
Self-converse Mendelsohn designs witll 
odd block size 

Xiuling Shan and Qingde Kang* 

Institute of Mathematics, Hebei Normal University 
Shijiazhuang, 050091, P. R. China 

Qiujie Sun 

Shijiazhuang Railway Institute 
Shijiazhuang, 050043, P. R. China 

Abstract 

A Mendelsohn design .M D(v, k,).) is a pair (X, B), where X is a v­
set together with a collection B of ordered k-tuples from X such that 
each ordered pair from X is contained in exactly ). k-tuples of B. An 
M D(v, k,).) is said to be self-converse, denoted by SC!'vf D( v, k,).) = 
(X,B,/), if there is an isomorphism / from (X, B) to (X,B- 1

), where 
B-1 {(Xk,:r:k-l, ... ,X2,Xl); (Xl,,,,,Xk) E B}. The existence of 
SC!'vf D(v, 3, ).), SCM D(v, 4, 1), SCAl D(v, 5,1) and SCA1 D(v, 4t+2, 1) 
has been completely settled, where 2t + 1 is a prime power. But up to 
now, there is no result about odd block size larger than five. In this pa­
per, we give a constructive proof for the existence of k-SC!'vf D( v), where 
k is odd and k > 5, v == 1 (mod k). 

1 Introduction 

Let X be a v-set and 3 ~ k ~ v. A cyclic k-tuple from X is a collection of k 
ordered pairs (.1:0,:r:,), (:rj, :D2),"" (:Dk-2,:Dk-1) and (:r:k-J,XO), where .TO,·1;1,··· ,Xk-J 
are distinct elements of X. It is denoted by (.TO, Xl, ... , or any cyclic shift 
(Xi, Xi+l, ... , 1;k-l, :1:0, .. " :1:i-l). A (v, k, ).)-Mendelsohn design is a pair (X, B), where 
B is a collection of cyclic k-tuples (called blocks) from X, such that each ordered 
pair of distinct elements of X belongs to exactly A blocks of B. It is denoted by 
AI D(v, k, A). 

Let (X, B) be an Jyf D( v, k,).). Define 
B-1 = {(Xk-1,Xk-2,"',:1:1,XO); (xo,Xj,''',Xk-l) E l3}. 
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Obviously (X, B- 1) is also an !vi D( v, k, '\), which is called the converse of (X, 8). If 
there exists an isomorphism f from (X, B) to (X, B- 1

), then the !vi D(v, k,'\) is called 
self-converse and this is denoted by SC A1 D( v, k, ,\) = (X, B, f). In particular, it is 
denoted by k-SC 114 D( v) when ,.\ = 1. It is easy to show that necessary conditions 
for the existence of both an !vI D( v, k,'\) and an SC.M D(v, k,"\) are 

'\v (v - 1) == 0 (mod k). 

C . .l. Colbourn and A. Rosa [2J posed the open problem about the existence of self­
converse ]1,1 D(v, 3, '\). Yanxun Chang, Guihua Yang and Qingde Kang [3] have 
solved the case for ,\ = 1. .lie Zhang [4] solved the case for any ,.\. Qingde Kang et 
al. [5],[6] have completely solved the cases for k 4,5 and 4t + 2, where 2t + 1 is 
prime power. But, up to now, there is no result about odd block size larger than 
five. In this paper, the following results are obtained. 

Theorem 1.1 For odd k > 5, there exists a k-SCNID(v) if v == 0 (mod 4) and 
v 1 (mod k). 

TheorelTI 1.2 There exists a (2t + I)-SClvI D(4t + 2) for any positive integer t > 2. 

Theorem 1.3 There exi8t8 a k-SCNID(v) for odd k > 5 and v 1 (mod k), except 
for (4t + 1) -SC!vI D( 4t + 2) for any integer t ~ 2. 

2 Definition and Remarks 

Let Zv be the ring of integers modulo v and let ell, d2 , .•. ,elm be elements of Zv \ {O}. 
The ordered sequence D = (ell, el2 ," " elm) is called a diffe'rence tuple on Zv. The 

m _ 

corresponding number tuple (i, i + d l ," " i + 2:: dj ) is denoted by Di , 'l E Zu. For 
j=1 

_ _ Tn 

convenience, we define heael(Di) = i and tail(Di ) = i + 2:: dj . Furthermore, define: 
)==1 

-D 
D-1 

A(D) 
-A(D)-l 

abs(D) 

ab8(~) 

S[a,a + 3] 
S[a, a + 4t - 1] 

S[a, a + 4t - It 1 

(-dl , -d2 ,' . " -dm ); 

(elm, dm - 1 ,' .. ,dl ); 

(d l , -d2 , d:3,' •• , (-I)m- 1dm); 
-(A(D)) -1; 
{Idll, Id21,·· " Idml}; 

{IiI, Ii + dll,"', Ii + djl}; 

(a + 2, -(a + 1), a, + 3)); 
(S[a, a + 3]' .. ·, S[a + 4t 4, a + 4t - 1]); 
(S[a, a + 4t - 1])-1. 

If the points in Do are distinct, then D is called a difJerence path and this is denoted 
by DP(D). Obviously, if D is a DP then -D and D- 1 are both DPs. If the head 
and the tail of Do both are 0, then D is called a difference cycle and this is denoted 
by DC(D). It is easy to see that if 1"11 is a DC, then -1vI- 1 is a DC too. Let (]" b, d, k 
be positive integers with a < d < b. Define: 
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[a,bh = (a,a+k,···,b), 
[a, bh \ {d} = (a,"', d - k, d + k,···, b), 

wh~re a == b == d (mod k) and the subscript k may be omitted when k = l. 
For given point set X = Zv, let T be the set of all cyclic k-tuples on ~y and 

let f be a bijection on X. Denote P = {(x, y) ; x, Y E X, x =F y}. The point set 
X is partitioned into p01:nt-orbits under the action of f. Two distinct points x and 
yare in the same point-orbit if and only if there is a positive integer .'3 such that 
r(x) = y. The point-orbit containing the point x is denoted by OJ(x). The number 
of points in OJ(x) is called the lcngth of Of (x). The mappings induced by fare 
f((·T,y)) = U(J:),f(y)) on P and f((xO,:rl,"',:rk-l)) = (f(xo),f(xd,···,f(Xk-l)) 
on T. Denote 

Rf(P) = U(p))-l, VP E P; Rf(B) = U(B)t 1
, VB E T. 

Then the finite permutation group OIl P (or T) generated by Rf gives an orbit 
partition of P (or T). Each orbit in P containing the pair P is called the pair-orbit 
O(P). Each orbit in T containing the block B is called the block-orbit O(B). The 
number of pairs (or blocks) in a pair-orbit (or block-orbit) is called the length of the 
orbit. Call a block B sc(f-convc'rsc if Rf(B) = B. 

Let d (or D) be the difference (or difference cycle) corresponding to pair P (or 
block B). Then, the difference -d (or difference cycle (_D)-I) corresponds to Rf(P) 
(or Rf(B)). As well, O(P) = O(Rf(P)) and O(B) = O(Rf(B)). 

Let x, y E X, x =F y and y - x = d. Suppose the length of OJ(:r) is rn. If x and 
yare in the same point-orbit, then we have 

Number of pair-orbits length of each pair-orbit 
m odd,Vd 1 2rn 

m even, d =F !!} 2 rn 

Tn == 0 (mod 4), d = ?J} 1 rn 

Tn == 2 (mod 4), d = ?J} 2 m 
:2 

Otherwise, let the length of OJ (y) be n. Then, we have 

Number of pair-orbits length of each pair-orbit 
m odd, n odd 1 2[m,n] 

else 2 [m,n] 

If there are two pair-orbits corresponding to d, we call them complementary. As 
examples, we give the following: 

1. if X = Z4 and f (0,1,2,3), the pair-orbit corresponding to the difference 2 
under Rf is {(O, 2), (3,1), (2,0), (1, 3)}; 

2. if X = Z6 and f = (0, 1,2,3,4,5), the pair-orbits corresponding to the differ­
ence 3 under Rf are {(O, 3), (4,1), (2, 5)} and {(I, 4), (5, 2), (3, O)}; 

3. if IXI = 5 and f = (0,1,2)(0, I), the pair-orbits corresponding to the mixed 
difference 1 under Rf (see Section 5) are {(O, I), (0, 1), (2, I), (0,0), (1, I), (0, 2)} and 
{(I, 0), (I, 2), (0,0), (1,1), (2,0), (I, O)}. 
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In particular, we discuss the case X = Zv and f = (0,1, .. " v-I), where v == 
o (mod 4). Then, it is easy to see that {(2i, 2i+d), (2i+d+ 1, 2i+ 1); 0 :::; i :::; ~ I} 
and {(2i+ 1, 2i+d+ 1), (2i+d, 2i) ; 0 :::; i :::; ~ I}, where d E Z~, are complementary 
pair-orbits. The two orbits are the same when d = ~, i.e., {( i, i + ~n; 0 :::;i :::; v-I}. 

