The existence of bimatching designs

Beiliang Du

Department of Mathematics Suzhou University, Suzhou 215006 P. R. China dubl@pub.sz.jsinfo.net

Abstract

A collection of k-matchings of the bipartite graph $K_{n,n}$ with the property that every pair of independent edges lies in exactly λ of the k-matchings is called a BIMATCH (n, k, λ) -design. In this paper we give a new construction of bimatching designs, and show that the necessary conditions for the existence of a BIMATCH (n, k, λ) -design are also sufficient whenever k = 3 and 4.

1 Introduction

A hyperfactorization of index λ of the complete graph K_{2n} consists of a family of perfect matchings of K_{2n} , so that every pair of independent edges of K_{2n} lies in exactly λ of the perfect matchings. This has been studied by Jungnickel and Vanstone [5]. Alspach and Heinrich [1] have given a generalization of the notion of a hyperfactorization, and called it a matching design. A matching design, denoted by MATCH (n, k, λ) -design, is a family of k-matchings (i.e., k independent edges) of K_n so that every pair of independent edges of K_n lies in exactly λ members of the k-matchings.

An analogous definition is given for the bipartite graph $K_{n,n}$, and this is called a bimatching design.

Definition 1.1 [1] A bimatching design, denoted by BIMATCH (n, k, λ) -design, is a collection of k-matchings (i.e., k independent edges) of $K_{n,n}$ so that every pair of independent edges of $K_{n,n}$ lies in exactly λ members of the k-matchings.

We have the following necessary conditions for the existence of BIMATCH (n, k, λ) -designs.

Theorem 1.2 [1] Necessary conditions for the existence of BIMATCH (n, k, λ) -designs are that

Australasian Journal of Combinatorics 23(2001), pp.71-74

- (1) $n \ge k$,
- (2) $\lambda(n-1)^2 \equiv 0 \pmod{k-1}$, and
- (3) $\lambda n^2 (n-1)^2 \equiv 0 \pmod{k(k-1)}$.

Now the problem arises whether these necessary conditions are also sufficient, especially for small k = 3 and 4. From Alspach and Heinrich [1] and Lin and Heinrich [6] we only have the following known results.

Theorem 1.3 [1,6]

(1) If k is a prime power, $n \ge k$ and $n \equiv 1$ or k (mod k(k-1)), there exists a BIMATCH (n, k, λ) -design.

(2) If n is a prime power and $n \ge 3$, there exists a BIMATCH $(n, 3, \lambda)$ -design with λ taking on the following values

(i) $\lambda = 1$, when $n \equiv 1$ or 3 (mod 6),

(ii)
$$\lambda = 2$$
, when $n \equiv 4 \pmod{6}$,

- (iii) $\lambda = 3$, when $n \equiv 5 \pmod{6}$, and
- (iv) $\lambda = 6$, when $n \equiv 2 \pmod{6}$.

In this paper we give a new construction of bimatching designs, and show that the necessary conditions for the existence of a BIMATCH (n, k, λ) -design are also sufficient whenever k = 3 and 4.

2 A Construction

For our construction, we need the concept of a modified group divisible design, which is a generalization of a group divisible design.

Definition 2.1 [2] A modified group divisible design, denoted by $MGD(k, \lambda, m, n)$, is a pair (X, \mathcal{B}) , where

 $X = \{(x_i, y_j) : 0 \le i \le m - 1, \ 0 \le j \le n - 1\}$

is a set order mn and \mathcal{B} is a collection of k-subsets (called blocks) of X satisfying the following conditions:

(1) every pair of points (x_i, y_j) and (x_s, y_t) of X is contained in exactly λ blocks when $i \neq s$ and $j \neq t$,

(2) the pair of points (x_i, y_j) and (x_s, y_t) with i = s or j = t is not contained in any block.

The subset $\{(x_i, y_j) : 0 \le i \le m - 1\}$ where $0 \le j \le n - 1$ are called groups and the subset $\{(x_i, y_j) : 0 \le j \le n - 1\}$ where $0 \le i \le m - 1$ are called rows.

