Properties of queens graphs and the irredundance number of Q_7

E. J. Cockayne

Department of Mathematics, University of Victoria P. O. Box 3045, Victoria, BC Canada V8W 3P4 cockayne@smart.math.uvic.ca

C. M. Mynhardt

Department of Mathematics, University of South Africa P. O. Box 392, Unisa, 0003 South Africa mynhacm@unisa.ac.za

Abstract

We prove results concerning common neighbours of vertex subsets and irredundance in the queens graph Q_n . We also establish that the lower irredundance number of Q_7 is equal to four.

1 Introduction

The rows and columns of the $n \times n$ chessboard will be numbered 1, 2, ..., n from the bottom left hand corner. Thus each square has *co-ordinates* (x, y), where x and y are the column and row numbers of the square, respectively. The *lines* of the board are the rows, columns, sum diagonals (i.e., sets of squares such that x + y = k, where k is a constant) and difference diagonals (sets of squares such that x - y = k). These will be denoted by the symbols r, c, s, d, respectively.

The vertices of the queens graph Q_n are the n^2 squares of the chessboard, and two squares are adjacent if they are collinear. This graph has received much attention in the literature recently because of the well-known century-old problem of determining the smallest number of queens which will cover all the squares of the $n \times n$ board. This problem may be restated as the determination of the domination number $\gamma(Q_n)$ of the queens graph. It remains unsolved and progress is detailed in [2, 3, 9, 11].

Let X be a subset of the vertex set of a graph G. For $x \in X$, we denote the closed neighbourhood (see [8]) of x by N[x], and the closed neighbourhood of X by N[X]. A private neighbour of x relative to X (denoted X-pn) is an element of

 $pn(x, X) = N[x] - N[X - \{x\}]$. The set X is called *irredundant* if each vertex of X has an X-pn.

A dominating set of a graph is minimal if and only if it is also irredundant. This fact has led to much current work on the development of the theory of irredundance. The parameter ir(G), known as the lower irredundance number of G, is the smallest cardinality amongst all maximal irredundant sets of G.

As was shown in [1], the irredundance number of any graph is bounded below by $ir(G) \ge (\gamma(G) + 1)/2$, where as usual $\gamma(G)$ denotes the domination number of G. This bound, together with the lower bound $\gamma(Q_n) \ge (n-1)/2$ of P. Spencer (see [5]), shows that $ir(Q_n) \ge (n+1)/4$. The values $ir(Q_5) = ir(Q_6) = 3$ were established in [4], so it looks as though this bound is not particularly good, even for small values of n.

In Section 2 we prove some properties of Q_n for general n. Some of these, together with other results for Q_7 , will be used in Section 3 to show that $ir(Q_7) = 4$. This number can also be established by an exhaustive computer search – in fact, Harborth [7] recently reported that Jens-P. Bode had verified by computer that $ir(Q_n) = \gamma(Q_n)$ for $n \leq 10$, and Rall [10] did the same for $n \leq 8$. However, our methods may assist in the evaluation of $ir(Q_n)$ for higher values of n.

The reader is referred to [8] for definitions, theory and bibliography concerning domination and irredundance in graphs. Results on domination parameters of chessboard graphs are summarized in [9].

2 Properties of Q_n

Our first results deal with common neighbours of certain vertex subsets of Q_n . A sequence of at least three squares form an *equally-spaced set* (abbreviated *ES-set*) if they are collinear and equally spaced along their line. For the square A, r(A) (c(A), s(A), d(A), respectively) will denote both the row (column, sum diagonal, difference diagonal) of A and the number of the row (column, sum diagonal, difference diagonal) of A. Thus, if A has co-ordinates (x, y), then r(A) = y, c(A) = x, s(A) = x + y and d(A) = x - y.

Theorem 1 Let p, q be lines of Q_n which intersect in square W. Consider $\{A_1, A_2\} \subseteq p - \{W\}$ and $\{A_3, A_4\} \subseteq q - \{W\}$. Let $\Omega \cup \{W\}$ (disjoint union) be the set of squares adjacent to all of A_1, A_2, A_3, A_4 , and Σ the subset of Ω containing the squares not on p or q. Then

- (a) $|\Sigma| \le 2$, $|\Omega| \le 4$;
- (b) if $|\Sigma| = 2$, then the two squares of Σ are adjacent.

Proof. We consider three cases.

Case 1 p is a sum diagonal s and q is a column c.

We re-label A_1 , A_2 , A_3 , A_4 by S_1 , S_2 , C_1 , C_2 to signify that S_1 , S_2 are on s and C_1 , C_2 are on c. Observe that

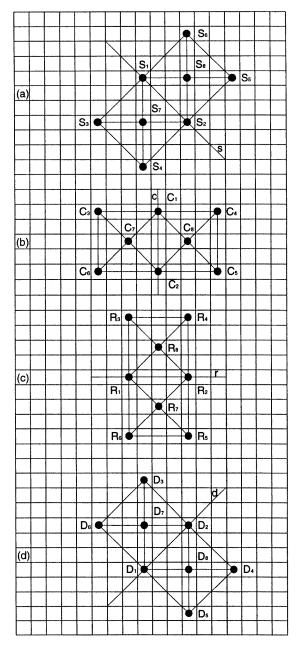


Figure 1

- (i) if square P is adjacent to S_1 and S_2 , then P = W, $P \in s \{W\}$ or $P \in S = \{S_3, ..., S_8\}$, the squares depicted in Figure 1(a);
- (ii) if square P is adjacent to C_1 and C_2 , then P = W, $P \in c \{W\}$ or $P \in C = \{C_3, ..., C_8\}$, the squares depicted in Figure 1(b), where C_7, C_8 only exist if $r(C_1) r(C_2)$ is even.