Let D be a DC on Zv. Define the following DCs. 
1 SDC(D), where D satisfies: 

(1) D contains exactly one ~. 

(2) For any two pairs in 150, their pair-orbits are distinct. 
(3) For any pair P = (x, x + d) in Do, d i= ~, there exists a pair pi in 150 such 

that O(P) and O(PI) are complementary. 
2 CDC(D), where D satisfies: 

(1) ~ rt D. 
(2) All the elements in abs(D) are distinct. 

From the above definitions and the discussion of pair-orbits, vve have the following 
lemma. 

Lemma 2.1 Under the action of the gro'l1,p generated by Rf, 
(1) there is only one block-orbit with length v corresponding to SDC(D); 
(2) there are two block-orbits with length v corresponding to CDC(D). 

~ - -1 - --·--1 
Obviously, {D2i' D2i+1 ; 0:::; 'i :::; ~ I} and {D2i+l' D2i ; 0 :::; i :::; ~ - I} are 

~ ~-1 

the complementary block-orbits corresponding to C DC(D). But {D2il D2i+1 ; 0 :S. 
i :::; ~ - I} is the only orbit corresponding to SDC(D). 

3 SOUle sub-structures 

A k-cycle decomposition of a complete graph Kv is a collection of undirected cycles 
with length k, whose (undirected) edges partition all the edges of Kv. Writing each 
k-cycle twice, once in a certain order and the other in the reverse order, then a 
k-C S( v) gives a k-SC 1\11 D( v), where the mapping f is the identity mapping. It 
is known [1] that there exists a k-cycle decomposition of [(v if k is odd and v == 
1, k (mod 2k). Thus, in order to investigate the existence of k:-SCA1D(v) for odd k 
and v == 1 (mod k), we only need to discuss the cases v == k + 1 and 3k + 1 (mod 4k). 
In this section, we suppose v == 0 (mod 4) anel v == 1 (mod k). 

First, from [5] (Lemma 1 and Corollary 2), we have Lemma 3.1 and Corollary 3.2. 

Lemma 3.1 For DP{D) = (Xl, :172,"', l:m ), 0 < Xl < ... < Xm :::; ~, ±A(D) are 
DPs. 

Corollary 3.2 Let 0 < d < m, a > 0 and Cl + km :::; ~. If D = [a, a + krn]k or 
D = [a, Cl + kmlk \ {a + kd}, then ±A(D) are DPs. 

For convenience, we give the following table (where D = ±A[a, a + m]). 
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Table A 

rn .'ign(D) tail(Do) {Do} 

even + a+ W [-W,O]U[a,a+Wl 
even - -(a + W) [0, Wl U [-(a + T)' -a] 
odd + m+l [_mt1,0]U[a,a+ m~l] --2-

odd m+l [0, mtl] U [-(a + m~l, -a] -2-

Remark In the above table, head(Do) = 0. This table can be used for D = ±A[a, a+ 
km]k or D = ±A([a, a + km]k \ {a + kd}), where all numbers m, d and 1 are replaced 
by km, kd and k respectively, while a and 2 are kept fixed. And the intervals [*, *] 
become [*, *]k. 

Lemma 3.3 Let D = [a, a + 4t - 1], a > ° and t ;::: 1. Then ±S(D) are DPs. 

Proof. Let N = SU!). From the definition of S(D), 
No = [a + 1, a + 2t]U ([-2t, 1] \ {-(2t - I)}). 

So S(D) is a DP and -S(D) is a DP too. o 

Lemma 3.4 Let]o.1 be a DP on Zv and ~ t/ At. If At satisfies (Mo \ {O}) n (IV[o + 

(_1)i+1~) 0, ~ t/ ilio and L d == (_I)i~ (mod v) for i = ° or 1, then (M, ~,M) 
dEM 

is a DC. Furthermore, (NI, ~, A1) is an S DC when ~ is odd. 

Proof. Let A10 = (0, Xl," " l:m ), where m = INII and ° < I.'ril < ~. Obviously, 
:rm= L d==(-l)i* (mod v). IfD=(JVI,~,J\,1),then 

dEM 

Do = (0,1;1,"', X m , ~ + .1:m , ~ + Xm + Xl," ., ¥ + 2xm)' 

Do is closed since Xm == (-I)i~ (mod v). Furthermore, since At is a DP and 

(ilio \ {O}) n (ivo + (_l)i+l*) = 0, D is a DC. If % is odd, we can show that 
D is an SDC by the definition of SDC. 0 

Corollary 3.5 Ifv == 4 (rnod 8), 1 s:; t < t+m < *' t+m < a < ~ and 
a -(-1)mi91 l+(;1)m t (modv), 

then (A[t, t + m], a, ~,A[t, t + m], a) is an SDC. 

Proof. Letting D = A[t, t + m], then D is a DP by Corollary 3.2 and tail(Do) = 

(-1)miTl + l+(;W't from Table A. Let Ai = (D,a). From Table A we can see 

that Ixi < ¥ for all X E Do. For 1 s:; t < t + m < ¥ and t + m < a < ~, 
(iCio \ {O}) n (Mo + (_l)i+l~) is empty. Thus, (M,~, N1) is an SDC by Lemma 3.4. 

o 

Lemma 3.6 Let A1 be a DP on Zv and ~ t/ Ai. If ¥ t/ Mo, I L dl == ¥ (mod v) 
dEM 

and all elements of abs(Mo) are distinct, then (M, ~, lvt- 1
) is a DC. Furthermore, 

(M,~, 111-1
) is an SDC when ~ is even and all differences in J\;! are odd. 

Proof. Let iVio = (O,:rl,"',Xm ), where m = IA11 and ° < 1.1:il <~. Denote 
D (lvI, ¥, "~1--1). Since I:rml = I LdEM dl = ¥, it is easy to see that 
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Do = (0, Xl, X2, ... ,:1:m, -:r:m , -:r"n--l, ... , -:1:1) 

is closed. Because all the elements in o,bs(ivio) are distinct, D is indeed a DC. If ~ is 
even and all the differences in 11,1 are odd, D is an SDC by the definition of SDC. 

D 

Corollary 3.7 Let a, b, m, t be odd and satisfy the following cond'itions: 1 :::; t < 
t + 2m < a < ~, b E [1, Ji - 1] \ [t, t + 2mh and a # b. Let T = A[t, t + 2mh and 

l\!! = (T,o.,b). If'll == 0 (mod 8), la+b+tail(To)1 * (mod v), then (Al, ¥,Al- 1
) is 

anSDC. 

Proof. From Table A we see that tail(To) = -(m + 1). Since a, b, t are all odd and 
satisfy the conditions, the elements in ab8(Mo) are all distinct. Then (Al, Ji, NI- 1

) is 
an SDC by Lemma 3.6. D 

Lemma 3.8 
(1) Let s, t 2:: 1 and v = (88 + 1)(8t + 7) + 1. If Nl A[I,4t Ih, N'2 = 
(4t + 2, A([2, 4t]21)) and N3 = (4t + 1, J - 4t 3), then (NJ, ¥, (NJ \ {I}) -1, N2, N3 , 1, 
Nil, N3 ) is an SDC; 
(2) Let 8 2:: 0, t 2:: 1 and v = (88 + 5)(8t + 3) + 1. If Nl = A[1,4t - 1]z and 
N2 (~+4t,A[2,4th), then (Nl,~,(Nl \ {1}t 1,N2,I,N2-

1
) i8 an SDC. 

Proof. 
(1) Let D (NI'~' (Nl \ {I} )-1, N2, N3 , 1, N2-

l , N3). Then Do = [-2t,Oh U 
[1,2t lhu[~-4t+l,Ji-2t] U[¥ 6t+l,¥-4t Ih U[¥-2t+l,~+lhu 
[-* 4t, *+2hu {~+2t+2,-*-2t 1,-*+4t+3} by Table A. It is easy to 
see that I I:: dl 0 (mod v) and all elements in Do are distinct except for the head 

dEl) 

= the tail. So, D is a DC. By the definition of SDC, D is an SDC. 
(2) LetD (N1,¥,(N1 \{l})-l,N2 ,I,Ni1

). Then Do [-2t,Oh U[l,2t-l]zU 
[Ji - 4t + 2, Ji - 2th U [Ji - 6t + 1, ~ - 4t - Ih U * - 2t - 1, -~ + 2t - Ih U [-* 6t, - * 2t]z by Table A. The rest of the proof is similar to (1). D 

Let a, b, c, i be positive integers and b be even. Denote 
Ui(a, b, c) = (A[a + b(i - 1), a + bi 1], -(c + i), c i, & + 2i); 
~~ ( a, b, c) = (A [a + b (i - 1), a + hi - 1], (c + 'i), c - i + 1, & + 2 i-I) . 

