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Abstract 

We prove results concerning common neighbours of vertex subsets and 
irredundance'in the queens graph Qn. We also establish that the lower 
irredundance number of Q7 is equal to four. 

1 Introduction 

The rows and columns of the n x n chessboard will be numbered 1,2, ... , n from the 
bottom left hand corner. Thus each square has co-ordinates (x, y), where x and yare 
the column and row numbers of the square, respectively. The lines of the board are 
the rows, columns, sum diagonals (i.e., sets of squares such that x + y = k, where k 
is a constant) and difference diagonals (sets of squares such that x - y = k). These 
will be denoted by the symbols r, c, s, d, respectively. 

The vertices of the queens graph Qn are the n2 squares of the chessboard, and two 
squares are adjacent if they are collinear. This graph has received much attention in 
the literature recently because of the well-known century-old problem of determining 
the smallest number of queens which will cover all the squares of the n x n board. 
This problem may be restated as the determination of the domination number 'Y( Qn) 
of the queens graph. It remains unsolved and progress is detailed in [2, 3, 9, 1l]. 

Let X be a subset of the vertex set of a graph G. For x EX, we denote the 
closed neighbourhood (see [8]) of x by N[x], and the closed neighbourhood of X 
by N[X]. A private neighbour of x relative to X (denoted X-pn) is an element of 
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pn(x,X) = N[x] - N[X - {x}]. The set X is called irredundant if each vertex of X 
has an X-pn. 

A dominating set of a graph is minimal if and only if it is also irredundant. This 
fact has led to much current work on the development of the theory of irredundance. 
The parameter ir(G), known as the lower irredundance number of G, is the smallest 
cardinality amongst all maximal irredundant sets of G. 

As was shown in [1], the irredundance number of any graph is bounded below by 
ir(G) ~ (ry(G) + 1)/2, where as usual ,(G) denotes the domination number of G. 
This bound, together with the lower bound ,(Qn) ~ (n-l)/2 ofP. Spencer (see [5]), 
shows that ir(Qn) ~ (n + 1)/4. The values ir(Q5) = ir(Q6) = 3 were established in 
[4], so it looks as though this bound is not particularly good, even for small values 
of n. 

In Section 2 we prove some properties of Qn for general n. Some of these, together 
with other results for Q7, will be used in Section 3 to show that ir(Q7) = 4. This 
number can also be established by an exhaustive computer search - in fact, Harborth 
[7] recently reported that Jens-P. Bode had verified by computer that ir(Qn) = ,(Qn) 
for n :s; 10, and RaIl [10] did the same for n ::; 8. However, our methods may assist 
in the evaluation of ir( Qn) for higher values of n. 

The reader is referred to [8] for definitions, theory and bibliography concern
ing domination and irredundance in graphs. Results on domination parameters of 
chessboard graphs are summarized in [9]. 

2 Properties of Qn 

Our first results deal with common neighbours of certain vertex subsets of Qn. A 
sequence of at least three squares form an equally-spaced set (abbreviated ES-set) if 
they are collinear and equally spaced along their line. For the square A, r(A) (c(A), 
s(A), d(A), respectively) will denote both the row (column, sum diagonal, difference 
diagonal) of A and the number of the row (column, sum diagonal, difference diagonal) 
of A. Thus, if A has co-ordinates (x, y), then r(A) = y, c(A) = x, s(A) = x + y and 
d(A) = x - y. 

Theorem 1 Let p, q be lines of Qn which intersect in square W. Consider {AI, A2} ~ 
p - {W} and {A3' A4} ~ q - {W}. Let nu {W} (disjoint union) be the set of squares 
adjacent to all of AI, A2 , A3 , A4 , and E the subset of n containing the squares not 
on p or q. Then 

(a) I~I :::; 2, Inl :::; 4; 

(b) if lEI = 2, then the two squares of E are adjacent. 

Proof. We consider three cases. 

