—D)™!) corresponds to Rf(P)
(or Rf(B)). As well, O(P) = O(Rf(P)) and O(B) = O(Rf(B)).

Let z,y € X, z #y and y — z = d. Suppose the length of O;(x) is m. If z and
y are in the same point-orbit, then we have

Number of pair-orbits | length of each pair-orbit
m odd,¥Yd 1 2m
m even, d # % 2 m
m =0 (mod 4), d =2 1 m
=2 (mod 4),d= 7% 2 7

Otherwise, let the length of Os(y) be n. Then, we have

Number of pair-orbits | length of each pair-orbit
m odd, n odd 1 2m, n]
else 2 [m,n]

If there are two pair-orbits corresponding to d, we call them complementary. As
examples, we give the following:

L if X =7y and f = (0,1,2,3), the pair-orbit corresponding to the difference 2
under Rf is {(0,2), (3,1),(2,0), (1,3)};

2. i X =Zs and f=(0,1,2,3,4,5), the pair-orbits corresponding to the differ-
ence 3 under Rf are {(0,3), (4,1),(2,5)} and {(1,4),(5,2),(3,0)};

3. if [X] =5 and f = (0,1,2)(0,1), the pair-orbits corresponding to the mixed
difference 1 under Rf (see Section 5) are {(0, 1), (0, 1),(2,1),(0,0),(1,1), (0,2)} and
{(1,0).(1,2),(0,0),(1,1), (2,0), (T,0)}.




In particular, we discuss the case X = Z, and f = (0,1,---,v — 1), where v =
0 (mod 4). Then, it is easy to see that {(2i,2:+d), (2i+d+1,2i+1);0 <i < 5 -1}
and {(2i+1, 2i+d+1), (21+d,2i); 0 <i < £—1}, where d € Z;, are complementary
pair-orbits. The two orbits are the same when d = %, ie., {(i,i+%); 0 <i<v—1}
Let D be a DC on Z,. Define the following DC's.
1 SDC(D), where D satisfies:
(1) D contains exactly one .
(2) For any two pairs in Dy, their pair-orbits are distinct. N
(3) For any pair P = (z,2+d) in Dy, d # §, there exists a pair P’ in Dy such
that O(P) and O(P') are complementary.
2 CDC(D), where D satisfies:
(0 L&D,
(2) All the elements in abs(D) are distinct.
From the above definitions and the discussion of pair-orbits, we have the following
lemma.

Lemma 2.1 Under the action of the group generated by Rf,
(1) there is only one block-orbit with length v corresponding to SDC(D);
(2) there are two block-orbits with length v corresponding to CDC(D).

Obviously, {I/)V%,D;-;;] ; 0<i<%—1} and {D;;l,i)\;i71 ; 0<i <y —1} are
the complementary block-orbits corresponding to C'DC/(D). But {D, Drg,:fl ;0<
i < % — 1} is the only orbit corresponding to SDC(D).

3 Some sub-structures

A k-cycle decomposition of a complete graph K, is a collection of undirected cycles
with length k, whose (undirected) edges partition all the edges of K,. Writing each
k-cycle twice, once in a certain order and the other in the reverse order, then a
k-CS(v) gives a k-SCMD(v), where the mapping f is the identity mapping. It
is known [1] that there exists a k-cycle decomposition of K, if k is odd and v =
1,k (mod 2k). Thus, in order to investigate the existence of k-SCMD(v) for odd k
and v = 1 (mod k), we only need to discuss the cases v = k+1 and 3k +1 (mod 4%).
In this section, we suppose v = 0 (mod 4) and v = 1 (mmod k).

First, from [5] (Lemma 1 and Corollary 2), we have Lemma 3.1 and Corollary 3.2.

Lemma 3.1 For DP(D) = (7“1’-7727"':]7711); 0<zy < <oy < %7 j:A(D) are
DPs.

Corollary 3.2 Let 0 <d <m, a>0anda+km < §. If D =[a,a+ km]g or
D =la,a + kmji \ {a + kd}, then £A(D) are DPs.

For convenience, we give the following table (where D = 4 Afa, a + m]).
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Table A

m | sgn(D) | tail(Dy) {Do}
even + a+% [-%,0]U]a,a+ 2]
even - ~(a+3) | [0,F]U[-(e+2),~q]
odd + —mil (-2, 0] U [a, 0 + 25
odd - mil (0,2 U[—(a+ 25, —q]

Remark In the above table, head(ﬁ)) = 0. This table can be used for D = + Ala, a+
km] or D = +A([a, a+ km]i \ {a + kd}), where all numbers m, d and 1 are replaced
by km, kd and k respectively, while a and 2 are kept fixed. And the intervals [#, *]
become [, .

Lemma 3.3 Let D = [a,a+4t—1], a>0 andt > 1. Then +S(D) are DPs.

Proof. Let N = S(D). From the definition of S(D),

=la+1a+2tJu ([-2t, 1]\ {-(2t — D}).
So S(D) is a DP and —S(D) is a DP too. ]
Lemma 3.4 Let M be a DP on Z, and ¥ ¢ M. If M satisfies (Mo \ {0}) N (M, +
(1)) =0, L ¢ My and Z d= (-1 )ZX (mod v) for i =0 or 1, then (M, %, M)
is a DC. Furthermore, (M M) is an SDC when § is odd.

Proof. Let My = (0,z,, --,z,), where m = [M]| and 0 < |z;] < ¢. Obviously,

‘ 2
Tm = 3 d=(-1)'} (mod v). If D= (M, %, M), then
deM v

)27

. — . . v , v
DO ’“(01-1/17"'a-17171,7§+-Tm772'+-Em+mla"'7§+2$m)-

50 is closed since z, = (—1)'% (mod v). Furthermore, since M is a DP and

(Mo \ {0}) N (Mo + (- 1)*%) = 0, Disa DC. If ¥ is odd, we can show that
D is an SDC by the definition of SDC. m]
Corollary 3.5 Ifv=4(mod8), 1 <t<t+m<% t+m<ac< 35 and

a=£? - (-1)"mf2] - —i:il-f (mod v),
then (Alt,t +m], a, %, Alt,t +m], a) is an SDC.
Proof. Letting D = A[t,t + m], then D is a DP by Corollary 3.2 and tazl(Do) =
(=nm2] + ~—('—1Lt from Table A. Let M = (D,a). From Table A we can see
that |z| < % for alz € Dy. For1 <t <t+m < fand t4+m < a < %,
(]WO \{opn (Mg (- )”’“’ is empty. Thus, (M, §, M) is an SDC by Lemma 3.4.
0O

Lemma 3.6 Let M be a DP on Z, and § ¢ M. If % ¢ M,, | ¥ d =% (mod v)
deM

and all elements of abs(ﬂo) are distinct, then (M,5, M~} is ¢ DC. PFurthermore,

(M, 5, M~ Y isan SDC when § 15 even and all differences in M are odd.

Proof. Let My = (O,:cl,---,xm), where m = [M] and 0 < |z;| < % Denote
D= (M,§,M™"). Since |zn| = | Cgepr d] = 2, it is easy to see that
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5U = (ny‘bx'lv Ty Tmy T Tmy T Tmeety T, "171)
is closed. Because all the elements in abs( M) are distinct, D is indeed a DC. If 7is
even and all the differences in M are odd, D is an SDC by the definition of SDC.
O

Corollary 3.7 Let a,b,m,t be odd and satisfy the following conditions: 1 <t <
t+2m<a< ¥ be[l,L=1\[t,t+2m), anda #b. Let T = Alt,t + 2m], and
M= (T,a,b). Ifv=0 (mod 8), la+b+tail(Ty)| = ¥ (mod v), then (M, %, M) is
an SDC.