Lemma 3.9 Let a, b, c, s, i, v be positive integers and v, b be even. If the follo'l1)'ing 
conditions are sati8fied: c + ~ + s < Ji, c > 2s - 1 and 0 < a < 0,+ b8 - 1 < ~, then 
Ui and ~~ defined above are CDC 8 for any 1 :::; 'i :::; s. 

Proof. Denote T = A[a + b(i 1), a + bi - 1]. By Table A, {To} = [a + b(i - 1), 
a + bi - 1 &1 U ~,O] and ta'il(To) = - %. Since a + bs - 1 < ¥, T is a D P on ZI) by 
Corollary 3.2. So, in the corresponding number tuple of Ui with head 0, all elempnts 
are distinct. Thereby, all the Ui (or vi) are DCs on ZlI' By the definition of CDC, 
they are all C DCs. D 

18 



4 The Proof of Theorem 1.1 

In this section, we will give several classes of constructions for a k-SC Ai D( v) 
(X, l3, f) for v 0 (mod 4) and v == 1 (mod k), where the point set X is Zv, the 
mapping f is i i + 1 for i E Zv. Also, each block set B consists of one S DC and 
n CDCs, where = (2n + l)v by Lemma 2.1. So, the number 71, of CDCs is 
v-2~-1. Furthermore, in order to verify the correctness of the given construction, we 
only need to show: 

(1) Each given DC is an SDC(D) or a CDC(D), (using the conclusion in Section 
3 or direct examination). 

(2) The differences in all the DCs form a partition of [1, ~]. (Note that, in an 
SDC, each difference except for ¥ appears twice and is calculated only once.) 

Theorem 4.1 There exists a (4t + 3)-SCNID((48 + 1)(4t + 3) + 1) JOT positive 
integers s, t with the same parity. 

Construction. Let v (48 + 1)(4t + 3) + 1 and X Zv' 
(I) SDC(N, ~, N), where N = (A[I, 2tJ, ~ + t). 
(II) CDC(D), where D is taken as follows. 

(1) Ui (2t + 28 + 1, 4t, * + t), 1 ::; i ::; 8; 
(2) "~(~+3s+t+l, 4t, ~+28+t), 1 ::;i~s. 

Proof. Obviously, ~ is odd for v = (48 + 1)(4t + 3) + 1. By Corollary 3.5, (I) is 
an SDC. Moreover, the difference tuples in (II) are CDCs by Lemma 3.9. The 
differences in (I) and (II) form a partition of [1, ¥]. In addition, the number of blocks 
is v + 28 X V x 2 (4s + l)v, as expected. 0 

Theorem 4.2 There e1;ists a (4t + 3)-SCMD((48 + 1)(4t + 3) + 1) for odd integer 
t 2: 3 and even integer s 2: 2. 

Construction. Let t = 2rn + 1 and 8 = 2n. Then, the design will be (8m + 7)­
SCl'vID('u) , where 'l) = (871 + 1)(8m + 7) + 1. 

(I) SDC(NJ , ~, (Nl \ {l })-l, N 2 , N:3, 1, N2-
1

, N3), 
whereNl A[I,4m-lh, N 2 =(4m+2,-A([2,4m]21)), N3=(4m+l, 
~ 4rn 3). 

(II) CDC (D), where D is taken as follows. 
(1) Ui (4rn 4n + 3, 8m + 4, ~ - 4m - 3), 1 ~ i ~ 2n - 1; 
(2) Yi(* + 6n + 2m + 2, 8m + 4, * 4m + 4n 3), 1 ~ i ~ 2n; 
(3) (A[* - 67n - 271, - 3, ~ - 4m - 271, 4], A[~ - 4711 + 6n - 2, ~ + 2m + 6n + 1], 

(J + 217, - 4m - 3),~ - 4m - 271, - 3,4711 + 4n + 2). 

Proof. By Lemma 3.8(1), (I) is an SDC. By Lemma 3.9 or direct examination, the 
difference tuples in (II) are C DCs. The differences in (I) and (II) form a partition 
of [1, ~]. In addition, the number of blocks is v + (1 + 2n 1 + 2n) x 2v (8n + l)v, 
as expected. For 4m 1 2: 1, we need m 2: 1, i.e., t 2: 3. 0 

Theorem 4.3 There exists a 7 -SC A1 D(56t + 8) for any positive integer t. 

Construction. 
(I) SDC(I, 28t + 4, 1, 14t + 3, 14t + 3, -2). 
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(II) CDC(D), where D is taken as follows. 
(1) Ui (4t + 3, 4, 14t + 3), 1 ~ i ~ 2t; 
(2) Vi(20t + 4, 4, 18t + 4), 1 ~ i ~ 2t. 

Theorem 4.4 TheTe e:rists a (4t + 3) -SC IVI D( (4s + 1) (4t + 3) 1) JOT odd integer 
s 2: 1 and even integeT t 2: 2. 

Construction. Let t = 2rn and s = 2n + 1. Then the design will be (8m + 3)-
SCl'vID(v) , where v (8n + 5)(8m + 3) + l. 

(I) SDC(Nb~,(Nl \ {1})-1,N2 ,I,N2-
1

), where 
N1 = A[I, 4m - Ih, N2 = (~ + 4m, A[2, 4mh)· 

(II) CDC(D), where D is taken as follows. 
(1) Ui ( 4rn + 4n + 3, 8m, * + 4m), 1 ~ i ~ 2n + 1; 
(2) 1~(~ +6n+4m+4,8m,~ +4m+4n+2), 1 ~ i:::; 2n; 
(3) (A[a, a + 2m - 1], A[~ - 6m, ~ - 1], -(b + 2n + 1), b 2n, 4m + 4n + 1), 

where a ~ + 2m 2n - 1, b ~ + 4m + 4n + 2. 

Proof. Similar to the proof of Theorem 4.2. 0 

Theorem 4.5 TheTe e:E'ist8 a (4t + 3)-SCA1D(4t + 4) jar any p08itive 'intege'T't. 

Construction. 
(1) t == 0 (mod 2): SDC(A[I, 2t + 2], S[I, 2tj-1, 2t + 1). 
(2) t == 3 (mod 4): SDC(A[I, 2t + Ih, 2t + 2, A[3, 2t + 1]21

, lvI, 1, AI- 1
), 

where}vI (-2t, -(t + 1), A[t + 3, 2t - 2]2 1 ,2, A[4, t - 112 1
). 

(3) t == 1 (mod 4) and t > 1: SDC(A[I, 2t+lh, 2t+2, -A[3, 2t+l]2 1
, -2t, 

A[4, 2t1 2
1

, 1, A[2, t - Ih, -2, A[t + 5, 2t - 2h, -(t + 3)). 
(4) t = 1: SDC(l, -2,4,1, -2,3,3). 

Theorem 4.6 TheTe exi8t8 a (4t + 1) -SC A1D( (4s + 3) (4t + 1) + 1) for' integeT8 8 ~ 0 
and t ~ 1 with the same paTity. 

Construction. Let v = (4s + 3) (4t + 1) + l. 
(I) SDC(N,~, N), where N = (A[I, 2t - 1], ~ - t). 
(II) CDC(D), where D is taken as follows. 

(1) Ui (2t + 2s + 1, 4t - 2, ~ - t), 1 ~ i ~ 8; 
(2)Vi(4st+48+2t+4, 4t-2, 4st+3s+2t+2), l~i:::;s+l. 

Proof. By Corollary 3.5, (I) is an SDC. By Lemma 3.9, all the difference tuples in 
(II) are C DCs. The differences in (I) and (II) form a partition of [1, ~1. In addition, 
the number of blocks is v + (28 + 1) x 2v (48 + 3)v, as expected. 0 

Theorem 4.7 TheTe exi8ts a (4t + 1)-SC"i\1D((4s + 3)(4t + 1) + 1) JOT odd integer 
t 2: 3 and even integer' 8 ~ 2. 

Construction. First, we give the construction for t = 3 and s = 2, i.e., 13-
SCNI D(144). 

(1) SDC(A1, 72, A1- 1), 'where AI = (A[65, 71h, 35, 5); 
(2) CDC(A[6, 14] \ {8}, A[64, 70h, 8); 
(3) CDC(A[15, 24], 36, 3, -34); 
(4) CDC(A[25, 32]' 38 1 -39, 37,1, -33); 
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(5) CDC(A[40, 49], 62, 4, -61); 
(6) CDC(A[50, 59], 63, 2, -60). 

Then, let t 2m + 1 and 8 = 2n, where Tn = 1, n 2: 2 or m > 1, 'n ~ 1. The 
design will be (Sm + 5)-SCAID(v), where v = (Sn + 3)(Sm + 5) + l. 

(I) SDC(N, ~, N- 1). 
(II) CDC(D), where D is taken as follows. 