Case 1 p is a sum diagonal sand q is a column c. 
We re-label AI, A2 , A3 , A4 by 81 , 82 , Gl , C2 to signify that 81, 82 are on sand G1 , 

C2 are on c. Observe that 

286 



)~ 86 

D V ~ 
l~ 8, V 88 

"'" "- 85 V' V-

(a) V ~ V 
l/' 87 ~ V 

83 -- 82 
---~ V ~ 
~ V l~ 

1)'- 84 

c C, 
C3 Il'~ ? C4 

~ C7 L ~ Cs V 
(b\ ~ )( 

V '" V ~ 
Co ~ I.{ CS 

IC2 

A3 I:::, Il' A4 

'" V 
C( As 

V '''' E E 
r--

A~ 
r--

(c) II( 
I:::, Il' r--AI I"" V 

C( A7 

V ~ 
A~ II( As 

)l 03 

~ !'" r 
~ 07 ~ V 

06~ '\ 02 
~ V I"'" 

(d) ~ V De 

"'" 0, "- 04 v-' 

V ~ V 
l!'" ~ V 

~I' 05 

Figure 1 

287 



(i) if square P is adjacent to 81 and 82 , then P = W, PEs - {W} or PES = 
{83 , ... , 8s}, the squares depicted in Figure l(a); 

(ii) if square P is adjacent to C1 and C2 , then P = W, P E c - {W} or P E 
C = {C3 , ... , Cs}, the squares depicted in Figure l(b), where C7 , Cs only exist 
if r( C1 ) - r( C2 ) is even. 

We deduce that each ZEn is of exactly one of the following types: 

type 1: Z E (s - {W}) nC 

type 2: Z E (c - {W}) nS 

type 3: Z E C n S = E. 

Suppose that ZEn is of type 1. If Z E {C3 , C5 , C7 , Cs}, then, due to the 
geometry of C and S, the line s includes C1 or C2 , which contradicts the definition 
of these squares. Hence Z E {C4 , C6 }. If C4 E s, then C6 ¢:. s, and vice versa, and so 
there is at most one type 1 square of n. Observe that (say) C4 E s implies that W 
is the square of c such that C2 , C1, W form an ES-set on c. 

Suppose that ZEn is of type 2. If Z E {84 , 86 , 87 , 8s}, then c contains 81 or 
8 2 , a contradiction which implies that Z E {83, 85}. If 8 3 is on c, then 8 5 is not, 
and so there is at most one type 2 square of n. Notice that 8 3 E c implies that W 
is the square of s such that W, 8 1, 82 form an ES-set on s. 

By comparing the sets C and 8 in Figure l(a) and (b), we see that it is impossible 
to choose positions for 8 ll 82 , Cll C2 so that IC n 81 2: 3. Moreover, if IC n 81 = 2, 
then the two squares of this set are collinear. This completes the proof of Case 1. 

Case 2 p is a row rand q is a column c. 
Re-Iabel AI, A 2 , A3, A4 by R1 , R2 , Gl , C2 respectively. If n = {R3' ... , Rs} and 
C = {C3 , •.• , Cs} are the sets of squares depicted in Figure 1 ( c) and (b) (existence of 
R7 , Rs, G7 , Cs depend on parity), then each ZEn has one of the following types: 

type 1: Z E (c - {W} ) n n 
type 2: Z E (r - {W}) nC 

type 3: ZEn n C = E. 

Suppose that ZEn is a type 1 square. If Z E {R3,R4,R5,R6 }, then R1 or R2 
is on c, which is impossible. Therefore Z E {R7' Rs}. Both R7 and Rs are type 1 
squares if R1 , W, R2 form an ES-set, and there are no type 1 squares otherwise. 

By symmetry, C7 and Cs are the only type 2 squares if Cll W, C2 form an ES-set, 
and there are no type 2 squares otherwise. 

If there are two type 1 and two type 2 squares, 
then n n C = 0 and the result holds. 

(1) 

The geometry of C and n prevents InnCl 2: 3, and if Innci = 2, these two vertices 
are adjacent. If In n CI > 0, there cannot be both type 1 and type 2 squares (by 
statement (1)). Therefore Inl ~ 4 as required. 
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Case 3 p is a sum diagonal sand q is a difference diagonal d. 
Re-lable AI, A21 A3l A4 by 8 1 , 82 , D l , D2 respectively. If 1) = {D31 ... , Ds} and 
S = {S3 1 ... 1 88 } are the sets of squares depicted in Figure 1 (a) and (d) 1 then each 
ZEn has one of the following types: 

type 1: Z E (s - {W}) n 1) 

type 2: Z E (d - {W}) n S 

type 3: Z E V n S = ~. 

Notice that if D3 E s - {W}, then D2 E s, a contradiction. Hence D3 (and 
similarly D41 D5 , D6 ) is not a type 1 square. Both D7 and Ds are type 1 squares if 
W is the square of d such that Dll W, D2 form an ES-set, and there is no type 1 
square otherwise. 