We deduce that each $Z \in \Omega$ is of exactly one of the following types:

type 1: $Z \in (s - \{W\}) \cap C$ type 2: $Z \in (c - \{W\}) \cap S$ type 3: $Z \in C \cap S = \Sigma$.

Suppose that $Z \in \Omega$ is of type 1. If $Z \in \{C_3, C_5, C_7, C_8\}$, then, due to the geometry of C and S, the line *s* includes C_1 or C_2 , which contradicts the definition of these squares. Hence $Z \in \{C_4, C_6\}$. If $C_4 \in s$, then $C_6 \notin s$, and vice versa, and so there is at most one type 1 square of Ω . Observe that (say) $C_4 \in s$ implies that W is the square of *c* such that C_2, C_1, W form an ES-set on *c*.

Suppose that $Z \in \Omega$ is of type 2. If $Z \in \{S_4, S_6, S_7, S_8\}$, then c contains S_1 or S_2 , a contradiction which implies that $Z \in \{S_3, S_5\}$. If S_3 is on c, then S_5 is not, and so there is at most one type 2 square of Ω . Notice that $S_3 \in c$ implies that W is the square of s such that W, S_1 , S_2 form an ES-set on s.

By comparing the sets C and S in Figure 1(a) and (b), we see that it is impossible to choose positions for S_1, S_2, C_1, C_2 so that $|C \cap S| \ge 3$. Moreover, if $|C \cap S| = 2$, then the two squares of this set are collinear. This completes the proof of Case 1.

Case 2 p is a row r and q is a column c.

Re-label A_1 , A_2 , A_3 , A_4 by R_1 , R_2 , C_1 , C_2 respectively. If $\mathcal{R} = \{R_3, ..., R_8\}$ and $\mathcal{C} = \{C_3, ..., C_8\}$ are the sets of squares depicted in Figure 1(c) and (b) (existence of R_7 , R_8 , C_7 , C_8 depend on parity), then each $Z \in \Omega$ has one of the following types:

type 1: $Z \in (c - \{W\}) \cap \mathcal{R}$ type 2: $Z \in (r - \{W\}) \cap \mathcal{C}$ type 3: $Z \in \mathcal{R} \cap \mathcal{C} = \Sigma$.

Suppose that $Z \in \Omega$ is a type 1 square. If $Z \in \{R_3, R_4, R_5, R_6\}$, then R_1 or R_2 is on c, which is impossible. Therefore $Z \in \{R_7, R_8\}$. Both R_7 and R_8 are type 1 squares if R_1, W, R_2 form an ES-set, and there are no type 1 squares otherwise.

By symmetry, C_7 and C_8 are the only type 2 squares if C_1 , W, C_2 form an ES-set, and there are no type 2 squares otherwise.

If there are two type 1 and two type 2 squares, then $\mathcal{R} \cap \mathcal{C} = \emptyset$ and the result holds. (1)

The geometry of C and \mathcal{R} prevents $|\mathcal{R} \cap C| \geq 3$, and if $|\mathcal{R} \cap C| = 2$, these two vertices are adjacent. If $|\mathcal{R} \cap C| > 0$, there cannot be both type 1 and type 2 squares (by statement (1)). Therefore $|\Omega| \leq 4$ as required.

Case 3 p is a sum diagonal s and q is a difference diagonal d.

Re-lable A_1 , A_2 , A_3 , A_4 by S_1 , S_2 , D_1 , D_2 respectively. If $\mathcal{D} = \{D_3, ..., D_8\}$ and $\mathcal{S} = \{S_3, ..., S_8\}$ are the sets of squares depicted in Figure 1(a) and (d), then each $Z \in \Omega$ has one of the following types:

type 1: $Z \in (s - \{W\}) \cap \mathcal{D}$ type 2: $Z \in (d - \{W\}) \cap \mathcal{S}$ type 3: $Z \in \mathcal{D} \cap \mathcal{S} = \Sigma$.

Notice that if $D_3 \in s - \{W\}$, then $D_2 \in s$, a contradiction. Hence D_3 (and similarly D_4 , D_5 , D_6) is not a type 1 square. Both D_7 and D_8 are type 1 squares if W is the square of d such that D_1 , W, D_2 form an ES-set, and there is no type 1 square otherwise.

By symmetry, S_7 and S_8 are the only type two squares if W is the square of s such that S_1 , W, S_2 form an ES-set, and there is no type 2 square otherwise.

If there are two type 1 and two type 2 squares, then $S \cap D = \emptyset$ and the result holds. (2)

The geometry of S and D prevents $|S \cap D| \ge 3$, and if $|S \cap D| = 2$, these two squares are adjacent. If $|S \cap D| > 0$, there cannot be both type 1 and type 2 squares (by statement (2)). Therefore $|\Omega| \le 4$ as required.