Proof. From Table A we see that tail(Ty) = —(m +1). Since a,b, ¢ are all odd and
satisfy the conditions, the elements in abs(Mo) are all distinct. Then (M, %, M~} is
an SDC by Lemma 3.6. o
Lemma 3.8

(1) Let s,t > Land v = Bs+ 1)(8t +7)+ 1. If Ny = A[l, 4t — 1]y, Ny =
(4t+2 A([2,4t)51)) and N3 = (4t +1,% — 4L —3), then (N1, %, (N \ {1})7", Na, Ny, 1,

o' N3) is an SDC;

(2) Lets >0, t>1andv = (85 + 5)(81‘+3) + 1. If Ny = A[1,4t — 1}, and
Ny = (§ +4t, A[Q 4t]y), then (N, 2, (M \ {1})7, Na, 1, Ny ) is an SDC.

Proof. -

(1) Let D = (Nl,%, (Nl \ {1})A1,]VQ,N3,I,Nz_l,]\rg). Then DO = [*‘213,0}2 U

1,2t - I]ZU[Q~4t+1 — 2t] U[3~6f+1,§—4t—1]2 Ul —2t+1,5+1]pU

(-4 —4t, -5 +2]2U {3 +2t +2,-§ -2t —1,—% +4t+3} by Table A. It is easy to

see that |dZ d| = 0 (mod v) and all elements in Do are distinct except for the head
€D

= the tail. So, D is a DC. By the definition of SDC, D is an SDC.
(2) Let D = (N, %, (N \{1})7", No, 1, Ny1). Then Dy = [—2t 0] Ul 2t -1 U
[——4t+2——2t] U (5 61‘+172 4t — 1y U[-§ -2t - Y42t - 1)U
[—% — 6t,—% — 2t], by Tdble A. The rest of the proof is similar to (1) O
Let a, b, ¢, © be positive integers and b be even. Denote

Ui(a,b,c) = (Ala+ b(i — 1),a + bi — 1], —(c+14),c — i, & + 20);

Vi(a,b,¢) = (Ala+b(i — 1),a+bi — 1], —(c+1i),c —i+ 1,2+ 2 —1).
Lemma 3.9 Let a,b,c, 5,2’,11 be po%itive integers and v, b be even. If the f()llc)win_(/

conditions are satisfied: c+ +s5<ic>2s—1land0<a<a+bs—1 < 3, then
U; and V; defined above are CDC’s for any 1 <1< s.

Proof. Denote T = Ala + b(i — 1),a + bi —1]. By Table A, {Ty} = [a + b(i — 1),
a+bi—1-2uU[-£, 0] and tail(Ty) = —%. Since a+bs—1 < %, Tisa DP on Z, by
Corollary 3.2. So, in the corresponding number tuple of U; with head 0, all elements
are distinct. Thereby, all the U; (or V;) are DCs on Z,. By the definition of CDC,
they are all C'DCs. 0
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4 The Proof of Theorem 1.1

In this section, we will give several classes of constructions for a k- SCMD(v) =
(X, B, f) for v = 0 (mod 4) and v = 1 (mod k), where the point set X is Z,, the
mapping f is i — i+ 1 for ¢ € Z,,. Also each block set B consists of one SDC and
n CDCs, where "(“ Y = (2n + 1)v by Lemma 2.1. So, the number n of CDCs is
¥ 2’; ! Fnrthermore in order to verify the correctness of the given construction, we
only need to show:

(1) Each given DC'is an SDC(D) or a CDC(D), (using the conclusion in Section
3 or direct examination).

(2) The differences in all the DCs form a partition of [1,%]. (Note that, in an
SDC, each difference except for ¥ appears twice and is calculated only once. )

Theorem 4.1 There erists a (4t + 3)-SCMD((4s + 1)(4t + 3) + 1) for positive
wntegers s, t with the same parity.

Construction. Let v = (4ds+1)(4¢ +3) + 1 and X = Z,,.
(I) SDC(N, 3, N), where N = (A[1,2t],% +t).
(Il) CDC(D), where D is taken as follows.
(D U2t + 25+ 1, 4t, $4+1),1 <i<s;
@) Vi(§+3s+t+1, 4, Y4+25+1),1<i<s.

Proof. Obviously, § is odd for v = (4s + 1)(4¢ + 3) + 1. By Corollary 3.5 , (1) is
an SDC. Moroovel the difference tuples in (II) are CDCs by Lemma 3. 9 The
differences in (1) and (1I) form a partition of [1, %]. In addition, the number of blocks
is v +2s x v x 2= (4s + 1)v, as expected. O

Theorem 4.2 There exists a (4t + 3)-SCMD((4s + 1)(4t + 3) + 1) for odd integer
t > 3 and even integer s > 2.

Construction. Let t = 2m + 1 and s = 2n. Then, the design will be (8m + 7)-
SCMD(v), where v = (8n + 1)(8m + 7) + 1.
(I) SDC’(NM %» (Nl\{l})717 ‘]V‘Zr jvii? 17 ]\2— ’ NS)
where Ny = A[l,4m — 1]y, Ny = (4m + 2, —A([2,4m];")), N3 = (dm + 1,
5 - 4m - 3).
) CDC(D), where D is taken as follows.
(D) Ui(dm +4dn+3, 8m+4, 2 —4m —3), 1<i<2n-1;
(2) V(4 +6n 4 2m + 2, 8m+4 T—4dm+4n - 3), 1 << 2n;
(3) (A[§ =6m —2n—3,% —dm —2n — 4], A[% —dm +6n— 2, T+2m46n+1],
(3 +2n—4m—3) §—4m —2n —3,4m+dn + 2).

Proof. By Lemma 3.8(1), (I) is an SDC. By Lemma 3.9 or direct examination, the
difference tuples in (II) are CDCs. The differences in (I) and (II) form a partition
of [1, 5]. In addition, the number of blocks is v+ (1+2n — 1+ 2n) x 2v = (8n + 1w,
as expected, For 4m — 1> 1, we need m > 1,1e.,t > 3. O

(Ir

Theorem 4.3 There exists a T-SCM D(56t + 8) for any positive integer t.

Construction.
(I) SDC(1,-2,28t+4,1,14t + 3, 14t + 3, —2).
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(I) CDC(D), where D is taken as follows.
(1) Ui(4t +3, 4, 14t +3), 1<i<2t;
(2) Vi(20t + 4, 4, 18t +4), 1< <2t

Theorem 4.4 There exists a (4t + 3)-SCMD((4s + 1)(4t + 3) + 1) for odd integer
$ > 1 and even integer t > 2.

Construction. Let ¢ = 2m and s = 2n + 1. Then the design will be (8m + 3)-
SCM D(v), where v = (8n + 5)(8m + 3) + 1.
(I) SDC(Ny, %, (N \ {1})71, N, 1, Ny '), where
Ny = A[l,4m — 1]y, No = (5 +4m, A[2, 4m],).
(I1) CDC(D), where D is taken as follows.
(1) Ui(4m +4n+3, 8m, & +4m), 1<i<2n+1;
(2) Vi(§ +6n+4m + 4, 8m PHdm+dn+2), 1 <0 < 2n
(3) (A [a a+2m — 1}, Al§ - Gm,% =1, ~(b+2n+1), b—2n,4m +4n+ 1),
where a = § +2m~2n—1Lb=7% +4m+4n+ 2.