By symmetry, 8 7 and 8 8 are the only type two squares if W is the square of s 
such that 811 W, 8 2 form an ES-set, and there is no type 2 square otherwise. 

If there are two type 1 and two type 2 squares, 
then S n V = 0 and the result holds. 

(2) 

The geometry of S and V prevents Isnvi 2:: 3, and if Isnvi = 2, these two squares 
are adjacent. If IS n VI > 0, there cannot be both type 1 and type 2 squares (by 
statement (2)). Therefore Inl ::; 4 as required. • 

Theorem 2 (a) There are at most five squares which are adjacent to each of three 
independent squares Zl! Z2! Z3. 

(b) There are at most four squares which are adjacent to each of four independent 
squares Zl, Z2, Z3! Z4. 

Proof. (a) Suppose to the contrary that each of AI, ... , A6 is adjacent to the three 
independent squares Zb Z2, Z3' Let M be the 6 x 3 matrix with entries in L = 
{r, c, s, d}, where for pEL, mij = P if Ai and Zj are on the same line p. Note 
that the independence of Zl, Z2, Z3 implies that the elements of each row of Mare 
distinct. We need two lemmas. 

Lemma 2.1 No element of L appears more than twice in a column of M. 

Proof of Lemma 2.1. Suppose to the contrary that for some 1 E L, m11 = m21 

m31 = l, and that AI, A2 , A3 is the order of these squares on t. Note that Z2, 
Z3 are the independent squares not on 1 which are adjacent to each of AI, A 2 , A3. 
The existence of such squares requires that AI, A2 , A3 form an ES-set. In this case 
exactly two such squares exist. However, these are adjacent on the line through A2 
perpendicular to l. Thus Z2, Z3 cannot exist. 0 

Lemma 2.2 No two elements p, q of L are duplicated in a column of M. 

Proof of Lemma 2.2. Suppose to the contrary that mll = m2l = P and m3l = m41 = 
q. Note that Z2, Z3 are independent squares not on either p or q, which are adjacent 
to All A2 , A3 and A4. This is impossible by Theorem l(b). 0 
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By Lemmas 2.1 and 2.2, a column of M has elements from {r, c, s, d} with at 
most one element appearing more than once. This is impossible and hence part (a) 
of the theorem is established. 

(b) Suppose to the contrary that each of AI, ... , A5 is adjacent to the four inde
pendent squares Zl, ... , Z4' Let M' be the 5 x 4 matrix formed similar to M in (a). In 
each column of M', some element of L appears more than once; say mll = mZI = l. 
Then Zz, Z3 and Z4 are independent squares not on 1 that are adjacent to each of 
Al and Az. But as is apparent from Figure 1, each of the graphs induced by C, S, 
R and V, respectively, contains 2K3 as spanning subgraph, and so Zz, Z3 and Z4 
cannot be independent. • 

In Figure 2(a) (respectively 2(b) we depict three independent squares Zl, Zz, 
Z3 (respectively four independent squares Zl, ... , Z4) which have common neighbours 
AI, ... , A5 (respectively AI, ... , A4). Further properties of such configurations may be 
obtained by more detailed analysis of the matrix M. Note that five independent 
squares have no common neighbour. 

Proposition 3 Let Zl and Zz be squares of Qn, where IN[ZlJ n N[Zzll = m. Then 

< { n + 6 if Zl, Zz are adjacent 
m - 12 otherwise. 

Proof. If Zl and Zz are both on line l, then, noting that III ~ n, the result is 
immediate from Figure 1. Otherwise, each of the four lines of Zl meets at most 
three of the lines of Zz and the result follows. • 

Proposition 4 Let Zl, Zz, Z3 be squares ofQn, where Zl, Zz are on the line l, and 
IN[Zd n N[Zzl n N[Z311 = m. Then 

< { n + 2 if Z3 E l 
m - 7 otherwise. 
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Proof. If Zl, Z2 and Z3 are on l, then there are at most n squares on I and at most 
two squares off I which are adjacent to each of Zl, Z2 and Z3' Otherwise, there are 
at most six squares off I adjacent to both Zl and Z2, and any Z3 off I is adjacent to 
at most four of these, or equal to one and adjacent to at most three. (See Figure 1.) 
Further, Z3 is adjacent to at most three squares on I, and so m :s; 7. • 

Subsequent results require further definitions from the theory of irredundance. 
For X ~ V = V(G), define R = V - N[X). The maximality of an irredundant set 
X is characterized in the following result. 