- **Theorem 2** (a) There are at most five squares which are adjacent to each of three independent squares Z_1, Z_2, Z_3 .
 - (b) There are at most four squares which are adjacent to each of four independent squares Z_1 , Z_2 , Z_3 , Z_4 .

Proof. (a) Suppose to the contrary that each of $A_1, ..., A_6$ is adjacent to the three independent squares Z_1, Z_2, Z_3 . Let M be the 6×3 matrix with entries in $L = \{r, c, s, d\}$, where for $p \in L$, $m_{ij} = p$ if A_i and Z_j are on the same line p. Note that the independence of Z_1, Z_2, Z_3 implies that the elements of each row of M are distinct. We need two lemmas.

Lemma 2.1 No element of L appears more than twice in a column of M.

Proof of Lemma 2.1. Suppose to the contrary that for some $l \in L$, $m_{11} = m_{21} = m_{31} = l$, and that A_1 , A_2 , A_3 is the order of these squares on l. Note that Z_2 , Z_3 are the independent squares not on l which are adjacent to each of A_1 , A_2 , A_3 . The existence of such squares requires that A_1 , A_2 , A_3 form an ES-set. In this case exactly two such squares exist. However, these are adjacent on the line through A_2 perpendicular to l. Thus Z_2 , Z_3 cannot exist.

Lemma 2.2 No two elements p, q of L are duplicated in a column of M.

Proof of Lemma 2.2. Suppose to the contrary that $m_{11} = m_{21} = p$ and $m_{31} = m_{41} = q$. Note that Z_2 , Z_3 are independent squares not on either p or q, which are adjacent to A_1 , A_2 , A_3 and A_4 . This is impossible by Theorem 1(b).

								Z 1		A ₁		
		Z2	A₅				A₃				Z2	
	A₄											
(a)	 Z1	A ₁		A ₂								 (b)
		Aз	Z₃									
							Z4				A₄	
							1	A ₂		Z ₃		

Figure 2

By Lemmas 2.1 and 2.2, a column of M has elements from $\{r, c, s, d\}$ with at most one element appearing more than once. This is impossible and hence part (a) of the theorem is established.

(b) Suppose to the contrary that each of $A_1, ..., A_5$ is adjacent to the four independent squares $Z_1, ..., Z_4$. Let M' be the 5×4 matrix formed similar to M in (a). In each column of M', some element of L appears more than once; say $m_{11} = m_{21} = l$. Then Z_2, Z_3 and Z_4 are independent squares not on l that are adjacent to each of A_1 and A_2 . But as is apparent from Figure 1, each of the graphs induced by C, S, \mathcal{R} and \mathcal{D} , respectively, contains $2K_3$ as spanning subgraph, and so Z_2, Z_3 and Z_4 cannot be independent.

In Figure 2(a) (respectively 2(b) we depict three independent squares Z_1 , Z_2 , Z_3 (respectively four independent squares $Z_1, ..., Z_4$) which have common neighbours $A_1, ..., A_5$ (respectively $A_1, ..., A_4$). Further properties of such configurations may be obtained by more detailed analysis of the matrix M. Note that five independent squares have no common neighbour.

Proposition 3 Let Z_1 and Z_2 be squares of Q_n , where $|N[Z_1] \cap N[Z_2]| = m$. Then

$$m \leq \begin{cases} n+6 & \text{if } Z_1, Z_2 \text{ are adjacent} \\ 12 & \text{otherwise.} \end{cases}$$

Proof. If Z_1 and Z_2 are both on line l, then, noting that $|l| \leq n$, the result is immediate from Figure 1. Otherwise, each of the four lines of Z_1 meets at most three of the lines of Z_2 and the result follows.

Proposition 4 Let Z_1 , Z_2 , Z_3 be squares of Q_n , where Z_1 , Z_2 are on the line l, and $|N[Z_1] \cap N[Z_2] \cap N[Z_3]| = m$. Then

$$m \leq \begin{cases} n+2 & \text{if } Z_3 \in l \\ 7 & \text{otherwise.} \end{cases}$$

Proof. If Z_1 , Z_2 and Z_3 are on l, then there are at most n squares on l and at most two squares off l which are adjacent to each of Z_1 , Z_2 and Z_3 . Otherwise, there are at most six squares off l adjacent to both Z_1 and Z_2 , and any Z_3 off l is adjacent to at most four of these, or equal to one and adjacent to at most three. (See Figure 1.) Further, Z_3 is adjacent to at most three squares on l, and so $m \leq 7$.

Subsequent results require further definitions from the theory of irredundance. For $X \subseteq V = V(G)$, define R = V - N[X]. The maximality of an irredundant set X is characterized in the following result.

Theorem 5 [6] The irredundant set X is maximal irredundant if and only if for each $v \in N[R]$, there exists $x \in X$ such that $pn(x, X) \subseteq N[v]$.

For $v \in V - X$ and $x \in X$, v is an annihilator of x if $pn(x, X) \subseteq N[v]$, and so Theorem 5 may be restated as

Theorem 5' The irredundant set X is maximal irredundant if and only if each vertex of N[R] is an annihilator of some $x \in X$.

The following three results were proved in [4].