(1) (A[2, Smh, a-I, -(a + 1), A[c, c + 4m - 2h, Sm + 3, -(Sm + 5), A[c+ 1, c + 
4m 1h, Sm + 4); 

(2) (Sm+1,-(Sm+2),A([b-2rn-2,b+2rn+2J\{b}),A[c+4m,c+4m+3], 
4m+9,d]'-(c+4m+4),c-1,Sm+6); 

(3) , :r(8rn+2)i], -(c + 4m + 4 + i), eli, Sm + 2i + 6), 
1 ~ i ~ 2n - 1; 

( 4) (A [p + (Sm + 2)( i-I), P - 1 + (Sm + 2) i], (b + 2m + 2 + i), b - 2m - 2 - i, 
Srn + 2i + 5), 1 ~ i ~ 2n, 

where a = Sm + 4n + 7, b 16nm + 6n + 2m - 3, c 16nm + Ian + 4m, d = 
16nm + 12n + 12m - 5, p = 16nm + 1617, + 12m + 7, N (A[l, Sm - Ih, (L, b), Jl;1 = 
[a+2,p-1j\[b 2rn-2n-2,dj (xl,:r2,···,xIMI) and Xi < :X:i+l forI ~i::; IAII. 
Proof. Here, we only give the proof for (t, 8) # (3,2). Let v (S'n + 3)(Srn+ 5) + 1. 
By Corollary 3.7, (I) is an SDC. By Lemma 3.9 or direct examination, the difference 
tuples in (II) are C DCs. The differences in (I) and (II) form a partition of[l, ~]. In 
addition, the number of blocks is v+ (1 + 1 + 2n - 'U -1 + 1 +1[-1 + 2n) x 2v = (Sn+3)v, 
as expected. It is easy to see that I"MI = (Sm+2)(2n 1). Then, from the definition 
of Ai, we need b - 2m 2n - 2 2: a + 2, i.e., 16mn + 417, -, 5 2: Srn + 4n + 9, which 
implies n 2: 4r;~~7. This inequality holds when m = 1, n 2 2 or m > 1, n 2 1, i.e., 
t 2 3, 8 2: 2 and (8, t) # (2,3). But the construction for (8, t) (2,3) has been 
given above. 0 

Theorem 4.8 There e:rists a (St + 5) -SC J\;I D(24t + 16) for any positive integer t. 

Construction. 
(I) SDC(ll1, 12t + S, AI-I), where 

Al = (A[I, 4t Ih, A[St + 9, 12t + 7h, -(St + 5), 6t + 1); 
(II) CDC(A[2, 4th, A[St + S, 12t + 6h, -A([4t + 1, 6tJ-l), -A([6t + 3, St + 7J\ 

{St+5})-'1,6t+2). 

Theorem 4.9 There e:rists (L (4t + I)-SeAl D((4s + 3)(4t + 1) + 1) for even integer 
t 2 4 and odd integer s 2 5. 

Construction. First, we give the construction for t 4 and 8 = 5, i.e., 17-
SCA1D(392). 

(1) SDC(.M, 196, M- 1
), where Ai = (1, --3, A[IS9, 195b -31, -61); 

(2) CDC(2, A[lSS, 194h, -A[5, 10j-1, -A[42, 45]-1,11); 
(3) CDC(A[27, 30], A[51, 60], -46,41,12); 
(4) CDC(A[62 + 14(i 1),61 + 14i], -(46 + i), 41 i, 12 + 2i), 1::; i::; 4; 
(5) CDC(A[llS + 14(i - 1),117 + 14i], -(31 + i), 27 - i, 11 + 2i), 1 :; i ::; 5. 
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Then, let t = 2m and 8 = 2n + 1, where rn 2, /I, ;::=: 3 or m > 2, 71, ;::=: 2. The 
design will be (Sm + l)-SCA,l D(v), where v = (Sn + 7)(Sm + 1) + 1. 

(I) SDC(N, ~,N-I). 
(II) CDC(D), where D is taken as follows. 

(1) (A[2, 4rn - 4h, A[~ 4m, ~ - 2h, -A[4m - 3, 6m - 2t I
, 

-A([6n~, Srn Itt), 6m 1); 
(2) (A([a-2m,a+2mJ\{a}),A[b,b+4m-3], (d 1),12m+Sn+7,Sm+4n); 
(3) (A[Xl+(8m-2)(i-l),X(8m-2)i],-(c+i),c 4m-1-i,Sm+2i), 1::; i::; 2n 1; 
(4) (Srn+4n+2, (Sm+471,+3), b-2, -(b-l), A[e, e+Sm-7]' -c, c-4m-l, Sm); 
(5) (A[p+ (Sm - 2) Ci 1), p-l + (Sm - 2)iJ, -(a+ 2rn+i), a - 2rn - i, Sm+ 2'l -1), 

1 ::; i ::; 2n + 1, 
where a 10'm+6n+5, b = 12m+ 1071,+ 10, c = 16nI+ 10n+S, d = 16m+ 12n+9, e = 
16nm + Sn + Srn + 12, p = 16nm + 16m + Sn + 6, N (A[I, 4m - 5h, A[~ 4m + 
l,i-1h,-a, (16nm 4n-l)),N!=[d,d+(Sm 2)(2n 1)]\{16mn-4n-l}= 
(Xl, X2,' ", :r:IMI) and Xi < Xi+l for 1 ::; i ~ IMI· 
Proof. Here, we only give the proof for (t,8) #- (4,5). By Lemma 3.6, (I) is an 
SDC. By Lemma 3.9 or direct examination, the difference tuples in (II) are CDCs. 
The differences in (I) and (II) form a partition of [1, ~]. In addition, the number of 
blocks is v + (1 + 1 + 2'17, 1 + 1 + 2n + 1) x 2v (Sn + 7)v, as expected. It is 
easy to see that IAll = (Sn 2)(2'17, - 1). Then from the definition of 111, we need 
16mn 4n-1 2: d, i.e., 16mn-4n-1 ~ 16mn+12n+9, which implies '17, ;::=: 1+8r~~8' 
This inequality holds when m = 2, n ;::=: 3 or m > 2, n ;::=: 2, i.e., t ;::=: 4, 8 ;::=: 5 and 
(8, t) #- (5,4). But the construction for (8, t) = (5,4) has been given above. 0 

Theorem 4.10 There exists a (St + 1)-SCAID(56t + S) for any positive integer t. 

Construction. 
(1) SDC(Al, 2St + 4, A;/-1), where AI = (A[6t + 1, 14t - 5h, 1St + 1, 2St + 3); 
(2) CDC(A[6t, 14t 6h, A[22t + 1, 26t + 2], 6t 1); 
(3) CDC(A[3,6t 2], 14t - 4, -(14t - 3), A[26t + 3, 2St + 2], -1St, 22t, -1); 
(4) CDC(A[14t - 1, 1St - 2], A[lSt + 2, 22t 1], (14t 2), 1St - 1, -2). 

Theorem 4.11 Ther'e exists a (St + 1)-SCAID(120t + 16) for any integer t ;::=: 2. 

Construction. 
(1) SDC(A1, 60t + S, AI-I), where AI = (A[42t + 7, 50t + Ih, 34t + 3, 60t + 7); 
(2) CDC(A[3St + 5, 42t + 6], A[42t + S, 50t + 6t - 1); 
(3) CDC(A[6t + (St - 2)(i - 1), 6t 1 + (St 2)i], -(34t + 3 i), 3St + 1 + i, 

-(2i 1)),I~i~3; 
(4) CDC(A[7,6t - 2], A[50t + 3, 52t + S], -(30t 6),34t 1, -6); 
(5) CDC(A[30t - 3, 34t - 4], A[34t + 4, 3St + 1], -(30t - 5), 34t - 2, -4); 
(6) CDC(A[52t + 9, 60t + 6], -(30t - 4), 34t - 3, 

Proof. In this construction, we need 6 < 6t - 1, i.e., t ;::=: 2. o 

Theorem 4.12 There exists a 9-SC AI D(72s + 64) for any nonnegative integer s. 

22 



Construction. 
(I) SDC(M, 36s + 32, NI- 1

), where M (1, -3, 18s + 19, 36s + 31). 
(II) CDC(D), where D is taken as follows 

(1) (2, -4,6, -7, A([18s + 17, 18s + 21] \ {18s + 19}), 5); 
(2) (A[4s+6i+4,4s+6i+9]' -(18s+21+i), 188+17-i,2i+7), 1:::; i:::; 28+1; 
(3) (A[24s+6i+23, 24s+6i+28]' -(22s+27+i), 22s+24-i, 2i+6), 1 :::; i :::;: 2s; 
(4) (A[228 + 24, 22s + 27], 368 + 29, -(368 + 30), -(24s + 28), 20s + 23, 4s + 8). 

The proof of Theorem 1.1: 
According to the range of k and 1), there are the following cases: 
(l)k=4t+3, v=(48+1)(4t+3)+I, t>O. 
If 8 0, see Theorem 4.5. If 8 > 0 and 8, t have the same parity, see Theorem 4.1; 

otherwise see Theorem 4.2 (t > 1 odd), Theorem 4.3 (t = 1) and Theorem 4.4 (t 
even). 