Theorem 5 [6] The irredundant set X is maximal irredundant if and only if for 
each v E N[R], there exists x E X such that pn(x, X) ~ N[v]. 

For v E V - X and x EX, v is an annihilator of x if pn(x, X) ~ N[v], and so 
Theorem 5 may be restated as 

Theorem 5' The irredundant set X is maximal irredundant if and only if each 
vertex of N[R] is an annihilator of some x E X. 

The following three results were proved in [4]. 

Proposition 6 [4] If X is maximal irredundant in G and IXI < i(G) (the indepen
dent domination number of G), then X is not independent. 

Proposition 7 [4] Let X be a maximal irredundant set of G with IXI = ')'( G) - k, 
where k 2:: 1. Then there does not exist Y ~ V - X with IYI ::; k such that Y 
dominates R. 

Theorem 8 [4) If X is a maximal irredundant set ofQn with IXI = ')'(G) - k, where 
k 2:: 1, then R contains 

(a) exactly four squares; their coordinates are (xt, yt}, (Xl, Y2), (X2' YI) and (X2, Y2), 
where IXI - x21 =f. IYI - Y21, or 

(b) squares in (without loss of generality) exactly two rows and at least three 
columns, and if R is contained in exactly three columns, the squares with coor
dinates (say) (x}'yd, (X2,Yl), (X2,Y2) and (X3,Y2) are in R, where IXI - X2\ =f. 
IYI - Y21 or IYI - Y21 =f. IX2 - X3\' or 

(c) three squares, no two of which are in the same row or column. 

Two of the possibilities for R given in the conclusion of Theorem 8 may be 
eliminated, and the other one strengthened, if k 2:: 2. 

Proposition 9 If X is a maximal irredundant set ofQn with IXI = ')'(G) - k, where 
k 2:: 2, then R contains three independent squares. 
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Proof. By hypothesis one of the conclusions (a), (b) or (c) of Theorem 8 occurs. If 
(a) or (b) is true, then there exist two squares, one on each of the two rows of R, 
which dominate R. This contradicts Proposition 7 and so (c) holds. If two squares 
are on the same diagonal l, then any square on 1 together with the third square 
dominates R, also contradicting Proposition 7. • 

We now improve the trivial lower bound ir( On) 2:: (,,(On) + 1)/2 for n = 
8,9,10, 11. 

Theorem 10 For n 2:: 8, On has no maximal irredundant set of size three. 

Proof. Suppose to the contrary that X = {B, BI , B2 } is a maximal irredundant set 
of On, n 2:: 8. We first show that no square of X has exactly one X-pn. Suppose B 
has exactly one X-pn. If neither BI nor B2 is on r(B) (respectively c(B)), then B 
has an X-pn on its row (column). Hence we may assume without loss of generality 
that Bl E r(B). Now suppose B2 <f- c(B). Then BI, B2 are adjacent to at most five 
squares of c(B) - {B}, and B has at least two X-pns on c(B), a contradiction which 
shows that B2 E c(B). Thus, without loss of generality the co-ordinates of the three 
squares are 

B = (x, y), BI = (XI, y) and B2 = (x, Y2), 

where Xl > x and Y2 > y. 
If (x - 2, Y - 2) is on the board, then it, together with (x - 1, Y - 1), are X-pns 

of B. We deduce (without loss of generality) that x :5 2. Suppose that x = 2 and 
Y 2:: 2. Then (x - 1, Y - 1) is an X-pn of B and so neither (3, Y - 1), nor (1, Y + 1) is 
an X-pn. Therefore Xl E {3,4} and Y2 E {y + 1, Y + 2}. But (5, Y - 3) or (5, Y + 3) 
is on the board and is a second X-pn of B. This is impossible and shows that if 
x = 2, then Y = 1. In this case, Id(B) - {B}I 2:: 6. However, {Bb B2} dominates 
at most four squares of d(B) - {B} and so B has at least two X-pns on d(B), a 
contradiction. 

Therefore x = 1 and so BI dominates WI ~ (s(B) Ud(B)) - {B}, where IWII ~ 4, 
while B2 dominates W2 ~ d(B) - {B}, where IW2 1 :5 2, and no square of s(B) - {B}. 
Since l(s(B) U d(B)) - {B}I = n - 1 and B has exactly one X-pn, we deduce that 

n = 8, IWII = 4 (3) 

and 

(4) 

But (3) implies that Xl = 3 and Y 2:: 3, while (4) implies that (1, Y + 6) is on the 
board. Hence Y + 6 :s; 8, i.e., y :s; 2, a contradiction. 