Proof. Similar to the proof of Theorem 4.2. O
Theorem 4.5 There exists a (4t + 3)-SCM D(4t + 4) for any positive integer t.

Construction.
(1) t =0 (mod 2): SDC(A[L,2t+ 2], S[1,2¢]7",2¢ +1).
(2) t =3 (mod 4): SDC(A[1,2t + 1o, 2t + 2, A[3,2t + 15", M, 1, M),
where M = (=2t, —(t + 1), Alt + 3,2t — 25,2, A[4, ¢ — 1]71).
(3)t = 1 (mod 4) and t > 1: SDC(A[L, 2t+1],, 2¢+2, —A[3, 2¢+1]5 ", —2¢, —(t-+1),
Al4,2t)31, 1, A2, — 1o, =2, A[t + 5, 2t — 2], —(t + 3)).
(4)t=1: SDC(1,-2,4,1,-2,3,3).

Theorem 4.6 There exists a (4t+1)-SCMD((4ds+3)(4t+1)+1) for integers s > 0
and t > 1 with the same parity.

Construction. Let v = (4s + 3)(d¢t + 1) + 1.
(I) SDC(N,%,N), where N = (A[1,2t — 1],
(1) CDC(D), where D is taken as follows.

(1) Ui(2t+25+1, 44 -2, 2 —1), 1<i<s;
(2) Vi(dst +4ds +2t +4, 46— 2, dst+3s+2t+2), 1<i<s+1L

Proof. By Corollary 3.5, (I} is an SDC. By Lemma 3.9, all the difference tuples in

(II) are C DCs. The differences in (I) and (II) form a partition of [1, §]. In addition,

the number of blocks is v + (25 + 1) X 2v = (4s + 3)v, as expected. O

Theorem 4.7 There exists a (4t +1)-SCMD((4s + 3)(4t + 1) + 1) for odd integer
t > 3 and even integer s > 2.

v ).

Construction. First, we give the construction for ¢ = 3 and s = 2, ie, 13-
SCMD(144).
(1) SDC(M,72, M~1), where M = (A[65,71]2, 35, 5);
(2) CDC(A[6,14] \ {8}, A[64,70]5, 8);
(3) CDC(A[15,24], 36,3, —34);
(4) CDC(A[25,32],38,-39,37,1, —33);
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(5) CDC(AJ40,49], 62, 4, —61);
(6) CDC(A[50,59], 63,2, —60).
Then, let t = 2m + 1 and s = 2n, where m =1, n > 2orm > 1, n> 1. The
design will be (8m + 5)-SCM D(v), where v = (8n + 3)(8m + 5) + 1.
(I) SDC(N, %, N71).
(II) CDC(D), where D is taken as follows.
(1) (A[2,8mly,a—1,—(a+1), Alc,c+4m — 2], 8m + 3, —(8m +5), Alc + 1, ¢ +
dm — 1]5,8m + 4);
(2) 8m+1,—(8m+2), A([b—2m —2,b+2m + 2]\ {b}), Alc +4m, c+4m + 3],
Ald —4m +9,d}, —(c+ 4dm +4),c — 1,8m + 6);
(3) (Alz14smin) 1) Temeyil, —(c +4m + 4 +14),¢ — 1 — §,8m + 2 +6),
1< <2n -1,
(4) (Alp+@Bm+2)(i—1),p—1+(8m+2)i], —(b+2m+2+1i),b—2m — 2 — 1,
8m+2i+5), 1<i<2n,
where @ = 8m +4dn + 7,0 = 16nm + 6n + 2m — 3,¢ = 16nm + 10n +4m,d =
16nm + 12n +12m — 5, p = 16nm + 16n + 12m + 7, N = (A[L,8m — 1],a,b), M =
l[a+2,p=1\[b—2m —2n —2,d] = (xy, 22, -, Zyny) and z; < 344, for 1 <i < |M].

Proof. Here, we only give the proof for (t,s) # (3,2). Let v = (8n+3)(8m+5) +1.
By Corollary 3.7, (I) is au SDC. By Lemma 3.9 or direct examination, the difference
tuples in (II) are CDCs. The differences in (I) and (II) form a partition of [1, 2]. In
addition, the number of blocks is v+ (1+1+2n—u—1+1+u—142n)x2v = (8n+3)v,
as expected. It is easy to see that [M| = (8m +2)(2n — 1). Then, from the definition
of M, we need b —2m —2n —2 > a+ 2, i.c., 16mn +4n — 5 > 8m + 4n + 9, which
implies n > 4’8”1:7. This inequality holds when m =1, n>2orm > 1, n> 1, i.e,,
t >3, s>2and (s,t) # (2,3). But the construction for (s,#) = (2,3) has been
given above. O

Theorem 4.8 There exists o (8t + 5)-SCM D(24t + 16) for any positive integer t.

Construction.
(I) SDC(M, 12t + 8, M), where
M = (A[1,4t — 1], A[8t + 9,12t + T]o, — (8t + 5), 6t + 1);
(I) CDC(A[2,4t]y, A[8t + 8,12t + 6]y, —A([4t + 1,6¢]71), — A([6t + 3,8t + 7]\
{8 +5})71, 6t + 2).

Theorem 4.9 There exists o (4t +1)-SCM D((4s+ 3)(4t + 1) + 1) for even integer
t > 4 and odd integer s > 5.

Construction.  First, we give the construction for t = 4 and s = 5, i.e., 17-
SCMD(392).

(1) SDC(M,196, M~1), where M = (1, -3, A[189, 195y, —31, —61);

(2) CDC(2, -4, A[188,194],, —A[5,10] 71, — A[42,45]71, 11);
(3) CDC(A[27,30], A[51,60], —46,41, 12);
(4) CDC(A[62 + 14(1 — 1), 61 + 14d], —(46 + 1), 41 — 3,12 + 2i), 1 < i < 4;
(5) CDC(A[118 + 14(i — 1),117 4+ 144], — (31 +1),27 — 4,11+ 24), 1 < i < 5.
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Then, let ¢ = 2m and s = 2n + 1, where m =2, n >3 orm > 2, n > 2. The
design will be (8m + 1) SCMD(v), where v = (8n + 7)(8&n+ 1) + 1
(I) SDC(N,%,N71).
(II) CDC (D), where D is taken as follows.
(1) (A[2,4m — 4]p, A[% — 4m, ¥ — 2]y, —Al4mn - 3,6m — 2],
~A([6m,8m —1]71),6m — 1);
(2) (A(la—2m, a+2m]\{a}), Alb,b+4m—3],—(d—1), 12m+8n+7,8m +4dn);
(3) (Alz1s(8m-2)i-1)> Tem—2)s), —(c+1i),c—dm—1—4,8m +2i), 1 <1 < 2n—1;
(4) (8m~+4n+2, —(8m+4n+3),b—2, —(b—1), Ale, e+8m~—T7], —c, c—4m—1,8m);
“(5) (Alp+(8m—2)(i—1),p— 1+(8m 2)i}, —(a+2m+1),a —2m—i,8m+2i—1),
1 <7< 2n+1,
where a = 10m-4-6n+5, b = 12m+10n+10,¢ = 16m~+10n+8,d = 16m+12n+9%,e =
16nm +8n +8m + 12, p = 16nm + 16m + 8n + 6, N = (A[l, 4m — 5y, A[§ — 4m +
Y1)y, ~a, —(16nm—4n—1)), M = [d,d+ (8m —2)(2n—1)]\ {16mn — 4n — 1} =
($1,T2, J|M\) and z; < T4 for 1 <14 < {M|.