(2)k=4t+l, v=(4s+3)(4t+l)+I, t>1. 
If 8, t have the same parity, see Theorem 4.6; if s is even and t is odd, see Theorem 

4.7-4.8; if s is odd and t is even, see Theorem 4.11-4.12. 0 

5 The proof of Theorem 1.2 

In this section, we will give several classes of constructions for a k-SC 1M D(2k) = 
(X,B,j), where the point set X is {001,OO2} U (Zk-1 x Z2) and the mapping f is 

(001)(002) II (i, z). 
iEZk-l 

For brevity, the points in Zk-1 x Z2 are denoted by x = (.T,O) or :r (.7:,1). The 
difference between points of Z k-1 x {O} (or of Z k-l x {1}) is said to be pure, and 
is denoted by d (or d). The difference between x and x is said to be mixed, and 
is denoted by dOl (for the ordered pairs (x,:[ or diO (for the ordered pairs 
(x,:[ + d)). Define: 

A[a,a+dl = (Il, .. ·,(-I)d(a+d)); 
J\;IA[a,a+dl = (0,01, (a+ Iho,···,(-I)d(a+d)ij), where (i,j) = (1,0) for odd 

d, or (0,1) for even d; 
1\1A[a, a + dl = (0,10, (a + 1)01,"', (-I)d(a + d)ij), where (i,j) (0,1) for odd 

d, or (1,0) for even d. 
And, define the following block families: 

SDCoo (A1) = (1\1, Oij, )=D, where i a or 1 follows tail (1'v10) E Zk-1 x {O} 
or Zk-l x {I}. The corresponding number tuple family is {(oo, Da); 
a E Zk-l x {t}}, where t is determined by the first difference in 1\;1; 

CDCoo (1'v1) , where A1 is a DP, the head and the tail of J\;la belong to dif­
ferent point-orbits, and L d is odd. The corresponding number 

dEM 

tuple family is {(oo, Ma); a E Zk-1 x {t}}, where t is determined 
by the first difference in A1. 
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For cOIlvenience, the subscript a in the above number tuple families is called the 
starter. Note that the terminology SDCoo (and CDCoo ) excludes DC, since Ma 
cannot be dosed. Under the mapping f in this section, there are k 1 block-orbits 
corresponding to each SDCoo and k;l block-orbits corresponding to each CDCoo ' 
There is only one self-converse block in each block-orbit of SDCoo (/'v1). But there 
are two blocks in each block-orbit of CDCoo (l'v1) of which OIle is the f-converse of 
the other. Briefly, we gather all the blocks in these orbits and called them the block 
family corresponding to SDCooCNI) or CDCoo C7l,i). The following Lemmas 5.1-5.2 
are obvious. 

Lemma 5.1 Let t be a positive integeT. The point set is X {001' oo2}U (Z4t+2 x Z2) 
and the mapping is f = (001)( (02) TIt~bl UJ)· Then the following DC s are both 
SDCoos and the blocks in the block family cover each pair with pure diJJeTence in 
[1,2tj and in [1,2t] exactly once. 

(1) SDCOO1 (A[I, 2t]) 'with starters in [0, 4t + Ij; 
(2) SDC002 (A[I, 2t]) with starters in [0, 4t + Ij. 

Lemma 5.2 Let t be a positive integeT. The point set is X = {CXJl' oo2}U (Z4t x Z2) 
and the mapping i8 f = (001)(002) TI;~(/(i, z). Then, the following DC", in (1)-(4) 
are all S DC 00 s and the blocks in the block family cover each pair with p'U.Te difjeTence 
in [1, 2t] \ {2t I} and [I, 2t] \ {2t - I} exactly once. 

(1) SDCOO1 ((2t)01, A[l, 2t 2]) with staTters in 2t - 1]; 
(2) SDCOO2 (2t, A[l, 2t - 2]) with staTters in [2t, 
(3) SDCOO1 (2t, A[l, 2t -- 2]) with starteTs in [2t,4t 
(4) SDC002 ((2tho, A[I, 2t - 2]) w'ith starters in [0, 

Note In the following theorems, the mentioned replacement for a block should be 
done for its f -converse as well. 

Theorem 5.3 There exists an (8t + 3)-SCi\1 D(16t + 6) faT any positive integer t. 

Construction. X = {ool' oo2} U (ZSt+2 X Z2), f (001)(002) TI~~b1(i, z). 
(1) SDCooz (A[I, 4t]) with starters in [0, 8t + 1], where the block with starter 4t, 

i.e., (002, " .), is replaced by (001, 4t," .); 
(2) SDC001 (A[I, 4t]) with starters in [0, 8t + 1]; 
(3) C DCoo1 (Ai A[I, 4t], 4t + 1, - Ai A[2, 4tj-l, 4t + 1) with starters in [I, 8t + 1 h, 

where the block with starter 8t + 1, i.e., (001, . ",1, St + 1, 4t), is replaced by 
B = (001, .. " I, 4t, (02); 

(4) C DCOO2 (( 4t+ 1)01, 1\J A[I, 4t-2J, (4t+ 1) 10, (-1 )01, - i\JA[2, 4tj-1 ,- (4t)01) with 
starters in [1, 8t + 1 h; 

(5) C = (8t + 1, ao, bo, 0,1, bl,' ", a4t, b4t ), where eLi 4(i + l)t, bi = 4(i + l)t + 1, 
o ::; i ::; 4t and all ai, bi are in ZSt+2. 

Proof. The number of the blocks is (8t + 2) + (8t + 2) + (4t + 4t + 1 + 1) x 2 
(16t+6)(16t+5) ., -.t 1 

St+:3 ' as expec _,ec . 
By Lemma 5.1, (1) and (2) are both SDCoos. By direct checking, (3) and 

(4) are both C DCoos. Obviously, if d i- 101 and (4t 1 ho, each pair with dif­
ference (±d)Ol, (±dho, ±d, ±d appears exactly once in (1)-(6) except for the pairs 
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(I,St+l),(St+l,4i;),(4t,St+l) and (St+l,I). Ifd 101 or (4t-lho, each pair 
with difference d appears exactly once in (1)--(6) except for the pairs in the set 
s= {(i,i+l),(i l,z); 'iE [0,Sth}U{(z,i+4t 1), i); iE [3,St+Ild. 
Since gcd (1 + 4t 1, St + 2) = 2, all ai, bi in the construction can form directed cycle 
D = (ao, bo,· .. , a4t, b4t ) and its f-converse. Let C = (ao, bo,· .. , a4t, b4t? St + 1). Note 
that (b4" St + 1, ao) (1, St + 1, 4t). Then, obviously, C and its f-converse cover all 
pairs in S and the pairs (I, St + I),(St + 1, 4t),(4t, St + 1) and (St + 1,1). 

From the definition of SDCoo and CDCCXJ , we can see that the construction is an 
(St + 3)-SCAl D(I6t + 6). 0 

Theorem 5.4 TheTc exists an (St + 7)-SCAl D(16t + 14) fOT any positive integeT t. 

Construction. X = {ool, oo2} U (ZSt+6 x Z2), f = (001)(002) I1~~65('i,I). 
(1) SDCCXJ1 (A[I, 4t + 2]) with starters in [0, St + 5j; 
(2) SDCCXJ/A[I, 4t + 2]) with starters in [0, St + 5], where the block with starter 

4t + 2, i.e., (002, 4t + 2,·· .), is replaced by (001, 4t + 2,· .. ); 
(3) C DCCXJ1 NI A[I, 4t + 2], - .M A[2, 4t + 2]-1, 4t + with starters in 

[I, St + 5h, where the block with starter St + 5, i.e., (001, ... , I,St+5,4t+2), 
is replaced by B (001,8t+5,·· ·,1,4t+2,(02); 

(4) C DCCXJ2 (101, -1\1 A[2, 4t + 2]-1, - (4t + 2)01, (4t + 3ho, 1\1 A[3, 4tj-1,( 4t + 3)01, 
(-lho,201 ) with starters in [1,St + 5h; 

(5) C = (St + 5,0,0, bo, aI, b1,·· ., a4t+2, b4t+2), where ai, bi E ZSt+6, 
(J,i = (i + 1) ( 4 t + 2), bi = (i + 1)( 4 t + 2) + 1, ° :s; i :s; 4 t + 2. 

Proof. Similar to the proof of Theorem 5.3. 

Theorem 5.5 TheTe exists a 7-SC1\lD(14). 