Hence each square of X has at least two X -pns. By Proposition 3, each set of 
two X -pns has at most n + 6 common neighbours, one of which is the element of X. 
Hence each element of X has at most n + 5 annihilators, so that there are at most 
3(n + 5) annihilators in total. Further, ,(On) 2:: 5 and so Proposition 9 holds. Let 
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Zl, Z2, Z3 be independent squares in R. By counting the squares on the rows and 
columns of the Zi, we obtain 

(5) 

For i =I=- j, the row and column of Zi intersect the diagonals of Zj in at most four 
squares. If the rows and columns of (say) Z2 and Z3 intersect the diagonals of Zl in 
at most six squares, then, noting that n 2: 8 and thus I(S(Zl) U d(Zt}) - {Zdl 2: 7, 
we see that there is a square of N[R] on a diagonal of Zl not counted in (5). If 
the rows and columns of Z2 and Z3 intersect the diagonals of Zl in seven or eight 
squares, then the row and column of (say) Z2 intersect the diagonals of Zl in four 
squares. But then it is easy to see that Zl is not on the edge (first or last row or 
column) of Qn, hence I(S(Zl) U d(Zl)) - {Zdl 2: 9 and again there is a square of 
N[R] on a diagonal of Zl not counted in (5). In either case 

IN[R]I 2: 6n - 8. 

By Theorem 5', each square of N[R] is an annihilator and so 3(n + 5) 2: 6n - 8, i.e., 
n ~ 7, the final contradiction which proves the result. • 

3 Irredundance in Q7 

The remaining work of the paper will show that Q7 has no maximal irredundant 
set of size three. We require several preliminary results concerning properties of an 
assumed counterexample X = {B, B l , B2}. 

Lemma 11 Let X = {B, Bt, B2} be maximal irredundant in Q7. If B is adjacent 
to neither Bl nor B2 in Q7, then B has at least three X -pns. 

Proof. Observe that B is an X -pn for B and that by Proposition 6 and the fact that 
,,/(Q7) = 4 (cf. [9]), Bl is adjacent to B2. First suppose that Bl and B2 are on the 
same column, say 

where Y2 > Yl and Xl > X. Now {Bl' B2} dominates at most five squares on reB), 
hence reB) - {B} contains at least one X-pn of B. Suppose that there is no X-pn 
of B on c(B) - {B}. Then without loss of generality the possibilities are 

Xl = X + 1, Y2 - Y = Y - Yl = 2; 

Xl = X + 1, Y2 - Yl = 3, Yl - Y = 2; 

Xl = X + 2, Y2 - YI = 1, Yl - Y = 3. 

In each of these three situations there are at least two X-pns on reB) - {B}. Hence 
in all cases there are at least two X-pns on (r(B) U c(B)) - {B}. In addition, B is 
also an X-pn of B. Thus B has at least three X-pns. 
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Secondly, suppose that BI and B2 lie on the same diagonal. Then {B l, B2} 
dominates at most five squares on each of reB) - {B} and c(B) - {B}, and so each 
of these contains an X -pn of B. Since B is also an X -pn, the result follows. 

• 
Lemma 12 Let X = {B, Bl , B2} be maximal irredundant in Q7. If Bl E s(B)Ud(B) 
and B2 tf- reB) U c(B), then B has at least three X -pns. 

Proof. Without losing generality assume that Bl E s(B) and c(Bd > c(B). Then 

B has at least one X-pn on each of reB) - {B}, c(B) - {B}. (6) 

If both bounds of (6) are attained, then BI is not adjacent to B2 (since no line 
of B2 coincides with a line of Bd, c(Bd - c(B) ~ 3, Ic(B2) - c(B)1 ~ 3 and 
Ir(B2) - r(B) I ~ 3. However, an investigation of the three relative positions of B 
and Bl shows that there is no B2 which enables both bounds of (6) to be attained .• 

Corollary 13 If B has at most two X -pns, then (say) BI E reB) u c(B). 

With Corollary 13 in mind, we make additional definitions. A square B on Q7 
with at most two X -pns is of exactly one of two types. Such a square B is an 

Xa-square if both r(B) - {B} and c(B) - {B} contain another square of X; 

Xj3-square if exactly one of reB) - {B} and c(B) - {B} contains another square 
of X. 