Now we can state our construction.

Theorem 2.2 A BIMATCH (n, k, λ) -design exists if and only if a MGD (k, λ, n, n) exists.

Proof Let V_1 and V_2 be the two partite sets of a $K_{n,n}$, in which

$$V_1 = \{x_i : 0 \le i \le n - 1\},\$$

$$V_2 = \{y_j : 0 \le j \le n - 1\}.$$

Let (x_i, y_j) be the edge of $K_{n,n}$, in which the end vertices are $x_i \in V_1$ and $y_j \in V_2$, and let $E(K_{n,n})$ be the edgeset of $K_{n,n}$. We then have

$$E(K_{n,n}) = \{ (x_i, y_j) : 0 \le i \le n - 1, \ 0 \le j \le n - 1 \}.$$

Then B is a k-matching of the BIMATCH (n, k, λ) -design if and only if B is a block of MGD (k, λ, n, n) .

This complete the proof.

3 Main Result

From Assaf [2], we have the following necessary conditions for the existence of an $MGD(k, \lambda, m, n)$.

Lemma 3.1 [2] Necessary conditions for the existence of $MGD(k, \lambda, m, n)$ are that

- (1) $m, n \geq k$,
- (2) $\lambda(mn+1-m-n) \equiv 0 \pmod{k-1}$, and
- (3) $\lambda mn(mn+1-m-n) \equiv 0 \pmod{k(k-1)}.$

In particular, necessary conditions for the existence of a $MGD(k, \lambda, n, n)$ are that

- (1) $n \geq k$,
- (2) $\lambda (n-1)^2 \equiv 0 \pmod{k-1}$, and
- (3) $\lambda n^2 (n-1)^2 \equiv 0 \pmod{k(k-1)}$.

From Assaf [2] and [3], Wei [7] and Assaf and Wei [4], we have the following known results for the existence of $MGD(k, \lambda, n, n)$.

Lemma 3.2 [2,3,4,7]

(1) There exists a MGD(3, λ , n, n) if and only if $n \ge 3$, $\lambda(n-1)^2 \equiv 0 \pmod{2}$ and $\lambda n^2(n-1)^2 \equiv 0 \pmod{6}$.

(2) There exists a MGD(4, λ , n, n) if and only if $n \ge 4$, $\lambda(n-1)^2 \equiv 0 \pmod{3}$ and $\lambda n^2(n-1)^2 \equiv 0 \pmod{12}$.

This establishes our main result.

Theorem 3.3

(1) There exists a BIMATCH $(n, 3, \lambda)$ -design if and only if $n \ge 3$, $\lambda(n-1)^2 \equiv 0 \pmod{2}$ and $\lambda n^2(n-1)^2 \equiv 0 \pmod{6}$.

(2) There exists a BIMATCH $(n, 4, \lambda)$ -design if and only if $n \ge 4$, $\lambda(n-1)^2 \equiv 0 \pmod{3}$ and $\lambda n^2(n-1)^2 \equiv 0 \pmod{12}$.

References

- B. Alspach and K. Heinrich, *Matching designs*, Australs. J. Combin., 2 (1990), 39-55.
- [2] A.M. Assaf, Modified group divisible designs, Ars Combin., 29 (1990), 13-20.
- [3] A.M. Assaf, Modified group divisible designs with block 4 and $\lambda > 1$, Australs. J. Combin., 16 (1997), 229-238.
- [4] A.M. Assaf and R. Wei, Modified group divisible designs with block 4 and $\lambda = 1$, Discrete Math., **195** (1999), 15-25.
- [5] D. Jungnickel and S.A. Vanstone, Hyperfactorization of graphs and 5-designs, J. Univ. Kuwait Sci., 14 (1987), 213-223.
- [6] C. Lin and K. Heinrich, *Bimatching designs*, Appl. Math. J. Chinese Univ. Ser. B, 9 (1994), 77-84.
- [7] R. Wei, The existence of group divisible design with equal size holes, Ars Combin., 35 (1993), 315-323.

(Received 18/1/2000)