Proposition 6 [4] If X is maximal irredundant in G and |X| < i(G) (the independent domination number of G), then X is not independent.

Proposition 7 [4] Let X be a maximal irredundant set of G with $|X| = \gamma(G) - k$, where $k \ge 1$. Then there does not exist $Y \subseteq V - X$ with $|Y| \le k$ such that Y dominates R.

Theorem 8 [4] If X is a maximal irredundant set of Q_n with $|X| = \gamma(G) - k$, where $k \ge 1$, then R contains

- (a) exactly four squares; their coordinates are (x_1, y_1) , (x_1, y_2) , (x_2, y_1) and (x_2, y_2) , where $|x_1 - x_2| \neq |y_1 - y_2|$, or
- (b) squares in (without loss of generality) exactly two rows and at least three columns, and if R is contained in exactly three columns, the squares with coordinates (say) (x1, y1), (x2, y1), (x2, y2) and (x3, y2) are in R, where |x1 x2| ≠ |y1 y2| or |y1 y2| ≠ |x2 x3|, or
- (c) three squares, no two of which are in the same row or column.

Two of the possibilities for R given in the conclusion of Theorem 8 may be eliminated, and the other one strengthened, if $k \ge 2$.

Proposition 9 If X is a maximal irredundant set of Q_n with $|X| = \gamma(G) - k$, where $k \ge 2$, then R contains three independent squares.

Proof. By hypothesis one of the conclusions (a), (b) or (c) of Theorem 8 occurs. If (a) or (b) is true, then there exist two squares, one on each of the two rows of R, which dominate R. This contradicts Proposition 7 and so (c) holds. If two squares are on the same diagonal l, then any square on l together with the third square dominates R, also contradicting Proposition 7.

We now improve the trivial lower bound $ir(Q_n) \ge (\gamma(Q_n) + 1)/2$ for n = 8, 9, 10, 11.

Theorem 10 For $n \geq 8$, Q_n has no maximal irredundant set of size three.

Proof. Suppose to the contrary that $X = \{B, B_1, B_2\}$ is a maximal irredundant set of Q_n , $n \ge 8$. We first show that no square of X has exactly one X-pn. Suppose B has exactly one X-pn. If neither B_1 nor B_2 is on r(B) (respectively c(B)), then B has an X-pn on its row (column). Hence we may assume without loss of generality that $B_1 \in r(B)$. Now suppose $B_2 \notin c(B)$. Then B_1, B_2 are adjacent to at most five squares of $c(B) - \{B\}$, and B has at least two X-pns on c(B), a contradiction which shows that $B_2 \in c(B)$. Thus, without loss of generality the co-ordinates of the three squares are

$$B = (x, y), \quad B_1 = (x_1, y) \text{ and } B_2 = (x, y_2),$$

where $x_1 > x$ and $y_2 > y$.

If (x-2, y-2) is on the board, then it, together with (x-1, y-1), are X-pns of B. We deduce (without loss of generality) that $x \leq 2$. Suppose that x = 2 and $y \geq 2$. Then (x-1, y-1) is an X-pn of B and so neither (3, y-1), nor (1, y+1) is an X-pn. Therefore $x_1 \in \{3, 4\}$ and $y_2 \in \{y+1, y+2\}$. But (5, y-3) or (5, y+3)is on the board and is a second X-pn of B. This is impossible and shows that if x = 2, then y = 1. In this case, $|d(B) - \{B\}| \geq 6$. However, $\{B_1, B_2\}$ dominates at most four squares of $d(B) - \{B\}$ and so B has at least two X-pns on d(B), a contradiction.

Therefore x = 1 and so B_1 dominates $W_1 \subseteq (s(B) \cup d(B)) - \{B\}$, where $|W_1| \leq 4$, while B_2 dominates $W_2 \subseteq d(B) - \{B\}$, where $|W_2| \leq 2$, and no square of $s(B) - \{B\}$. Since $|(s(B) \cup d(B)) - \{B\}| = n - 1$ and B has exactly one X-pn, we deduce that

$$n = 8, |W_1| = 4$$
 (3)

and

$$|W_2| = 2, \quad W_1 \cap W_2 = \emptyset. \tag{4}$$

But (3) implies that $x_1 = 3$ and $y \ge 3$, while (4) implies that (1, y + 6) is on the board. Hence $y + 6 \le 8$, *i.e.*, $y \le 2$, a contradiction.

Hence each square of X has at least two X-pns. By Proposition 3, each set of two X-pns has at most n + 6 common neighbours, one of which is the element of X. Hence each element of X has at most n + 5 annihilators, so that there are at most 3(n + 5) annihilators in total. Further, $\gamma(Q_n) \geq 5$ and so Proposition 9 holds. Let

 Z_1, Z_2, Z_3 be independent squares in R. By counting the squares on the rows and columns of the Z_i , we obtain

$$\left| \bigcup_{i=1}^{3} (r(Z_i) \cup c(Z_i)) \right| = 6n - 9.$$
(5)

For $i \neq j$, the row and column of Z_i intersect the diagonals of Z_j in at most four squares. If the rows and columns of (say) Z_2 and Z_3 intersect the diagonals of Z_1 in at most six squares, then, noting that $n \geq 8$ and thus $|(s(Z_1) \cup d(Z_1)) - \{Z_1\}| \geq 7$, we see that there is a square of N[R] on a diagonal of Z_1 not counted in (5). If the rows and columns of Z_2 and Z_3 intersect the diagonals of Z_1 in seven or eight squares, then the row and column of (say) Z_2 intersect the diagonals of Z_1 in four squares. But then it is easy to see that Z_1 is not on the edge (first or last row or column) of Q_n , hence $|(s(Z_1) \cup d(Z_1)) - \{Z_1\}| \geq 9$ and again there is a square of N[R] on a diagonal of Z_1 not counted in (5). In either case

$$|N[R]| \ge 6n - 8.$$

By Theorem 5', each square of N[R] is an annihilator and so $3(n+5) \ge 6n-8$, *i.e.*, $n \le 7$, the final contradiction which proves the result.