Proof. Here, we only give the proof for (¢,s) # (4,5). By Lemma 3.6, (I) is an
SDC. By Lemma 3.9 or direct examination, the difference tuples in (I} are CDCs.
The differences in (I) and (II) form a partition of [1, §]. In addition, the number of
blocksisv + (1 +1+2n~1+4+1+2n+1) x 2v = (8n + 7)v, as expected. It is
easy to see that |M| = (8n — 2)(2n — 1). Then from the definition of M, we need
16mn—4n—1 > d, ie., 16mn—4n—1 > 16mn-+12n+9, which implies n > 1+Sm

This inequality holds when m =2, n >3 orm > 2, n>2,ie,t >4, s>5 and
(s,t) # (5,4). But the construction for (s,t) = (5,4) has been given above. O

Theorem 4.10 There exists a (8t + 1)-SCM D(56t + 8) for any positive integer t.

Construction.
(1) SDC(M, 28t + 4, M~1), where M = (A[6t 41,14t — 5], 18t + 1,28t + 3);
(2) CDC(A[6t, 14t — 6], A[Z”t 1,26 + 2], 61 — 1);
(3) CDC(A[3,6t — 2),14t — 4, — (14t — 3),A[261 + 3,98t + 2], —18, 22, —1);
(4) CDC(A[14t — 1,18t — 2], A[18¢ + 2,22t — 1], — (14t — 2),18¢ — 1, —2).
Theorem 4.11 There exists a (8¢ + 1)-SCM D(120t + 16) for any integer t > 2.

Construction.
(1) SDC(M,60t + 8, M~1), where M = (A[42t + 7, 50t + 1],, 34t + 3,60t + 7);
(2) CDC(A[38¢ + 5,42t + 6], A[42t + 8, 50t + 2], 6t — 1);
(3) CDC(A[6t + (8¢ — 2)(¢ — 1),6t — 1+ (8 — 2)7], —(34¢t + 3 — 4), 38t + 1 + 4,
—(2i —1)),1 < <3
(4) CDC(A[7,6t — 2], A[50t + 3,52t + 8], —(30t — 6), 34t — 1, —6);
(5) CDC(A[30t — 3,34t — 4], A[34t + 4, 38t + 1], —(30t — 5),34t — 2, —4);
(6) CDC(A[52t + 9,60t + 6], — (30t — 4), 34t — 3, —2).

Proof. In this construction, we need 6 < 6t — 1, i.e., ¢t > 2. O

Theorem 4.12 There exists a 9-SCMD(72s + 64) for any nonnegative integer s.
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Construction.
(I) SDC(M, 365 + 32, M), where M = (1, 3,185 + 19, 365 + 31).
(II) CDC(D), where D is taken as follows
(1) (2, 4,6, -7, A([18s + 17,185 + 21] \ {18s + 19}), 5);
(2) (A {45+62+4,43+6i+9},~(18s-{—21 1), 185+ 17—4,2i+7), 1 < i < 25 +1;
(3) (A[245+6i+23, 245+ 60+ 28], —(225+27+1),225+24 —4,2i+6),1 < 1 < 2s;
(4) (A[22s + 24,225 + 27], 365 + 29, — (365 + 30), — (245 + 28), 205 + 23,45 + 8).
The proof of Theorem 1.1:

According to the range of k£ and v, there are the following cases :

() k=4t+3, v=(4s+1)(4t+3)+1, t > 0.

If s = 0, see Theorem 4.5. If s > 0 and s, t have the same parity, see Theorem 4.1;
otherwise see Theorem 4.2 (¢ > 1 odd), Theorem 4.3 (¢ = 1) and Theorem 4.4 (¢
even).

) k=4t+1, v=>4s+3)(4t+1)+1, t > 1.

If 5, have the same parity, see Theorem 4.6; if s is even and ¢ is odd, see Theorem
4.7-4.8; if s is odd and t is even, see Theorem 4.11—4.12. O

5 The proof of Theorem 1.2

In this section, we will give several classes of constructions for a k-SCMD(2k) =
(X, B, f), where the point set X is {oo1, 002} U (Z4_1 X Z5) and the mapping f is

I G9).
€2y
For brevity, the points in Z,_; x Z, are denoted by & = (z,0) or # = (z,1). The
difference between points of Zj,_; x {0} (or of Zx_; x {1}) is said to be pure, and
is denoted by d (or d). The difference between z and z is said to be mized, and
is denoted by do (for the ordered pairs (z,z +d)) or diy (for the ordered pairs
(Z,z + d)). Define:
Ala,a+d = (@, —(a+1),---,(-1)%a +d) );
MAfa,a+d} = (a1, —(a + Do, -, (—=1)%a + d);;), where (i, j) = (1,0) for odd
d, or (0,1) for even d,
MAla,a+d] = (a9, ~(a+ oy, -+, (—=1)4a + d)s;), where (i, 5) = (0,1) for odd
d, or (1,0) for even d.
And, define the following block families:
SDC(M) = (M, 0, —7&74) D, where ¢ = 0 or 1 follows fazl(Mo) € Zp1 ¥ {0}
or Zg—y x {1}. The corresponding number tuple family is {(co, D,) ;
a € Zy—q % {t}}, where t is determined by the first difference in M;
CDCy(M), where M is a DP, the head and the tail of M, belong to dif-

ferent point-orbits, and 3> d is odd. The corresponding number
deM

tuple family is {(co,M,); a € Zy_; x {t}}, where t is determined
by the first difference in M.
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For convenience, the subscript a in the above number tuple families is called the
starter. Note that the terminology SDC, (and CDCy) excludes DC, since M,
cannot be closed. Under the mapping f in this section, there are k — 1 block-orbits
corresponding to each SDCy, and 'L;—‘ block-orbits corresponding to each CDC.
There is only one self-converse block in each block-orbit of SDCy(M). But there
are two blocks in each block-orbit of CDCy (M) of which one is the f-converse of
the other. Briefly, we gather all the blocks in these orbits and called them the block
family corresponding to SDCy (M) or CDCy(M). The following Lemmas 5.1-5.2
are obvious.

Lemma 5.1 Let t be a positive integer. The point set is X = {001, 00y JU (Zay42 X Z3)
and the mapping is f = (001)(00y) [1¢5h1(i,7). Then the following DC's are both
SDC.s and the blocks in the block family cover each pair with pure difference in
[1,2t] and in [1,21] ezactly once.

(1) SDCq, (A[L, 2t]) with starters in [0,4t 4 1};

(2) SDCo,(A[1,2t]) with starters in [0, 4t + 1J.