Construction. X {001,002} U (Z6 x Z2), f = (ood(002) f17=0('i,7). 
(1) SDCCXJ ! (A[I, 2]) with starters in [0,5]; 

o 

(2) SDCCXJ2 (A[I,2]) with starters in [0,5], where the block with starter 2, i.e., 
(002,2,3, I, 1, 3,2), is replaced by (001,2,3, I, 1,3,2); 

(3) C DCCXJ1 (3,1 10 , (-2)01, (-2)10,3) with starters in [I, 5h, where the block with 
starter 5, i.e., (001,5,2,3, I, 5, 2), is replaced by B (001,5,2,3, I, 2, (02); 

(4) CDCCXJ2 (301 , 2JO , 201 , 310 , Iod with starters in [1, 5h; 
(5) C = (5,2,3,4,6,0, I). 

Theorem 5.6 Then: c.1:ists an (St + 5)-SC.1\1 D(16t + 10) fOT any positive integer 
t ? 3. 

Construction. X {001, ood U (ZSt+4 x Z2), f = (ood(002) I1~~63(i, 7). 
(1) SDCCXJ1 ((4t + 2)01, A[I, 4t]) with starters in [0, 4t + 1], where the block with 

starter 0, i.e., (001,0,·· -), is replaced by (002,0, ... ); 
(2) SDCCX)l (4t + 2, A[I, 4tJ) with starters in [4t + 2, 8t + 3]; 
(3) SDCCXJ2 ((4t + 2ho, A[l, 4t]) with starters in [0, 
(4) SDCCX)2(4t + 2, All, cit]) with starters in [4t + 2, 
(5) CDCOO2 ((4t - 2)01, -(4t + 1), -1HA-1[1, 4t + -A1 A[l, 4t 2], -(4t + 1), 

-(4t - 1)01) with starters in [1, 8t + 3h, where the block with starter 1, i.e., (002,1, 
4t - 1, 8t + 2,· .. ), is replaced by B = (00],002,1, ... ); 
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(6) CDCOO1 (AJA- 1[2,4t 3],-AiA-1[4t - 1,4t + l],-(4t + 1),NfA-1[4t - 1, 
4t+ 1], All A[4, 4t 2], 101 , -4t + 1,210 , (4t + 1)01, -(4tho) with starters in [I,8t+ 3h; 

(7) C = (4t-l,ao,bo,a1,bl,"',a4t+l,b4t+l), where ai = -2(i+l), bi 

-2(£ + 1) + 1, ° ::; i ::; 4t + 1 and ai, bi are in ZSt+4' 

Proof. Similar to the proof of Theorem 5.3. 0 

Theorem 5.7 There e:rists a 13-SC All D(26). 

Construction. X = {001, 002} U (Z12 X Z2), f = (OOd(002) n;~o(i,I). 
(1) SDCOO1 (601 , A[l, 4]) with starters in [0,5], where the block with starter 0, i.e., 

(001,0", .), is replaced by (002,0" .. ); 
(2) SDCOO1 (6, A[l, 4]) with starters in [6,11); 
(3) SDCoo2 (6 1O , A[l, 4]) with starters in [0,5]; 
(4) SDCooJ6, A[l, 4]) with starters in [6, IT]; 
(5) CDCOO2 (201 , -5, [1,5]' -5, (-3)01,4 10 , (-I)od with starters in [1, llh, 

where the block with starter 11, i.e., \002,11, I, 8" .. ), is replaced by B = \001,002,11, 
8 ... ). , , 

(6) CDCOO1 (210, (-5)01, ho, 501 , (-4)10, (-4)01, -5,310 , -5,101 ,2 10 ) with starters 
in [1, ITh; 

(7) C = (1,8,1, 10,3,0,5,2, 7,4,9,6,11). 

Theorem 5.8 There exists a 21-SCA1D(42). 

Construction. X = {001' 002} U (Z20 X Z2), f = (OOd(002) ra!o(i,z). 
(1) SDCOO1 (1001 , A[l, 8]) with starters in [0,9], where the block with starter 0, 

i.e., \001,0," .), is replaced by \002,0," .); 
(2) SDCOO1 (10, A[l, 8]) with starters in [10,19]; 
(3) SDCooz (10 1O , A[l, 8]) with starters in [0,9]; 
(4) SDCoo2 (10, A[l, 8]) with starters in [10, 19]; 
(5) C DCooz (601 , -9, - Ai A -1 [1,9]' - Al All, 6]' -9, (-7)od with starters in [1, 19h, 

where the block with starter 1, i.e., \002,1,7, 18", -), is replaced by B = \001,002,1, 
18" .. ); 

(6) C DCoo [ (A1A -1 [2,5]' -111 A -1 [7,9], -9, -111 A[7, 9], -9,2 10 ,1 01 , 1\1 A[4, 6], 901 , 

(-8) 10) with starters in [I, I9h; 
(7) C = (7, ao, bo, 0.1, bl ,' . " a4, b4 ), where aj = -2(i + l)A = -2('i + 1) + 1, 0 ::; 

i ::; 4 and all ai, bi are in Z20' 

Theorem 5.9 There exists an (8t + 1) -SC 1\1 D(16t + 2) for any 'integer t 2:: 2. 

Construction. X = {001' ood U (ZSt X Z2), f = (001)( (02) TI~~(/ (i, 
(1) SDCOO1 ((4t)01, A[1,4t - 2]) with starters in [O,4t 1]; 
(2) SDCoo ] (4t, A[l, 4t - 2]) with starters in [4t,8t - 1], where the block with 

starter 4t, i.e., (001, 4t, ... ), is replaced by (002, 4t," .); 
(3) SDCOO2 (( 4t)1O, A[l, 4t - 2]) with starters in [0, 4t - 1]; 
(4) SDCOO2 (4t, A[l, 4t - 2]) with starters in [4t, 8t - 1]; 
(5) CDCOO2 ((4t 4)01, -(4t - 1), 111 A- l [l, 4t - 1], 101 , 4t - 1, 111 A[2, 4t - 3]) with 

starters in [1, 8t - 1h, where the block with starter 1, i.e., (002,1, 4t - 3, &2," .), 
is replaced hy B = (001,002,1, &2" .. ); 
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( 6) CDC 001 ( - AI A - 1 [2, 4t - 5], - AI A [4t - 2, 4t - 1], -11,11 A [4t - 2, 4t - 1], - (4t - 1), 
(-2)10,1 01 , ivI A[4, 4t - 3], (4t - 1)10, (4t - 2)01, 4t - 1, (4t - 3ho) with starters in 
[I, 8t - 1h; 

(7) C = (4t-3,o,o,bo,o,l,bl, ... ,o,4t-l,b4t-1), where o,i = -2(i+1), bi = 
-2(i + 1) + 1, 0::; i::; 4t-1 and all o,i,bi are in Z8t. 

Proof. In the construction, we Heed 4t - 4 > 0, i.e., t ~ 2. The rest of the proof is 
similar to Theorem 5.3. 0 

Theorem 5.10 There exists a 9-SC AI D(18). 

Construction. X = {OOll 002} U (Z8 x Z2), J = (OOd(002) nT=o(i, I). 
(1) SDCool (401, A[l, 2]) with starters in [0,3], where the block with starter 2, i.e' l 

(co1,2,"'), is replaced by (002,2",,); 
(2) SDCool (4, A[l, 2]) with starters in [4,7]; 
(3) SDC002 (4 1O , A[l, 2]) with starters in [0,3]; 
(4) SDCooJ4, A[I, 2]) with starters in [4,7]; 
(5) CDC002 (201 , -3,310 ,101 , (-2)10, (-3)01,3) with starters in [1,7h, where the 

block with starter 1, i.e., (002,1,3,0,3,4,2,7,2), is replaced by B = (001,002,1,0,3, 
4,2,7,2); 

(6) CDC001 ((-3)1O,201 ,3, (-1)10,301 ,-3, (-2)10) with starters in [I,7h; 
(7) C (1,3,0,7,6,5,4,3,2). 

The proof of Theorem 1.2: 
Let k = 2t + 1 (t > 2). According to the value of t modulo 4 we have following 

eases: 
If t == 1 (mod 4), see Theorem 5.3; 
If t == 3 (mod 4), see Theorem 5.4 and Theorem 5.5; 
If t == 2 (mod 4), see Theorem 5.6-5.8; 
If t == ° (mod 4), see Theorem 5.9 and Theorem 5.10. 

6 The proof of Theorem 1.3 

o 

Let D = (d l , d2 , .. " dk) be a CDC. If there are di, di+1, di+2 , di+:~ E D snch that 
eli == di+ 2, di+ 1 == di+3 and di 1= di+ 1 (mod 2), then the C DC is said to be of 
ALT -type and (di , di + l , di+2 , di +3 ) is called the ALT-piece. 

Lemma 6.1 Among the CDCs of each constTuction given in Section 4, thcTe is at 
least one ALT-type CDC. 

Proof. In section 4, we need to investigate all the constructions except for Theo­
rem 4.5 in which there is no CDC. In fact we can point out the following ALT-type 
CDCs. 