3 Irredundance in Q_7

The remaining work of the paper will show that Q_7 has no maximal irredundant set of size three. We require several preliminary results concerning properties of an assumed counterexample $X = \{B, B_1, B_2\}$.

Lemma 11 Let $X = \{B, B_1, B_2\}$ be maximal irredundant in Q_7 . If B is adjacent to neither B_1 nor B_2 in Q_7 , then B has at least three X-pns.

Proof. Observe that B is an X-pn for B and that by Proposition 6 and the fact that $\gamma(Q_7) = 4$ (cf. [9]), B_1 is adjacent to B_2 . First suppose that B_1 and B_2 are on the same column, say

$$B = (x, y), \quad B_1 = (x_1, y_1) \text{ and } B_2 = (x_1, y_2),$$

where $y_2 > y_1$ and $x_1 > x$. Now $\{B_1, B_2\}$ dominates at most five squares on r(B), hence $r(B) - \{B\}$ contains at least one X-pn of B. Suppose that there is no X-pn of B on $c(B) - \{B\}$. Then without loss of generality the possibilities are

$$\begin{array}{l} x_1 = x+1, \quad y_2 - y = y - y_1 = 2; \\ x_1 = x+1, \quad y_2 - y_1 = 3, \quad y_1 - y = 2; \\ x_1 = x+2, \quad y_2 - y_1 = 1, \quad y_1 - y = 3. \end{array}$$

In each of these three situations there are at least two X-pns on $r(B) - \{B\}$. Hence in all cases there are at least two X-pns on $(r(B) \cup c(B)) - \{B\}$. In addition, B is also an X-pn of B. Thus B has at least three X-pns. Secondly, suppose that B_1 and B_2 lie on the same diagonal. Then $\{B_1, B_2\}$ dominates at most five squares on each of $r(B) - \{B\}$ and $c(B) - \{B\}$, and so each of these contains an X-pn of B. Since B is also an X-pn, the result follows.

Lemma 12 Let $X = \{B, B_1, B_2\}$ be maximal irredundant in Q_7 . If $B_1 \in s(B) \cup d(B)$ and $B_2 \notin r(B) \cup c(B)$, then B has at least three X-pns.

Proof. Without losing generality assume that $B_1 \in s(B)$ and $c(B_1) > c(B)$. Then

B has at least one X-pn on each of $r(B) - \{B\}$, $c(B) - \{B\}$. (6)

If both bounds of (6) are attained, then B_1 is not adjacent to B_2 (since no line of B_2 coincides with a line of B_1), $c(B_1) - c(B) \leq 3$, $|c(B_2) - c(B)| \leq 3$ and $|r(B_2) - r(B)| \leq 3$. However, an investigation of the three relative positions of Band B_1 shows that there is no B_2 which enables both bounds of (6) to be attained.

Corollary 13 If B has at most two X-pns, then (say) $B_1 \in r(B) \cup c(B)$.

With Corollary 13 in mind, we make additional definitions. A square B on Q_7 with at most two X-pns is of exactly one of two types. Such a square B is an

 X_{α} -square if both $r(B) - \{B\}$ and $c(B) - \{B\}$ contain another square of X;

 X_{β} -square if exactly one of $r(B) - \{B\}$ and $c(B) - \{B\}$ contains another square of X.

Lemma 14 For an X_{α} -square B, the positions of the squares in $X = \{B, B_1, B_2\}$ are rotationally equivalent to

 $B = (1, y), B_1 = (x_1, y), B_2 = (1, y_2), x_1 > 1, y_2 > y.$

Proof. By symmetry, the positions of the squares in X, where B is an X_{α} -square, are equivalent to

$$B = (x, y)$$
, where $x \le y$,
 $B_1 = (x_1, y)$, where $x_1 > x$,
 $B_2 = (x, y_2)$, where $y_2 > y$.

It remains to prove that x = 1. If $x \ge 3$, then $y \ge 3$ and both (x - 1, y - 1) and (x - 2, y - 2) are X-pns of B. Since B has at most two X-pns, (x - 3, y - 3) (which is not adjacent to either B_1 or B_2) is off the board, and we may assume that x = 3. If y > 3, then no positions for B_1, B_2 can prevent two of (4, y - 1), (5, y - 2), (6, y - 3) being X-pns of B. Hence y = 3. Since (7, 7) is not an X-pn, we may assume without loss of generality that $B_2 = (3, 7)$. However, this means that (2, 4) is an X-pn of B, a contradiction showing that x is at most 2.