Lemma 5.2 Let t be a positive integer. The point set is X = {00y, 002U (Z4y X Z5)
and the mapping is f = (001)(009) 1155 (4,7). Then, the following DC's in (1)-(4)
are all SDCs and the blocks in the block family cover each pair with pure difference
in [1,2t)\ {2t — 1} and [1,2¢)\ {26 — 1} ezactly once.

(1) SDCo, ((2t)e1, {1 2t — 2]) with starters in {0 2t - 1]

(2) SDCoy,(2t, A1, 2t — 2]) with starters in 2,4
(3) SDCw, (2t, A[1,2t — 2]) with starters in [‘2t,4t - 1];
(4) SDC.,((2t)10, A1, 2t — 2]) with starters in [0,2t — 1].

Note In the following theorems, the mentioned replacement for a block should be
done for its f-converse as well.

Theorem 5.3 There exists an (8t + 3)-SCM D(16t + 6) for any positive integer ¢.

Construction. X = {001,005} U (Zsera X Za), f = (001)(002) TIELE' (i, 4).

(1) SDCr,(A[1,4t]) with starters in [0,8% + 1], where the block with starter 4¢,
ie., (009, dt, - - -y, is replaced by (ocoy,4t, - - -);

(2) SDCy, (A[1,4t]) with starters in [0, 8 + 1];

(3) CDCoo, (MA[1, 4], 41 + 1, — M A[2,4t]71, 4 + 1) with starters in [1, 87 + 1]y,
where the block with starter 8¢ + 1, i.e., (oo, 8 + 1,---, 1,8t + 1,4t}, is replaced by
B = <001,8t+ 1,"',1,415,002);

(4) CDCo, ((4t+1)01, MA[L, 4t —2], (4t+1)10, (—1)o1, —MA[2, 48], — (4t)01) with
starters in [1, 8¢ + 1]y;

(5) C= <8t+ 1,(L0,bg, a;,bl, ety (l4t,b4t>, where a; = 4(’L + 1)t, b, = 4(2 -+ l)t -+ 1,
0 <1 <4t and all a;,b; are in Zg 9.

Proof. The number of the blocks is (8¢ +2) + (8t +2) + (&t +4t +1+ 1) x 2 =
Qﬁ’fﬂ’)%w as expected.

By Lemma 5.1, (1) and (2) are both SDCys. By direct checking, (3) and
(4) are both CDC'OOS Obviously, if d # 1¢; and (4t — 1}y, each pair with dif-
ference (#d)o1, (£d)10, 2d, £d appears exactly once in (1)~(6) except for the pairs

24




(1,8t + 1),(8t + 1,4t),(44,8t + 1) and (8T + 1,1). If d = 1oy or (4f — 1)1q, each pair
with difference d appears exactly once in (1)—(6) except for the pairs in the set
S={(i+1),(i+1,1); i €[0,8),} U{(G,i+ 4t —1),(G+ 4t — 1,4); 5 € [3,8t + 1]}
Since ged(1+ 4t —1,8t+2) = 2, all a;, b; in the construction can form directed cycle
D = (ag, by, - - -, aag, bay) and its f-converse. Let C' = (ag, by, - - -, aay, bay, 8t +1). Note
that (b, 8t + 1,a0) = (1,8t + 1,4t). Then, obviously, C and its f-converse cover all
pairs in S and the pairs (1,8t + 1),(8¢ + 1,4¢),(4¢,8t + 1) and (8¢ + 1,1).

From the definition of SDC,, and CDC,, we can see that the construction is an
(8t + 3)-SCM D(16t + 6). 0

Theorem 5.4 There ezists an (8t + 7)-SCM D(16¢ + 14) for any positive integer t.

Construction. X = {001,009} U (Zgyy6 X Za), f = (001)(009) [TEE3 (i, 7).

(1) SDCo, (A[1, 4t + 2]) with starters in [0, 8¢ + 5];

(2) SDC,(A [1 4t + 2]) with starters in [0, 8 + 5], where the block with starter
4t +2, i.e., (00g, 4t + 2, ), is replaced by {00, 4 + 2, +);

(3) CDC‘OO,(KIt +3, MA[I 4t + 2], —MA[2,4¢ + 2]~ ! ,4t + 3) with starters in
[1,8% + 5}, where the block with starter 8t+5,i.e., (ool, 8t +5, -, 1,8t45,4t42),
is replaced by B = (001,8f + 5, -, 1,4t + 2, 00,);

(4) CDCooy(1on, —M A[2,48 + 2)7Y, — (4t + 2)01, (4 + B)1o, MA[3, 44]7", (4 + B)on,
(—1)10, 201) with starters in [1,8¢ + o}g,

(d) C= <8f + 5, aq, by, ay, by, -+ (I4t+2,b4¢+2>, where a;, b; € 23116,
o= (i 1)AE+2), b= F )@ +2)+1,0<i<4t+2
Proof. Similar to the proof of Theorem 5.3. O
Theorem 5.5 There exists a 7-SCM D(14).

Construction. X = {co;,00,} U (Zs x Zo), f = (00)(00q) [T20(4,7).

(1) SDCy, (A[1,2]) with starters in [0, 5];

(2) SDCy,(A[1,2)) with starters in [0, 5], where the block with starter 2, i.e.,
(002,2,3,1,1, 3,2), is replaced by {001,2,3,1,1,3,2);

(3) C’DC’ool(?) Lig, (=2)o1, (=2)10, 3) with starters in [1, 5], where the block with
starter B, i.e., (001,5,2,3,1,5,2), is replaced by B = (c0,,5,2,3, 1,2, 00y);

(4) CDCOOZ(SOI) 21(), 201, 310, 101) with starters in [1, 5]2,

(5) C = (5,2,3,4,5,0,1).
Theorem 5.6 There exists an (8t + 5)-SCM D(16t + 10) for any positive integer
t> 3.

Construction. X = {co1,002} U (Zg4 X Z2), f = (001)(00s) TIEEE3(4,9).
(1) SDCo, (4t + 2)g1, A[1,4¢]) with starters in [0, 4¢ + 1], where the block with
starter 0, i.e., (00,0, ), is replaced by (00,0, - );
(2) SDCy, (4t + 2, A[1, 4¢]) with starters in [4¢ + 2, 8¢ + 3];
(3) SDCoo, ((4t + 2)10, A[1, 4¢]) with starters in [0, 47 + 1J;
(4) SDCo, (4t + 2, A[1, 4¢]) with starters in [4f + 2,8 + 3J;
(5) CDCo,((4t = 2)o1, —(4t + 1), —MA7Y1, 4t + 1], ~MA[1, 4t — 2], —(4t + 1),
(47‘ 1)o1) with starters in [1, 8¢ + 3]s, where the block with starter 1, i.e., {00y, 1
4T—1,8+2, ), is replaced by B = (00y,009,1,8F + 2,--+);
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(6) CDCoo, (MA™'[2,4t — 3], ~MA™' 4t — 1,4t + 1], —(dt + 1), MA~[4t — 1,
4t + 1], M A[4, 4t — 2], 11, —4F + 1, 240, (48 + 1)1, — (4t)10) with starters in [T, 8 + 3]y;
(7) C = (&t —T1,a0,bo,a1, by, -+, aus1, bagyr), where a; = —2(i+1), b =
~2(i+1)+1, 0<i<4t+1 and a;, b; are in Zgyq.
Proof. Similar to the proof of Theorem 5.3. 0O
Theorem 5.7 There exists a 13-SCM D(26).