Theorem 4.1 ~U1 (2t + 28 + 1, 4t, ~ + t) (for t ~ 1); 
Theorem 4.2--U1 (4m + 4n + 3, 8m + 4, ~ 4m - 3) (for m ~ 1); 
Theorem 4.3---U1(4t + 3, 4, 14t + 3) (for t ~ 1); 
Theorem 4.4----U1 (4m + 4n + 3, 8m, ~ + 4m) (for m ~ 1); 
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Theorem 4.6----[h(2t + 28 + 1,4t - 2, * - t) (for t 2: 1); 
Theorem 4.7-(3) in the first construction, 

the difference cycle with i = 1 in part(II) (4) (for rn 2: 1) in the second 
construction; 

Theorem 4.8--the only CDC (for t 2: 1, so there is an ALT-piece in -A([6t + 
3,8t+7]\{8t+5})-1 ); 

Theorem 4.9--(3) in the first construction, 
the difference cycle with i 1 in part(II) (5) (for Tn 2: 2) in the second 
construction; 

Theorem 4.10-(2) (for t 2: 1); 
Theorem 4.11-(1) (for t 2: 2); 
Theorem 4.12--part(II) (2). o 

Theorem 6.2 For odd k > 5, let v == 1 (rnod k), v =I k + 1 and v == 0 (mod 4). 
If there exist a k-SCA1D(v) with ALT-type CDCs and a k-SCJ\1D(2k), then theTe 
exists a k-SClvID(v + 2k). 

Proof. Let k = 2t + 1 and t > 2. Let (X, B, g) be a (2t + 1)-SC}d D(v) with an 
ALT-type CDC and (Y,C,h) be a (2t + 1)-SCAID(4t + 2), where X = Zv, 9 = 
(O,l,···,v 1), Y = {a'i,(ii; 1:::; i:::; 2t} U {OOl,002}, h = (OOd(002)I1T~1(ai,ai)' 

Let D (dll d2l d3l d4,' .. , d2t+d, where (d l , d2l d3 , d4) is an ALT-piece. And, 
B = (XI,x2,:r3,:1:4,XS,'" ,X2t+l) is a block in B, where Xi + di == :ri+l (mod v), i E 
Z2t+l. Let O(B) be the block-orbit containing B. For expressing the parity of all 
these Xi (suppose Xl is even), we give the following table. 

Table B 

case I case II 
(dl , d2, d3, d4) even, odd, even, odd odd, even, odd, even 

(Xl, X2, X3, X4, :rs) even, even, odel, odel, even even, odd, odd, even, even 

Define the following five basic blocks: 

Bl = (Xl, X2, aI, YI, a2," " Yt-2, at-I, Yt-l, at); 
B2 = (:1:3, ·7,4, 0,1, YI + 1, a2, .. " Yt-2 + 1, at-I, Yt--l + 1, at); 
B3 1:3, (J,t+l, YI, at+2, .. " Yt-2, a2t-l, Yt-I, (J,2t); 
B4 (X4' Xs, (J,t+l, YI + 1, at+2,' .. , Yt-2 + 1, a2t-l, Yt-1 + 1, CL2t); 
Bs = (OO},Z,002,X5,:r:6,''',X2t+I,1:l), 

where z = X2 (case I) or X4 (case II) and these Yj, 1 ::; j ::; t - 1, are distinct elements 
from the set 

{2i; 0:::;i::;V;2}\{XI,x2,:r3,:r:3-1,X4 1,:r:5 I}. 
Since ~ 6 > t 1, the required Yj can indeed be chosen. Obviously, the points in 
each Bi are mutually distinct. By Table B, in both cases, we have :r:1 -t X3, :r2 -t :r:4, 
X;3 -t ·7,5 (mod 2) and Xl == ::1':5 == Z (mod 2). Therefore, each ai appears in two 
basic blocks above, e.g. ( .. ''IL,(Li,v, ... ) and (-. "U,',CLi,V'," .), such that v, -t 'IL' and 
v -t v' (mod 2). 

Define the mapping f on X U Y as follows: 

f(:r) = {g(:r;); :r: E X 
h(:r); x E Y 
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Let G be the fillite permutation group generated by Rf and let O(Bi) (1 :::; i :::; 5) 
be the block-orbit containing each Bi under the action of G. Let 

J = (B\O(B)) uC U ( U O(Bi))' 
i=:1 

Obviously, (X U "y',J, 1') is a k-SCiVID(v + 2k). 0 

Theorem 6.3 There e.7;i8ts a (4t + 3)-SCi\;fD(12t + 10) for' any positive integer t. 

Proof. Let (X, B, g) be a (4t + 3)-SCAI D(4t + 4) as given in Theorem 4.5, where 
B contains only an S DC, and let (Y, C, h) be a (4t + 3)-SC M D(St + 6) as given in 
Theorem 1.2. To avoid confusion, denote Y = {001' oo2} U {ai, bi ; i E Z4t+2} and 

4t+J 
h = (ood(002) I1 (ai,b i ). Now, we construct a (4t+3)-SCAID(12t+l0) on XuY. 

i=O 
Define the mapping f by 

f(:r) = { 09(·1:) 
h(;r) 

;r; E X 
xEY 

\Ve define five basic blocks B 1, B2 ,' .. , B5 in three cases: 
(1) t is even. 
Let D SDC(A[l, 2t+2], S[I, 2t]-1, 2t+l). There is an ALT-piece (d l , d2, d:3, d4 ) 

= (1, -2,3, in A[I,2t+2]. Let B = (O,I,4t+3,2,4t+2, Xl,"·,:r4t-2!. Define 
the following five basic blocks: 

Bl (0,1,0,0, Yo, 0,1, YI," ., a2t-l, Y2t-l, a2t!, 
B2 (4t + 3,2, ao, Yo + 1,0,1, Yt + 1, ... , (J,2t--l, Y2t-1 + 1, O,2t), 
B3 (1, 4t + 3, a2t+!, Yo, 0,2t+2, Yl, ... , 0,4t, 1/2t-1, 0,4t+!) , 
B4 = (2,41: + 2, o,2t+l, Yo + 1, o,2t+2, Yl + 1· ", 0,4t, Y2t-1 + 1, o,4t+I!, 
B5 = (001,2,002, 4t + 2, Xl, .1:2,' .. , X4t-2, 0), 

where (Yo, Yl,"', Y2t-d = (2,3", ., 2t + 1). 
(2) 1: is odd and t > 1. 
Now, the two SDCs both contain the interval A[I, 2t + 1h. For t 2: 3, there is 

an ALT-piece (ell, d2, d3, d4) = (1, -3,5, -7) in A[l, 2t + 1h. Let B = (0,1, 4t + 
2,3,41:, :1:1, ... , Define the following five basic blocks: 

BJ (0, 1, ao, Yo, (J,l, ]JJ, ... , 0,2t--l, Y2t-l, O,2t!, 

B2 = (3, 4t, ao, Yo + 1,0,1, Yl + 1"", {J,2t-l, Y2t-l + 1, a2t!, 
B3 = (1, 4t + 2, a2t+l, Yo, a2t+2, Yl, ... ,0,4b Y2t-l, (J,4t+1) , 

B4 (4t + 2,3, o,2t+1, Yo + 1, O,2t+2, Yl + 1···, (J,4t, Y2t-l + 1, o,4t+l), 
B.s (001, 4t + 2,002, 4t, Xl, X2,' .. , X4t-2, 0), 

where (Yo, Y2,"',Y'2t--l) = (4,5,···,2t+3). 
(3) t 1. 
Let D SDC(1, -2,4,1, -2, .3, 3) and B = (0,1,7,3,4,2,5). Define the follow-

ing five basic blocks: 
Bl (7,3, ao, 2, at, 6, (J(2); 
B'2 (4,2,0,0,3, o,J, 7, 0,'2); 
B3 (3,4,0,:3,2, a.1, 6, (J(5); 
B4 (2,5,0,:3,3,0,4,7,0,5); 
B5 (001,3,002,5,0,1,7). 
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Obviously, each o,i appears in two basic blocks above: \- .. u, ai, v, ... ) and 
(- .. u' , ai, v',·· .), such that 'It 1= u' and v 1= v' (mod 2). The blocks Bs = (0011 'IL, 002, 
v,' . " w) in three cases satisfy 'U == V ==w (mod 2). Then, let G be the finite permu­
tation group generated by Rf. Let O(Bi) be the block-orbit containing Bi under the 
action of G. It is easy to see that each ordered pair (.7:, y), which belongs to X x X 

or X x Y, appears in exactly one block of O(BJ). Let 

A = C u (U O(Bi)). 
i=l 

Obviously, (X U Y, A, J) is a (4t + 3)-SClvi D(12t + 10). 0 

Lemma 6.4 [5] Let (X,8,1) be a k-SClvID(v). 
(1) The seZ{-conver.se block A in B, i.e., f(At l = A, must posse.s8 one of the 

following .stTuctuTes: 
Type I. A (al,a2,···,o,t,bt,···,b2 ,b1), t=~; 
I'.'tJPe II. A = (00, al,"', at, 00', bt,"" b1), t = ~ - 1; 
Type III. A= (00,al,"',a[,b t ,''',b1), t= k;l, 

where f(ai) = bi, f(b i ) o,i for 1 ::; i ::;t and f(oo) = (0) f(oo') 00'. 