Suppose x = 2 and $y \ge 4$. Then (1, y - 1) and two squares of s(B) are X-pns of B. If B = (2, 3) and $x_1 > 4$, then (1, 2), (3, 2), and at least one of (1, 4), (5, 6), (6, 7)are X-pns. If B = (2, 3) and $x_1 \in \{3, 4\}$, then (1, 2) and two of (1, 4), (5, 6), (6, 7)are X-pns. A similar argument eliminates B = (2, 2) and the result follows. **Lemma 15** An X_{β} -square has exactly two private neighbours on either its row or its column, and no private neighbour on a diagonal.

Proof. If a maximal irredundant set Y of Q_7 with |Y| = 3 has a Y_β -square, then Y is rotationally equivalent to $X = \{B, B_1, B_2\}$, where B = (x, y) $(x \le y)$, $B_1 = (x_1, y)$ $(x_1 > x)$ and $B_2 = (x_2, y_2)$, where $x \ne x_2$ and $y_2 \ge y$.

If there is exactly one X-pn on c(B), then $x_1 - x \leq 2$, $|x_2 - x| \leq 3$ and B_1, B_2 dominate disjoint sets of sizes two and three, respectively, on $c(B) - \{B\}$. Investigation of the two relative positions of B, B_1 shows that for each possible B_2, B has at least two more X-pns on its diagonals, a contradiction. There is at least one X-pn on c(B). Thus we deduce that there are exactly two X-pns on c(B) and none on $s(B) \cup d(B)$.

Lemma 16 If a 3-square maximal irredundant set Y of Q_7 has a Y_β -square, then Y may be rotated into $X = \{B, B_1, B_2\}$, where

- (a) B = (1, y) is an X_{β} -square, $B_1 = (x_1, y)$, $B_2 = (x_2, y_2)$, where $x_2 > 1$ and $y_2 \ge x_1$;
- (b) $y \le 8 x_1 \text{ or } y \ge x_1$.

Proof. Y is equivalent to $X = \{B, B_1, B_2\}$, where B = (x, y) is an X_{β} -square, $B_1 = (x_1, y)$ with $x_1 > x$, and $B_2 = (x_2, y_2)$, with $x \neq x_2$ (definition of X_{β} -square) and $y_2 \geq y$.

Suppose that x > 1 and y > 1. Then (x - 1, y - 1) is on the board. If y = 7, then B, B_1, B_2 are all on row 7 and B_1, B_2 dominate at most four squares of $s(B) \cup d(B)$, contrary to Lemma 15. Hence $y \leq 6$, and so (x - 1, y + 1) is also on the board.

If $x_1 - x \ge 3$, then (x - 1, y - 1), (x - 1, y + 1), (x + 1, y - 1), (x + 1, y + 1) are on diagonals of B, are not dominated by B_1 and (by Lemma 15) are not X-pns. These squares are dominated by B_2 and so $B_2 \in \{(x - 1, y + 1), (x + 1, y + 1)\}$. In each case there exists an X-pn on $s(B) \cup d(B)$, contrary to Lemma 15.

Therefore $B_1 \in \{(x+1, y), (x+2, y)\}$. Since B_2 is adjacent to (x-1, y-1) and (x-1, y+1), we have $B_2 \in W_1 \cup W_2 \cup W_3$ (disjoint union), where

$$\begin{split} W_1 &= \{(x-1,y), (x-1,y+2), (x-1,y+4), (x-2,y)\}, \\ W_2 &= \{(x-1,y+1), (x+1,y+1)\}, \text{ and } \\ W_3 &= \{(x-3,y+1), (x-1,y+3)\}. \end{split}$$

If $B_2 \in W_1$, then the column x + 3 does not intersect the board, for otherwise (x + 3, y + 3) or (x + 3, y - 3) is an X-pn. Hence the column x - 3 intersects the board and so (x - 3, y + 3) or (x - 3, y - 3) is an X-pn, a contradiction. If $B_2 \in W_2$, then for each of the two possible positions for B_1 , there are three X-pns of B on c(B), which is impossible. If $B_2 \in W_3$, then for each position of B_1 , Lemma 15 is also contradicted. We have established that x = 1 or y = 1.

To complete the proof of (a), we must eliminate the case x > 1 and y = 1, so assume that X satisfies these conditions. Observe that (x - 1, 2) is on s(B).

Also note that B_1 (respectively B_2) dominates exactly one square C_1 (respectively exactly three squares C_2 , C_3 , C_4) on $c(B) - \{B\}$, where $C_1 \notin \{C_2, C_3, C_4\}$. This implies $r(B_2) \geq 3$. To satisfy these conditions and to ensure that (x - 1, 2) is not an X-pn of B, B_2 is restricted to the following possibilities:

$$B_2 \in W_4 = \{(x+1,4), (x+2,5)\}$$

$$B_2 \in W_5 = \{(x-1,y) : y = 3,4,5,6\}.$$

If $B_2 \in W_4$, then x = 2, otherwise (x - 2, 3) is an X-pn of B. Since (7, 6) is not an X-pn, $B_1 = (1, 7)$ and for each choice of B_2 , there is an X-pn on d(B), contrary to Lemma 15. Similar contradictions may be obtained for $B_2 \in \{(x - 1, y) : y =$ $5, 6\} \subseteq W_5$. (These elements of W_5 also do not dominate (x - 2, 3) and it follows that x = 2.) If $B_2 = (x - 1, 3)$, then to facilitate two X-pns on c(B), we require $x_1 \ge x+3$. Therefore (x + 1, 2) is an X-pn, which is impossible. Finally, let $B_2 = (x - 1, 4)$. Since c(B) has exactly two X-pns, $x_1 \in \{x + 1, x + 5\}$. In the former case at least one of (x + 2, 3) and (x - 4, 5) is an X-pn of B. In the latter case x = 2 and (4, 3)is an X-pn. These contradictions show that x = 1, and (a) holds.