Construction. X = {00,005} U (Z1g x Z3), f = (001)(002) [TiL, (%, 7).

(1) SDCw, (601, A[1, 4]) with starters in [0, 5], where the block with starter 0, i.e.,
(c01,0, -+, is replaced by {002, 0, - - -);

(2) SDC., (6, A[1, 4]) with starters in [6, 11];

(3) SDCoy, (610, A[1, 4]) with starters in [0, 5];

(4) SDC,,, (6, AL, 4]) with starters in [6, 11];

( ) CDCOOZ(201, _5 “WAM [ ] ( 3)01 10,( )()1) with starters in [1, 11]2,
where the block with starter 11, i.e., {00y, 11, 1,8, - - -}, is replaced by B = (001, 009,11,
8, )

(6) CDCooi(zm, ("—5)01, 110, 501, (~4)10, ( )(}1, 5 310, 5, 101, 210) with starters
in [1, 11];

(7) C = (1,8,1,10,3,0,5,2,7,4,9,6,11).
Theorem 5.8 There exists a 21-SCM D{42).

Construction. X = {001,005} U (Z X Z3), f = (001)(002) 19,3i,1).
(1) SDCw, (1001, A[1,8]) with starters in [0,9], where the block with starter 0,
i.e., (0oy,0,- ), is replaced by (002, 0, );

( ) SDCw, (10, A[1, 8]) with starters in {10, 19];
(3) SDCoo,(1019, A[1, 8]) with starters in [ .9);
(4) SDC.,(10, A1, 8]) with starters in [10, 19];
(5) CDCo, (601, =9, —M A1,9], - M A[1, ] -9, (=7)o1) with starters in [1, 19],,
where the block with starter 1, i.e., (009, 1,7,18, - - ), is replaced by B = (001, 00, 1,

18,--);

(6) CDCoo, (MA™Y[2,5], ~MA(7,9], =9, —M A[7,9], =9, 210, 191, M A[4,6],9,,
(—8)10) with starters in [T, 19]»;

(7) C = (T,a9,bo,a1,by,- -, as,bs), where a; = =2(1 +1),b; = =2(i +1) +1, 0 <
t < 4 and all a;, b; are in Zy.

Theorem 5.9 There exists an (8t + 1)-SCMD(16t + 2) for any integer t > 2.

Construction. X = {00,005} U (Zg; x Z), f = (001)(000) [T5551 (4, 7).

(1) SDC., ((4t)o1, A[1, 4t — 2]) with starters in [0,4t — 1};

(2) SDCy, (4t, A[1,4t — 2]) with starters in [4¢,8t — 1], where the block with
starter 4, i.e., (001,4t, - +), is replaced by (00y, 4t, - -);

(3) SDC’OOZ(( t)i0, A[1, 4t — 2]) with starters in [0,4 =T1;

(4) SDC,(4t, [1 4t — 2]) with starters in [47, 87 — 1J;

(5) CDCo,((4t — 4)or, — (4t — 1), MAYL, 4t — 1], 1oy, 4 — T, M A[2, 4t — 3]) with
starters in [1, 8¢ — 1]1, where the block with starter 1, i.e., (oo, 1,4t — 3,8t — 2, - - ),
is replaced by B = (00, 009,1,8F = 2, - );
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(6) CDCoo, (—~MA™Y[2,4t — 5], ~ M A4t — 2, 4t —1],~ M A[4t — 2, 4t — 1], - (T = 1),
(—*2)10, ].01, A/[A[4 4t — 3} (4t — 1)10, (4t - 2)01,4t - 1, -‘(4t - 3)10) with starters in
(1,57 - qz,

(7) <4t - 3,(1,0,[)0, al,bl, ety a4¢_1,b4t<1>, where a; = —2(2 + 1), bl =
=20t + 1)+ 1, 0 <i<4t—1and all a;,b; are in Zg,.

Proof. In the construction, we need 4t —4 > 0, i.e., t > 2. The rest of the proof is
similar to Theorem 5.3. 0

Theorem 5.10 There exists a 9-SCM D(18).

Construction. X = {o0;,002} U (Zy x Z,), f = (001)(002) [T_y(4, 7).
(1) SDC, (401, A1, 2]) with starters in [0, 3], where the block with starter 2, i..,

(01,2, ), is replaced by (009,2, -+ -);

(2) SDC, (4, A1, 2]) with starters in [4,7];

(3) SDCo, (410, A[1,2]) with starters in [0, 3];

(4) SDCw, (4, A[1,2]) with starters in [4,7];

(5) CDCuo,(201, =3, 310, Lot, (— )m,( 3)o1,3) with starters in [1, 7]y, where the
block with starter 1, i.e., (00,,1,3,0,3,4,2,7,2), is replaced by B = (c0y, 005,1,0, 3,
2,

4,

»2);
( ) CDCo, ((=3)10, 201, 3, (—1)10, 301, =3, (—2)10) with starters in [, 7;
(7) C =(1,3,0,7,6,5,4,3,2).
The proof of Theorem 1.2:

Let k = 2t + 1 (t > 2). According to the value of ¢ modulo 4 we have following
cases:

If t =1 (mod 4), see Theorem 5.3;

If t = 3 (mod 4), see Theorem 5.4 and Theorem 5.5
If t = 2 (mod 4), see Theorem 5.6—5.8;
If t =0 (mod 4), see Theorem 5.9 and Theorem 5.10. O

6 The proof of Theorem 1.3

Let D = (dy,dy,---,di) be a CDC. If there are d;, d;y1,diro, divz € D such that
di = diy, dip1 = digs and d; # dixy (mod 2), then the CDC is said to be of
ALT-type and (d;, dis1, diza, div3) is called the ALT -piece.

Lemma 6.1 Among the CDC's of each construction given in Section 4, there is at
least one ALT -type CDC.

Proof. In section 4, we need to investigate all the constructions except for Theo-
rem 4.5 in which there is no CDC. In fact we can point out the following ALT-type
CDCs.

Theorem 4.1—U, (2t + 25+ 1,4t, % + ) (for t > 1);

Theorem 4.2—U, (4m + 4n + 3,8m + 4, 7 —4m —3) (for m >1);

Theorem 4.3—U, (4t +3,4,14¢t + 3) (for t > 1);

Theorem 4.4—U,(4m +4n + 3,8m, % +4m) (for m > 1);
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Theorem 4.6—U, (2t +2s + 1,4t — 2,5 —t) (for t > 1);

Theorem 4.7—(3) in the first construction,
the difference cycle with ¢ = 1 in part(Il) (4) (for m > 1) in the second
construction;

Theorem 4.8—the only CDC (for ¢ > 1, so there is an ALT-piece in —A([6¢ +

3,8t + 7]\ {8t + 5} ):

Theorem 4.9—(3) in the first construction,
the difference cycle with ¢ = 1 in part(II) (5) (for m > 2) in the second
construction;

Theorem 4.10—(2) (for ¢t > 1);

Theorem 4.11—(1) (for t > 2);

Theorem 4.12—part(I1) (2). ]

Theorem 6.2 For odd k > 5, let v =1 (mod k), v # k+1 and v = 0 (mod 4).
If there ezist a k-SCMD(v) with ALT -type CDC's and a k-SCMD(2k), then there
exists a k-SCMD(v + 2k).