Lemma 14 For an Xa-square B, the positions of the squares in X = {B, B l , B2} 
are rotationally equivalent to 

B = (1, y), BI = (Xl, y), B2 = (1, Y2), Xl > 1, Y2 > y. 

Proof. By symmetry, the positions of the squares in X, where B is an Xa-square, 
are equivalent to 

B = (x, y), where x ~ y, 

Bl = (Xl, y), where Xl > X, 

B2 = (X, Y2), where Y2 > y. 

It remains to prove that X = 1. If X 2: 3, then y 2: 3 and both (x - 1, y - 1) and 
(x - 2, Y - 2) are X-pns of B. Since B has at most two X-pns, (x - 3, y - 3) (which is 
not adjacent to either BI or B2 ) is off the board, and we may assume that X = 3. If 
y> 3, then no positions for B I, B2 can prevent two of (4, Y - 1), (5, Y - 2), (6, y - 3) 
being X-pns of B. Hence Y = 3. Since (7,7) is not an X-pn, we may assume without 
loss of generality that B2 = (3,7). However, this means that (2,4) is an X-pn of B, 
a contradiction showing that X is at most 2. 

Suppose X = 2 and Y 2: 4. Then (1, Y - 1) and two squares of s(B) are X-pns of 
B. If B = (2,3) and Xl > 4, then (1,2), (3,2), and at least one of (1,4), (5,6), (6,7) 
are X-pns. If B = (2,3) and Xl E {3,4}, then (1,2) and two of (1,4), (5,6), (6,7) 
are X-pns. A similar argument eliminates B = (2,2) and the result follows. • 
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Lemma 15 An Xf3-square has exactly two private neighbours on either its 'rOw or 
its column, and no private neighbour on a diagonal. 

Proof. If a maximal irredundant set Y of Q7 with IYI = 3 has a Yf3-square, then Y is 
rotationally equivalent to X = {B, Bb B2}, where B = (x, y) (x ::; V), BI = (Xl, y) 
(Xl> X) and B2 = (X2' Y2), where X =I- X2 and Y2 2: y. 

If there is exactly one X-pn on c(B), then Xl - X ::; 2, IX2 - xl ::; 3 and B I , B2 
dominate disjoint sets of sizes two and three, respectively, on c( B) - {B}. Investiga
tion of the two relative positions of B, BI shows that for each possible B 2, B has at 
least two more X -pns on its diagonals, a contradiction. There is at least one X -pn 
on c(B). Thus we deduce that there are exactly two X-pns on c(B) and none on 
s(B) U d(B). • 

Lemma 16 If a 3-square maximal irredundant set Y of Q7 has a Yf3 -square, then Y 
may be rotated into X = {B, B I, B2}, where 

(a) B = (1, y) is an X{3-square, Bl = (Xl, V), B2 = (X2' Y2), where X2 > 1 and 
Y2 ;:::: Xl; 

(b) Y::; 8 - Xl or Y 2: Xl' 

Proof. Y is equivalent to X = {B, B I, B2}, where B = (x, y) is an Xf3 -square, 
BI = (XI, y) with Xl > X, and B2 = (X2' Y2), with x =I- X2 (definition of Xf3-square) 
and Y2 2: y. 

Suppose that X.> 1 and y > 1. Then (x -1, V-I) is on the board. If y = 7, then 
B, B I, B2 are all on row 7 and B I, B2 dominate at most four squares of s(B) U d(B), 
contrary to Lemma 15. Hence y ::; 6, and so (x - 1, y + 1) is also on the board. 

If XI-X 2: 3, then (x-I,y-I), (x-I,y+I), (x+I,y-l), (x+I,y+I) are on 
diagonals of B, are not dominated by BI and (by Lemma 15) are not X-pns. These 
squares are dominated by B2 and so B2 E {(x - 1, Y + 1), (x + 1, y + I)}. In each 
case there exists an X-pn on s(B) U d(B), contrary to Lemma 15. 

Therefore BI E {(x + 1, V), (x + 2, V). Since B2 is adjacent to (x - 1, y - 1) and 
(x - 1, y + 1), we have B2 E WI U W2 U W3 (disjoint union), where 

WI = {(x - 1, y), (x - 1, y + 2), (x - 1, Y + 4), (x - 2, y)} , 
W2 = {(x - 1, Y + 1), (x + 1, y + I)}, and 

W3 = {(x - 3, y + 1), (x - 1, y + 3)}. 