(2) If f conta'tns a tmn.sposition (0" b)) then the block cover'ing the or-dered pail' 
( a, b) mU8t be .self-conveTse of Type I (if k even) 01' Type I I I (if k odd). 

(3) If B contains a self-converse block, then 
(faT k even): f contain.s at least ~ tTanspositions and 8 contains at lea.st ~ 

self-converse blocks of Type I; 
(for k odd): f contains at least tmn8positions and 8 contains at least k 1 

self-converse blocks of Type I I I. 

Theorem 6.5 Then~ e:Z;'lSts no (4t + 1) -SC A.1 D( 4t + 2) for any positive integer- t. 

Proof. Suppose there is a (4t + 1)-SC 111 D( 4t + 2) = (X, 8,.f), where 181 = 
4t + 2 = IXI. Obviously, the elements in any block of Bare X\{a} and the missing 
element x is distinct for different block. Let Bo. be the block without point a. Then 
8 = {Bo.; a E X}. It is easy to see that, if f(a) = b then f-I (Ba) = Bb . So we have 

(1) f contains no I-cycle. 
In fact, suppose f (00)"', then Boo is self-converse. By Lemma. 6.4 (1), f 

contains two fixed points. By Lemma 6.4 (3), there are at least 4t self-converse 
blocks of Type III in B. But, this is impossible since t 2: 2. 

(2) f contains no 2-cycle (i.e., transposition). 
Suppose f = (a, b) "', then, by Lemma 6.4 (2), there is a self-converse block 

containing the pair (a, b) in B. Furthermore, by Lemma 6.4 (3), B contains at least 
4t self-converse blocks of Type III, which is impossible by (1). 

(3) f contains no 3-,eycle. 
Suppose f = (a, b, c) . ", then under the action of the derived mapping B ----t 

f(Bt 1, Bo. -t Bb ----t Be -t Bo.. So, we have f3(Bo.)-1 = Ba· Let B(l = (b, 1:1, ... 1 :l;m, 

c,Yn,···,Yl),where:Ci,Yjt!:{a.,b,c}, 'm+n 4t land{Tl,"',:r:m }or{Yl,"',Yn} 
may be empty. The expression of the relation 13(Ba)-1 = (b, P'tlJl), .. " f3(Yn), c, 
13(xrn ),·· ., f3(:r.:d) = Bo. shows that m = n, which is impossible since m,+n 4t-1. 

(4) f contains no (2s + I)-cycle. 
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\Vhen /3 0 or 1, the conclusion is correct by (1) or (3). Now, let 8 2': 2 and .I = 
(ao, al,"', a2s) .... Obviously, if Baa = (al,"', a'll"', a2.s,·· .;, then pS+l(Baa)-1 = 
(a'ls, .. " a2, ... , a1 , .. .; = Baa' But, this is impossible since 28 ='2: 4. 

(5) j contains no (48 + 2)-cycle. 
Suppose j = (0,0, aI, ... , a4s+1) . ". Let Bx = (ao, a2s+1, ... ; be the block con­

taining the ordered pair (ao,a2s+d. Obviously, the block j2s+1(Bx)-1 contains the 
ordered pair (ao, too. So Bx = ,t2s+1(Bx)-l, i.e., x must belong to an odd 
cycle of .I, which is impossible by (4). 

So .I can only contain 48-cycles. But 4t + 2 == 2 (mod 4), which is impossible. 
Thus, there exists no (4t + 1)-SClvID(4t + 2). 0 

The proof of Theorem 1.3: 
All possibilities are shown in the following table: 

In this table, two parts of v == 0 (mod 4) have been solved in Theorem 1.1. By 
Lemma 6.1 and Theorem 6.2, the following recursive relations hold when there is at 
least one CDC in the original constructions: 

(k 1 (mod 4)) k-8CAfD((48 + 3)k + 1) -+ k-8CJl.1D((48 + 5)k + 1); 
(k == 3 (mod 4)) k-8ClvlD((48 + l)k + 1) -+ k-8CAID((48 + 3)k + 1). 

While the two exceptions have been solved: 
k > 5 and there is no CDC in the original construction, see Theorem 6.3; 
there exists no (4t + 1 )-8C]l.1 D( 4t + 2), see Theorem 6.5. 0 
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Appendix 

1. 7-SCAID(36) (Theorem 4.1, let t = 1, s = 1). 
X = Z36 and f = (0,1"",35). 

(I) SDC(I, 10,18,1, -2, 10). 
(II) CDC(D), where D is taken as follows. 

(1) (A[5,8]'-11,9,4); 
(2) (A[14, 17], -13, 12,3). 

2. 15-SC "'If D(136) (Theorem 4.2, let t = 3, s = 2). 
X = Z136 and f = (0,1, ... , 135). 

(I) SDC(I, -3,68, -3, 6, -4,2,5,27,1,2, 6,5,27). 
(II) CDC(D), where D is taken as follows. 

(1) (A[ll, 22], -28,26,8); 
(2) (23, -24, A[34, 43], -29,25,10); 
(3) (A[44, 55], -32,31,7); 
(4) (A[50, 67], -33,30,9). 

3. 7-SCAID(64) (Theorem 4.3, let t = 1). 
X = Z64 and f = (0,1, ... ,63). 

(1) SDC(I,-2,17,32,1,-2,17). 
(II) CDC(D), where D is taken as follows. 

(1) (A[7, 10], -18, 16,4); 
(2) (A[ll, 14], -19, 15,6); 
(3) (A[24, 27], -22,21,3); 
(4) (A[28, 31]' -23,20,5). 

4. 1l-SCA1D(56) (Theorem 4.4, let t = 2,8 = 1). 
X Z56 and f (0,1, ... , 55). 

(1) SDC(I, -3,28, -3, 18,2, -4, 1, -4,2,18); 
(2) CDC(15, -16, A[22, 27], -21, 20, 5); 
(3) CDC(A[7, 14], -19, 17,6). 

5. 5-SC!'vfD(36) (Theorem 4.6, let t = 1,8 = 1). 
X = Z36 and f = (0,1, ... ,35). 

(1) SDC(I, 8,18,1,8); 
(2) CDC(5, -6,7, -9,3); 
(3) CDC(14, -15, 11, -12,2); 
(4) CDC(16,-17,10,-13,4). 

6. 13-SC!'vf D(248) (Theorem4.7, let t = 3,8 = 4). 
X Z248 and f = (0,1, ... ,247). 

(I) SDC(lvI, 124, .lVI-I), where 111 = (A[l, 7h, 23,43). 
(II) CDC(D), where D is taken as follows. 

(1) (A[2, 8h, 11, -13, 22, -24, 56, -58,57, -59, 12); 
(2) (9, -10, A[39, 47] \ {43}, A[60, 63], -64,55,14); 
(3) (A[25, 34], --65,54,16); 
(4) (A[64, 73], -66,60,18); 
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(5) (A[74, 83], -67,59,20); 
(6) (A[84 + 10(i - 1),83 + 10i], -(47 + i), 39 - i, 13 + 2i). 

7. 5-SCAI D(20t + 16). 
X = Z20t+16 and J = (0,1, ... , 20t + 15). 

(I) { SDC(I, 5t + 3, lOt + 8, 1, 5t + 3) 
SDC(I, 5t + 3, lOt + 8, 5t + 3, 1) 

t is odd 
t is even 

(II) CDC(D), where D is taken as follows. 
(1) (2t + 2'i + 1, -(2t + 2i + 2), 5t - 'I + 3, -(5t + i + 3), 2i + 1), 1 S; i S; t; 
(2) (8t + 2i + 4, -(8t + 2i + 5), 7t i + 5, -(7t + i + 4), 2i), 1 S; i S; t + l. 

8. 17-SC!vI D(528) (Theorem 4.10, let t = 4, s = 7). 
X = Z248 and J = (0,1, .. ·,527). 

(I) SDC("M, 264, AI-I), where AI = (1, -3, A[257, 263h, -43, -83). 
(II) CDC(D), where D is taken as follows. 

(1) (-2,4, A[256, 262b, -A[5, 1O}-1, -A[12, 15}-1, 11); 
(2) (A[39, 47] \ {43}, A[62, 67}, -70,61,16); 
(3) (30, -31,68, -69, A[77, 87) \ {83}, -71,60,18); 
(4) (A[88 + 14(i 1),87 + 14iJ, -(71 + i),60 - i, 18 + 2i), 1 S; is; 5; 
(5) (A[158 + 14(i 1),157 + 14i), -(47 + i), 39 - i, 15 + 2i), 1 S; i S; 7. 
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