Proof. Let k=2t+1and ¢t > 2. Let (X,B,g) be a (2¢t + 1)-SCM D(v) with an
ALT-type CDC and (Y,C,h) be a (2t + 1)-SCMD(4t + 2), where X = Z,, g =
0,1,---,0=1), Y = {a;,a; 1 <1< 2t} U{oo, 002}, k= (c0)(002) [T, (s, @)

Let D = (dy,da, da,dy, -+, doi1), where (dy, da, d3 ,dy) is an ALT-piece. And,
B = (24,2, T3, 24,5, - - -, Tary1) 18 a block in B, where z; + d; = 2,4, (mod v), i€
Zoty. Let O(B) be the block-orbit containing B. For expressing the parity of all
these x; (suppose x; is even), we give the following table.

Table B
case | case 11
(dy,da, dy, dy) even, odd, even, odd odd, even, odd, even
(z1, T2, 23, T4, x5) | even, even, odd, odd, even | even, odd, odd, even, even

Define the following five basic blocks:
By = (1, 72,01, Y1, 02, , Ye—2, G—1, Y1, Gt);
By = (r3, 24,01, 91 + Lag, -, Y2 + L o, o1 + 1, a0);
By = (2, T3, G 1, Y1, Qrg2s 5 Yooy Q2015 Yoo 5 G2t)
By = (14,75, 0001, %1 + 1, Grp2, o o + Lay 1, e + 1, ag);
BS = (OO[, 2,002, L5, T, " * s Topri, .’171),
where z = 24 (case I) or z4 (case II) and these y;, 1 < j < ¢t—1, are distinct elements
from the set
{26 0 <0 <23\ {2, 20, 23,03 — Lzy — 1,25 — 1}
Since & —~ 6 >t ~ 1, the required y; can indeed be chosen. Obviously, the points in
each B; are mutually distinct. By Table B, in both cases, we have x1 # x3, x9 # 14,
73 # x5 (mod 2) and z; = x5 = 2z (mod 2). Therefore, each a; appears in two
basic blocks above, e.g. (---u,a;, v, -+ and (---u',a;,¢',---), such that u Z u' and
v # v (mod 2).
Define the mapping f on X UY as follows:

s ={ g ey
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Let G be the finite permutation group generated by Rf and let O(B;) (1< i < 5)
be the block-orbit containing each B; under the action of G. Let

J = (B\O(B) )UCU(U O(By)).
Obviously, (X UY, 7, f) is a k-SCMD(v + 2k) 0
Theorem 6.3 There exists a (4t + 3)-SCMD(12t + 10) for any positive integer t.

Proof. Let (X,B,g) be a (4t + 3)-SCM D(4t + 4) as given in Theorem 4.5, where
B contains only an SDC, and let (Y,C, h) be a (4t + 3)-SCM D(8t + 6) as given in
Theorem 1.2. To avoid confusion, denote ¥ = {o0y,005} U {a;, bi; i € Zyis} and

at+1

h = (001)(002) II (ai, ;). Now, we construct a (4t +3)-SCMD(12t+10) on X UY.
1=0

Define the mapping f by

g{x) re X
fx) = { h(z) reY '
We define five basic blocks By, By, - -+, B in three cases:

(1) t is even.

Let D = SDC(A[L, 2¢+2], S[1,2t] 71, 2t+1). There is an ALT-piece (dy, dy, ds, ds)
=(1,-2,3,~4) in A[1,2¢ +2). Let B = (0,1,4¢ + 3,244 +2, 21, -+, 24_3). Define
the following five basic blocks:

By = (0,1, 00,90, a1, Y1, -, Gge—1, Yar—1, Qo)
By = (4t +3,2,a0,y0 + L,ap, 0 + 1, -, ane1, Yo + 1, agy),
By = (1,4t + 3, agi11, Yo, Gaes2, Y1, -+ * , Qar, Yor1, Qari1),
By = (2,4t + 2,091,590 + 1,020, Y1 + 1+, @y, Yoot + 1, @),
By = (001,2,000,4t + 2,21, 79, - -+, Tgs_, 0),
where (Yo, Y1, -, Y1) = (2,3,--+,2t + 1).

(2) tis odd and ¢ > 1.

Now, the two SDC's both contain the interval A[l, 2t + 1]5. For ¢t > 3, there is
an ALT—piece (dy, dy, d3, dy) = (1,-3,5,-7) in A[1,2t + 1],. Let B = (0,1,4¢t +
2,3,4t,x1, -+, T4y_). Define the following five basic blocks:

By = (0,1, a0,90,01, Y1, -, Gp1, Yar—1, Aoz,
By = (3,4t a0, 0 + 101,41+ 1, a1, Yor1 + 1, ans),
B; = <1 4t + 2, azer, Yo, Qorros Y1, -0 0y Qay, Yor—1, a4t+1>,
By = (4t +2,3, a1, 90 + 1, Gopga, 1 + 1+, aar, Yory + 1, ageyy),
B5 <001,4t+2,002,4t7$1,l’2,'",fL‘4t,2,O>,
where (yo, y2,- -, y2—1) = (4,5,---, 2t + 3).

(3) t = 1.

Let D = SDC(1,-2,4,1,-2,3,3) and B = (0,1,7,3,4,2,5). Define the follow-
ing five basic blocks:

B1 = <77 3, ag, 2, ai, 6, (lQ),
By = (4,2,00,3,a;,7, as);
B’; = <3, 4, as, 2, aq, 6, a5);
B4 = (2, 5, as, 3, Qy4, 7, a;,};
= (001,3,000,5,0,1,7).
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Obviously, each a; appears in two basic blocks above: (- -u,a;,v,--) and
(- -/ a;,v,- ), such that u # u' and v 2 v’ (mod 2). The blocks Bs = (004, u, 002,
v, -+, w) in three cases satisfy u = v = w (mod 2). Then, let G be the finite permu-
tation group generated by Rf. Let O(B;) be the block-orbit containing B; under the
action of G. It is easy to see that each ordered pair (z,y), which belongs to X x X

5
or X x Y, appears in exactly one block of U O(B;)). Let
t=1

A=CU(UO(B)).
i=1
Obviously, (X UY, A, f) is a (4t + 3)-SCM D(12t + 10). O

Lemma 6.4 [5] Let (X, B, f) be a k-SCMD(v).
(1) The self-converse block A in B, i.e., f{A)™' = A, must possess one of the
following structures:
Type I. A= {ay, a9, ,a:b,,by,by), t= !“2-;
Type II. A = (00,ay, -+ ,a4,00 , by, b)), t= % —1;
Type Il A= <OO,(Ll,"‘,(lt,bt,"',b1>, t= %‘I‘,
where f(a;) = by, f(b) =a; for 1 <i <t and f(oo) =00, f(oo) =00
(2) If f contains a transposition (a,b), then the block covering the ordered pair
(a, b) must be self-converse of Type I (if k even) or Type ITT (if k odd).
(3) If B contains a self-converse block, then
(for k even): f contains at least & transpositions and B contains at least %
self-converse blocks of Type I;
(for k odd): f contains at least E——}i transpositions and B contains at least k —1
self-converse blocks of Type I11.

Theorem 6.5 There exists no (4t + 1)-SCM D(4t + 2) for any positive integer t.