If B2 E WI, then the column x + 3 does not intersect the board, for otherwise 
(x + 3, y + 3) or (x + 3, Y - 3) is an X-pn. Hence the column x - 3 intersects the 
board and so (x - 3, Y + 3) or (x - 3, Y - 3) is an X-pn, a contradiction. If B2 E W2, 
then for each of the two possible positions for Bb there are three X -pns of B on 
c(B), which is impossible. If B2 E W31 then for each position of B I , Lemma 15 is 
also contradicted. We have established that x = 1 or y = 1. 

To complete the proof of (a), we must eliminate the case x > 1 and Y = 1, 
so assume that X satisfies these conditions. Observe that (x - 1,2) is on s(B). 
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Also note that B1 (respectively B 2 ) dominates exactly one square C1 (respectively 
exactly three squares C2 , C3 , C4 ) on c(B) - {B}, where C l ~ {C2 , C3 , C4 }. This 
implies r(B2) 2:: 3. To satisfy these conditions and to ensure that (x - 1,2) is not an 
X -pn of B, B2 is restricted to the following possibilities: 

B2 E W4 = {(x + 1,4), (x + 2, 5)} 
B2 E W5 = {(x -I,y): y = 3,4,5,6}. 

If B2 E W4 , then x = 2, otherwise (x - 2,3) is an X-pn of B. Since (7,6) is not 
an X-pn, BI = (1,7) and for each choice of B2, there is an X-pn on deB), contrary 
to Lemma 15. Similar contradictions may be obtained for B2 E {(x - 1, y) : y = 
5, 6} ~ W 5 • (These elements of W5 also do not dominate (x - 2,3) and it follows that 
x = 2.) If B2 = (x-I, 3), then to facilitate two X-pns on c(B), we require Xl 2:: x+3. 
Therefore (x + 1,2) is an X-pn, which is impossible. Finally, let B2 = (x - 1,4). 
Since c(B) has exactly two X-pns, Xl E {x + 1, x + 5}. In the former case at least 
one of (x + 2,3) and (x - 4,5) is an X-pn of B. In the latter case x = 2 and (4,3) 
is an X-pn. These contradictions show that x = 1, and (a) holds. 

The relation (b) is true because it is the condition for BI to dominate at least 
one square of c(B) - {B}. • 

Lemma 17 Suppose that B is an Xa-square of the maximal irredundant set X = 
{B, B I, B2} of Q7. Then each of Bli B2 has at least three X -pns. 

Proof. Without loss of generality assume that X is positioned as specified in Lemma 
14. By definition, neither BI nor B2 is an Xa-square. 

If B1 is an X~-square, then by Lemma I6(a), Xl = 7, and by Lemma I6(b), 
y E {1,7}. But y = 7 is impossible because Y2 > y, and if y = 1, then {B, B2 } 

dominates at most two squares of c(Bd - {Bd. Thus BI has four X-pns on c(Bd, 
a contradiction. 

If B2 is an X~-square, then it has exactly two X-pns on r(B2) (Lemma 15). By 
Lemma 16(a), B2 = (1,7), and since B dominates exactly one square ofr(B2)-{B2}, 
BI dominates exactly three squares of r(B2) - {B2}. This implies that y E {5,6}, 
Bl ~ s(B2), and C(Bl) i- 7. Therefore (7,1) is an X-pn of B2 on s(B2), contrary to 
Lemma 15. 

We have thus shown that {Bl' B2 } contains neither X a - nor X~-squares. By 
definition each of Bl and B2 has at least three X -pns. • 

Lemma 18 Suppose that B is an X~-square of the maximal irredundant set X = 
{B, B l , B2} of Q7. Then each of Bli B2 has at least three X -pns. 

Proof. Without loss of generality assume that X is positioned as specified in Lemma 
16. By Lemma 17 and the definition of X a- and X~-squares, neither BI nor B2 is an 
Xa-square. Suppose that BI is an X,B-square. Then by Lemma 16(a), Xl = 7 and 
by Lemma 16(b), y E {1,7}. If y = 7, then B, Bll B2 are all on row 7 and Bl has 
four X-pns on c(Bl ), which is impossible. If y = 1 (i.e., B = (1,1) and BI = (7,1)), 
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then by Lemma 15, B2 dominates exactly three squares of {(7, Y') : y' = 2, ... , 6}. In 
all cases (2,6) is an X-pn of BI on s(Bt}, contrary to Lemma 15. 