The relation (b) is true because it is the condition for B_1 to dominate at least one square of $c(B) - \{B\}$.

Lemma 17 Suppose that B is an X_{α} -square of the maximal irredundant set $X = \{B, B_1, B_2\}$ of Q_7 . Then each of B_1 , B_2 has at least three X-pns.

Proof. Without loss of generality assume that X is positioned as specified in Lemma 14. By definition, neither B_1 nor B_2 is an X_{α} -square.

If B_1 is an X_{β} -square, then by Lemma 16(a), $x_1 = 7$, and by Lemma 16(b), $y \in \{1, 7\}$. But y = 7 is impossible because $y_2 > y$, and if y = 1, then $\{B, B_2\}$ dominates at most two squares of $c(B_1) - \{B_1\}$. Thus B_1 has four X-pns on $c(B_1)$, a contradiction.

If B_2 is an X_β -square, then it has exactly two X-pns on $r(B_2)$ (Lemma 15). By Lemma 16(a), $B_2 = (1, 7)$, and since B dominates exactly one square of $r(B_2) - \{B_2\}$, B_1 dominates exactly three squares of $r(B_2) - \{B_2\}$. This implies that $y \in \{5, 6\}$, $B_1 \notin s(B_2)$, and $c(B_1) \neq 7$. Therefore (7, 1) is an X-pn of B_2 on $s(B_2)$, contrary to Lemma 15.

We have thus shown that $\{B_1, B_2\}$ contains neither X_{α} - nor X_{β} -squares. By definition each of B_1 and B_2 has at least three X-pns.

Lemma 18 Suppose that B is an X_{β} -square of the maximal irredundant set $X = \{B, B_1, B_2\}$ of Q_7 . Then each of B_1 , B_2 has at least three X-pns.

Proof. Without loss of generality assume that X is positioned as specified in Lemma 16. By Lemma 17 and the definition of X_{α} - and X_{β} -squares, neither B_1 nor B_2 is an X_{α} -square. Suppose that B_1 is an X_{β} -square. Then by Lemma 16(a), $x_1 = 7$ and by Lemma 16(b), $y \in \{1,7\}$. If y = 7, then B, B_1, B_2 are all on row 7 and B_1 has four X-pns on $c(B_1)$, which is impossible. If y = 1 (*i.e.*, B = (1,1) and $B_1 = (7,1)$),

then by Lemma 15, B_2 dominates exactly three squares of $\{(7, y') : y' = 2, ..., 6\}$. In all cases (2, 6) is an X-pn of B_1 on $s(B_1)$, contrary to Lemma 15.

If B_2 is an X_β -square, then by Lemma 16(a), B_2 is not on r(B) (by the same proof as the previous paragraph), hence $B_2 \in c(B_1)$. By Lemma 16(a), $B_2 = (x_1, 7)$. But B_1 (respectively B_2) dominates at most two (respectively one) squares of $c(B) - \{B\}$ and so B has at least three X-pns on c(B), a contradiction.

Therefore $\{B_1, B_2\}$ contains neither X_{α} - nor X_{β} -squares, and so each of B_1, B_2 has at least three X-pns.

Lemma 19 Let R be the set of vertices of Q_7 not dominated by a 3-square maximal irredundant set. Then $|N[R]| \ge 29$.

Proof. Since $\gamma(Q_7) = 4$ (cf. [9]), we can apply Theorem 8 with k = 1. If R satisfies (b) or (c) of that theorem, then R occupies (without loss of generality) at least two rows and three columns. By counting the squares of N[R] on these lines only, we obtain $|N[R]| \ge 29$.

Now suppose Theorem 8(a) applies and R contains precisely the squares at the intersections of rows y_1 , y_2 and columns x_1 , x_2 . Without loss of generality we may assume that $x_1 < x_2$, $y_1 < y_2$ and $y_2 - y_1 > x_2 - x_1$. (Note that Theorem 8(a) insists that $y_2 - y_1 \neq x_2 - x_1$.) Observe that N[R] has 24 squares on these rows and columns. Let W be the set of squares of N[R] which are not on those lines, $\overline{x} = x_2 - x_1$ and $\overline{y} = y_2 - y_1$.

Case 1 $\overline{x} \ge 3$.

Then $\overline{y} \ge 4$ and W contains at least six squares (x, y), where $x_1 < x < x_2$ and $y_1 < y < y_2$.

Case 2 $\overline{x} = 2$.

Then $\overline{y} \geq 3$ and W contains at least two squares $(x_1 + 1, y)$ where $y_1 < y < y_2$. Without loss of generality columns $x_2 + 1$, $x_2 + 2$ exist and each contains at least two squares of W.