Proof.  Suppose there is a (4t + 1)-SCMD(4t + 2) = (X, B, f}, where |B| =
4t + 2 = | X|. Obviously, the elements in any block of B are X\{a} and the missing
element z is distinct for different block. Let B, be the block without point a. Then
B={B,; u€ X}. It is easy to see that, if f(a) = b then f7'(B,) = By. So we have

(1) f contains no l-cycle.

In fact, suppose f = (00)---, then By, is self-converse. By Lemma 6.4 (1), f
contains two fixed points. By Lemma 6.4 (3), there are at least 4t self-converse
blocks of Type IIT in B. But, this is impossible since ¢ > 2.

(2) f contains no 2-cycle (i.e., transposition).

Suppose f = (a,b)---, then, by Lemma 6.4 (2), there is a self-converse block
containing the pair (a,b) in B. Furthermore, by Lemma 6.4 (3), B contains at least
4t self-converse blocks of Type ILI, which is impossible by (1).

(3) f contains no 3-cycle.

Suppose [ = (a,b,¢) -, then under the action of the derived mapping B —
f(B)"Y, B, — By, = B, — B,. So, we have f3(B,)"! = B,. Let By = (b,xy, +, &m,
C,Yns > Y1), where i, y; & {a, b, ¢}, m+n =4t—1and {1, -, zn}or {yi, -, ¥n}
may be empty. The expression of the relation f*(B,)~" = (b, f3(n), -, 3 (yn), ¢,
A (xm), -, f2(x1)) = B, shows that m = n, which is impossible since m+n = 4t —1.

(4) f contains no (2s + 1)-cycle.
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When s =0 or 1, the conclusion is correct by (1) or (3). Now, let s > 2 and f =
(an, @i, -+, az) -+~ Obviously, if By, = (a1, -+, as, -, a9, - - -), then F2HY(By, )t =
ass, -+, a9, -+, a1, ) = B,,. But, this is impossible since 2s > 4.

(5) f contains no (4s + 2)-cycle.

Suppose f = (ag,a1,---,a4501) -+ Let By = (ag, agsi1, - - -} be the block con-
taining the ordered pair (ag, agy1). Obviously, the block f2+1(B,)~! contains the
ordered pair (ag, ag,41) too. So B, = f>+1(B,)"!, ie., x must belong to an odd
cycle of f, which is impossible by (4).

So f can only contain 4s-cycles. But 4t + 2 = 2 (mod 4), which is impossible.
Thus, there exists no (4t + 1)-SCM D(4t + 2). O

The proof of Theorem 1.3:
All possibilities are shown in the following table:

k=(modd) |v=(4s+1Dk+1= (mod4)[v=_{4s+3)k + 1 = (mod 4)
1 2 0
3 0 2

In this table, two parts of v = 0 (mod 4) have been solved in Theorem 1.1. By
Lemma 6.1 and Theorem 6.2, the following recursive relations hold when there is at
least, one CDC in the original constructions:
(k=1 (mod 4)) k-SCMD((4s + 3)k + 1) = k-SCM D((4s + 5)k + 1);
(k=3 (mod 4)) k-SCMD((4s + 1)k + 1) — k-SCM D((4s + 3k +1).
While the two exceptions have been solved:
k > 5 and there is no CDC in the original construction, see Theorem 6.3;

there exists no (4t + 1)-SCM D(4t + 2), see Theorem 6.5. O
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Appendix

1. 7-SCMD(36) (Theorem 4.1, let t =1,5=1).
X = Zy and f = (0,1,---,35).
(1) SDC(1, -2, 10,18, 1, -2, 10).
(II) CDC(D), where D is taken as follows.
(1) (A[5,8], ~11,9,4);
(2) (A [14 17}, -13,12, 3).
2. 15-SCMD(136) (Theorem 4.2, let t = 3,5 = 2).
X:Z 6 and f ={0,1,---,135).
(1) SDC(1, 3,68, 3,6, —4,2,5,27, 1,2, —4,6,5,27).
(II) CDC(D), where D is taken as follows.
(1) (A[11,22], —28, 26, 8);
(2) (23, —24, A[34, 43], 29, 25, 10);
(3) (A[44, 05], -32,31,7);
(4) (A[56,67], —33,30,9).

3. 7-SCMD(64) (Theorem 4.3, let t = 1).
X =Zg and f=(0,1,---,63).
(1) SDC(1,~2,17,32,1, —2,17).
(I) CDC(D), where D is taken as follows.
(1) (A[7,10], -18, 16, 4);
(2) (A[11,14], 19, 15, 6);
(3) (A[24,27), —22, 21, 3);
(4) (A[28,31],—23,20,5).

4. 11-SCMD(56) (Theorem 4.4, let t = 2,5 =1).
X = Zss and f = (0,1,---,55).
(1) SDC(1, 3,28, —3,18,2, —4, 1, —4, 2, 18);
(2) CDC(15, —16, A[22,27], —21, 20, 5);
(3) CDC(A[7,14], —19,17,6).

5. 5-SCMD(36) (Theorem 4.6, let t =1,5=1).
X = Zg(; and f - (07 1, trey, 35)

(1) SDC(1,8,18,1,8);

(2) CDC(5,-6,7,-9,3);

(3) CDC(14, ~15,11, —12,2);

(4) CDC(16,~17,10, 13, 4).

6. 13-SCMD(248) (Theoremd.7, let ¢t = 3,s = 4).
X = Z243 and f = (0, 1, Tty 247)
() SDC(M, 124, M~1), where M = (A[1,7),,23,43).
(I1) CDC(D), where D is taken as follows.
(1) (A[2, 8]z, 11, —13,22, —24, 56, —58, 57, —59, 12);
(2) (9,10, A[39,47] \ {43}, A[60, 63], —64, 55, 14);
(3) (A[25,34], —65, 54, 16);
(4) (A[64, 73], —66,60, 18);

2
3
4
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(5) (A[74, 83], =67, 59, 20);
(6) (A[84+10(i — 1),83 + 104, —(47 + 1), 39 — 4,13 + 2i).

7. 5-SCMD(20t + 16).
X = ZQOH—}()‘ and f = (0) 1,---,20t+ 13)

(I){ SDC(1,5t+ 3,10t +8,1,5t +3) ¢ is odd

SDC(1,5t + 3,10t + 8,5t +3,1)  tiseven

(II) CDC(D), where D is taken as follows.
(1) (2t +2i+1,—(2t+2i+2),5t — i+ 3,~(5t +i+3),2i+1), 1 <i <t
(2) (Bt +2i+4, —(8t+2i+5), 7t —i+5,—(Tt+i+4),2i), 1 <i<t+1.
8. 17-SCMD(528) (Theorem 4.10, let t = 4,5 = 7).
X = 2243 and f = (0 1, Ty, 527)
(I) SDC(M,264, M~"), where M = (1, -3, A[257, 263],, —43, —83).
(IT1) CDC(D), where D is taken as follows.
(1) (~2,4, A[256,262],, — A[5,10]~!, — A[12, 15] "1, 11);
(2) (A[39,47]\ {43}, A[62,67], —70,61, 16);
(3) (30, 31,68, —69, A[77,87] \ {83}, —71, 60, 18);
(4) (A[88 + 14(i — 1), 87 + 14d], —(71 +),60 — i, 18 + 24), 1 <i < 5;
(5) (A[158 + 14(i — 1), 157 + 14d], —(47 +1),39 — i, 15+ 2i), 1 < i < 7.

(Received 19/1/2000)

33