If B2 is an X~-square, then by Lemma 16(a), B2 is not on r(B) (by the same proof 
as the previous paragraph), hence B2 E c(Bt}. By Lemma 16(a), B2 = (Xl, 7). But 
BI (respectively B2) dominates at most two (respectively one) squares of c(B) - {B} 
and so B has at least three X-pns on c(B), a contradiction. 

Therefore {BI' B2 } contains neither Xa - nor X,B-squares, and so each of B I , B2 
has at least three X-pns. • 

Lemma 19 Let R be the set of vertices of Q7 not dominated by a 3-square maximal 
irredundant set. Then IN[R]I ~ 29. 

Proof. Since 1'( Q7) = 4 (cf. [9]), we can apply Theorem 8 with k = 1. If R satisfies 
(b) or (c) of that theorem, then R occupies (without loss of generality) at least two 
rows and three columns. By counting the squares of N[R] on these lines only, we 
obtain IN[R] I ~ 29. 

Now suppose Theorem 8(a) applies and R contains precisely the squares at the 
intersections of rows Yb Y2 and columns Xl, X2' Without loss of generality we may 
assume that Xl < X2, Yl < Y2 and Y2 - YI > X2 - Xl. (Note that Theorem 8(a) 
insists that Y2 - Yl =1= X2 - Xl') Observe that N[R] has 24 squares on these rows 
and columns. Let W be the set of squares of N[ R] which are not on those lines, 
x = X2 - Xl and y = Y2 - Yl· 

Case 1 x ~ 3. 
Then y 2:: 4 and W contains at least six squares (x, Y), where Xl < X < X2 and 
Yl < Y < Y2· 

Case 2 x = 2. 
Then y 2:: 3 and W contains at least two squares (Xl + 1, y) where YI < Y < Y2. 
Without loss of generality columns X2 + 1, X2 + 2 exist and each contains at least two 
squares of W. 

Case 3 x = 1. 
Then y 2:: 2 and without loss of generality columns X2 + 1, X2 + 2 and X2 + 3 exist. 
If y ~ 4, then W contains at least six squares (x, Y), where X2 + 1 :s; x :s; X2 + 3 and 
Yl < Y < Y2· If Y = 3, then without loss of generality W contains (X2 + i, YI + j), 
for any i, j E {I, 2}, and also (X2 + 1, Y2 + 1). Finally, if y = 2, we may assume that 
rows Y2 + 1, Y2 + 2 also exist, so that R is in the corner of a 5 x 5 sub-board of Q7 
which contains seven squares of W. 

In all cases IWI 2:: 5 and IN[RJI 2:: 29 as required. • 
Theorem 20 Q7 contains no maximal irredundant set of size three. 

Proof. Suppose to the contrary that X is a maximal irredundant set of size three. If 
no square in X has exactly one X -pn, then no more than one square has exactly two 
X-pns (Lemmas 17 and 18). If B E X has at least three X-pns, then Theorem 2 or 
Proposition 4 applies. Now B itself is a common neighbour of the three X-pns and 
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is not an annihilator. Hence there are at most n + 1 = 8 annihilators of B and the 
total number of annihilators of the three squares in X is at most 12 + 8 + 8 = 28. 
However, by Theorem 5', each vertex of N[R] is an annihilator, and so IN[Rll ~ 28, 
contrary to Lemma 19. 

Therefore B E X has exactly one X-pn and is an Xa-square (Lemma 15). With
out losing generality we may assume X is positioned as in Lemma 14. If y ~ 5, then 
Is(B) - {B}I ~ 4. But B2 (respectively Bd dominates zero (respectively at most 
two) squares of s(B) - {B} and so B has at least two X-pns, a contradiction. If 
y = 1, then Bl U B2 dominates at most four of the six squares of d(B) - {B}. If 
y = 2, any choice of Bl and B2 which dominates the maximum number, i.e., four, of 
the five squares of b( B), leaves the one square of s( B) undominated and again B has 
two X-pns. We conclude that y E {3,4}. Figure 3 depicts the only (up to symmetry) 
sets X (black dots) which have Xa-squares B with exactly one X-pn (labelled P). 
In each diagram the square Z is in N[R] but is not an annihilator since it is not 
adjacent to P, nor to squares 1 and 2, which are X -pns of Bl and B2 respectively. 
Thus in each case X is not maximal irredundant and the proof is complete. • 

Corollary 21 ir(Q7) = 4. 

Proof. Immediate from Theorem 20, the bounds (f(G) + 1)/2 ~ ir(G) ~ "}'(G) and 
the fact that "}'( Q7) = 4. • 
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