Case 3 $\overline{x} = 1$.

Then $\overline{y} \geq 2$ and without loss of generality columns $x_2 + 1$, $x_2 + 2$ and $x_2 + 3$ exist. If $\overline{y} \geq 4$, then W contains at least six squares (x, y), where $x_2 + 1 \leq x \leq x_2 + 3$ and $y_1 < y < y_2$. If $\overline{y} = 3$, then without loss of generality W contains $(x_2 + i, y_1 + j)$, for any $i, j \in \{1, 2\}$, and also $(x_2 + 1, y_2 + 1)$. Finally, if $\overline{y} = 2$, we may assume that rows $y_2 + 1$, $y_2 + 2$ also exist, so that R is in the corner of a 5×5 sub-board of Q_7 which contains seven squares of W.

In all cases $|W| \ge 5$ and $|N[R]| \ge 29$ as required.

Theorem 20 Q_7 contains no maximal irredundant set of size three.

Proof. Suppose to the contrary that X is a maximal irredundant set of size three. If no square in X has exactly one X-pn, then no more than one square has exactly two X-pns (Lemmas 17 and 18). If $B \in X$ has at least three X-pns, then Theorem 2 or Proposition 4 applies. Now B itself is a common neighbour of the three X-pns and

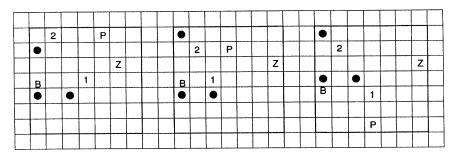


Figure 3

is not an annihilator. Hence there are at most n + 1 = 8 annihilators of B and the total number of annihilators of the three squares in X is at most 12 + 8 + 8 = 28. However, by Theorem 5', each vertex of N[R] is an annihilator, and so $|N[R]| \le 28$, contrary to Lemma 19.

Therefore $B \in X$ has exactly one X-pn and is an X_{α} -square (Lemma 15). Without losing generality we may assume X is positioned as in Lemma 14. If $y \ge 5$, then $|s(B) - \{B\}| \ge 4$. But B_2 (respectively B_1) dominates zero (respectively at most two) squares of $s(B) - \{B\}$ and so B has at least two X-pns, a contradiction. If y = 1, then $B_1 \cup B_2$ dominates at most four of the six squares of $d(B) - \{B\}$. If y = 2, any choice of B_1 and B_2 which dominates the maximum number, *i.e.*, four, of the five squares of b(B), leaves the one square of s(B) undominated and again B has two X-pns. We conclude that $y \in \{3, 4\}$. Figure 3 depicts the only (up to symmetry) sets X (black dots) which have X_{α} -squares B with exactly one X-pn (labelled P). In each diagram the square Z is in N[R] but is not an annihilator since it is not adjacent to P, nor to squares 1 and 2, which are X-pns of B_1 and B_2 respectively. Thus in each case X is not maximal irredundant and the proof is complete.

Corollary 21 $ir(Q_7) = 4$.

Proof. Immediate from Theorem 20, the bounds $(\gamma(G) + 1)/2 \leq ir(G) \leq \gamma(G)$ and the fact that $\gamma(Q_7) = 4$.

Acknowledgement

This paper was written while E. J. Cockayne was visiting the Department of Mathematics, University of South Africa, January – May 2000. Financial support from the University of South Africa, the NRF (South Africa) and NSERC (Canada) is gratefully acknowledged.

References

[1] B. Bollobás and E. J. Cockayne. Graph theoretic parameters concerning domination, independence and irredundance. J. Graph Theory, 3:241-250,1979.

- [2] A. P. Burger, E. J. Cockayne, and C. M. Mynhardt. Domination and irredundance in the queen's graph. Discrete Math., 163:47-66, 1997.
- [3] A. P. Burger and C. M. Mynhardt, Symmetry and domination in queens graphs, Bulletin of the ICA, 29:11-24, 2000.
- [4] A. P. Burger and C. M. Mynhardt, Small irredundance numbers for queens graphs, J. Combin. Math. Combin. Comput., 33:33-43, 2000.
- [5] E. J. Cockayne. Chessboard domination problems. Discrete Math., 86:13-20, 1990.
- [6] E. J. Cockayne, P. J. P. Grobler, S. T. Hedetniemi and A. A. McRae. What makes an irredundant set maximal? J. Combin. Math. Combin. Comput., 25:213-223, 1997.
- [7] H. Harborth, personal communication, January 2000.
- [8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
- [9] S. M. Hedetniemi, S. T. Hedetniemi and R. Reynolds. Combinatorial problems on chessboards: II. In T. W. Haynes, S. T. Hedetniemi and P. J. Slater (Eds.), *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998, 133-162.
- [10] D. Rall, personal communication, February 2000.
- [11] W. D. Weakley. Domination in the queen's graph. In Y. Alavi and A. J. Schwenk (Eds.), Graph Theory, Combinatorics, Algorithms, and Applications, Proc. Seventh Quad. Internat. Conf. on the Theory and Application of Graphs, Volume 2, pp. 1223-1232, (Kalamazoo, MI 1992), 1995. Wiley.

(Received 19/5/2000)