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Abstract 

For a graph G and an order a on V(G), we define a greedy defining set 
as a subset S of V(G) with an assignment of colors to vertices in S, 
such that the pre-coloring can be extended to a x( G)-coloring of G by 
the greedy coloring of (G, a). A greedy defining set ofaX( G)-coloring 
C of G is a greedy defining set, which results in the coloring C (by the 
greedy procedure). We denote the size of a greedy defining set of C with 
minimum cardinality by G D N (G, a, C). In this paper we show that the 
problem of determining GDN(G,a,C), for an instance (G,a,C) is an 
NP-complete problem. 

1 Introduction and preliminaries 

We begin with some terminology and notation which are used throughout the paper. 
For the other necessary definitions and notation, we refer the reader to texts such as 
[4]. 
A harmonious coloring of a graph G is a proper vertex coloring of G, such that the 
subgraph induced on any two different colors has at most one edge. 
By a hypergraph we mean an ordinary hypergraph which consists of a vertex set V 
and a collection of subsets of V, called (hyper)edges. In a hypergraph 1£ a block
ing set is a subset of the vertex set which intersects every edge of 1£. A minimum 
blocking set is one with the smallest cardinality. Note that when H is a graph then 
a blocking set is usually called a vertex cover. 
In the sequel we shall use the following VERTEX COVER problem (VC), which is 
well known to be NP-complete [2]. 

Instance: A graph G = (V, E) and a positive integer k. 
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Question: Is there a vertex cover of size k or less for G? 

The NP-completeness of VC and background for the theory of NP-completeness can 
be found in [2). 

One simple procedure for coloring the vertices of a graph G = (V, E) by positive 
integers, so that adjacent vertices receive distinct colors, is to define a linear order 
(J on V (G) and to process the vertices with respect to this order, giving them the 
smallest admissible color. The coloring procedure described above is called the greedy 
coloring of G with respect to (J. Therefore, with respect to any ordering on the vertices 
of G, we have a unique greedy coloring. Hence, naturally, by the greedy coloring of 
(G, (J), we mean the greedy coloring of G with respect to the order (J on V (G). 

It is not always the case that greedy coloring uses x( G) colors. For example, the 
vertex set of the graph Kn,n \nK2 (the graph obtained by deleting n pairwise non
adjacent edges from Kn,n) has an order a such that the greedy coloring with respect 
to (J uses n colors. 

On the other hand, it is a simple well known fact that for every graph G there exists 
an order a such that the greedy coloring of (G, (J) uses exactly x( G) colors. For 
convenience, we call such an order a, an optimal order of G. Similarly, for a X(G) 
coloring C of G, we call an order a, a C -optimal order if the greedy coloring of (G, (J) 

results in the coloring C. Note that for some colorings such an order may not exist. 
For example in the graph G = (V, E) where V = {a, b, c, d} and E = {ab, bc, ca, ad} 
if we color vertices c, d by 3 and vertex a by 1, then the resulting 3-coloring does not 
admit an optimal ordering. 

It is not known in general, when a greedy procedure gives an optimal coloring. In 
other words, the characterization of optimal orders of a given graph is an unsolved 
problem. Chvatal [1] has studied orders having a strong condition. He calls an order 
a on the vertex set of a given graph G, a perfect order if for each induced subgraph 
H of G, with the induced order, the greedy procedure gives an optimal coloring of 
H. Also a graph is called perfectly orderable if it admits a perfect order. Chvatal 
showed that an order a of G is perfect if in the orientation of G followed by a for no 
induced path P = PIP2P3P4 the edges PIP2 and P3P4 are oriented from PI to P2 and 
from P4 to P3. He also showed that any perfectly orderable graph is a perfect graph. 

Obviously an optimal order is not necessarily a perfect order. Hence, Chvatal's 
results do not provide complete knowledge about optimal orders. On the other 
hand, for a given non-optimal order we may want to know how 'close' the order is 
to an optimal order. 

In the following we introduce a new concept which enables us to find out some more 
characteristics of different orders and their associated greedy colorings. 

Definition 1. For a graph G and an order a on V(G), a greedy defining set is a 
subset S of V (G) with an assignment of colors to vertices in S, such that the pre
coloring can be extended to a X( G) -coloring of G by a greedy coloring of (G, a). The 
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greedy defining number of G is the size of a greedy defining set which has minimum 
cardinality, and is denoted by GDN(G, a). A greedy defining set for a X(G)-coloring 
C is a greedy defining set of G which results in C. The size of a greedy defining set 
of C with the smallest cardinality is denoted by GDN(G, a, C). 

Greedy defining sets are in fact a generalization of ordinary defining sets in vertex 
coloring of graphs. These have been widely studied in the literature (e.g. [3]). 

r r r r r I r I 
5 8 7 6 

Fig.1 Fig.2 

Example 1. In Figure 1, an ordered graph is shown in which the number next to a 
vertex is its order. The greedy coloring gives rise to a 4-coloring of the graph, where, 
if we color two vertices of degree one with number 2, as shown in Figure 2, and fix 
their colors, then the modified greedy coloring gives an optimal coloring. Hence it is 
easily seen that GDN(G) = 2. 

2 Main Theorems 

We still need some new concepts to interpret our previous concepts in terms of the 
theory of hypergraphs. 

Definition 2. Let (G, a) be an ordered graph and C be a x(G)-coloring of G. We 
denote by Gij the subgraph of G induced by two colors i and j. We also denote by 
Hij (v) the subgraph of Gij induced by a vertex v and its neighbors. For each i and j, 
i < j, and any vertex v ofGij with C(v) = j we call Hij(V) a descending source if the 
order of every vertex in Hij (v) \ {v} is greater than the order of v. In this case the set 
of vertices of Hij(V) is called a descending set. We denote the set of all descending 
sets by 1£e. We also consider 1£e as a hypergraph whose vertex set is V (G). 

Definition 3. We define Me(G, a) to be the size of a minimum blocking set of 1£e 
and M(G, a) = min { Me(G, a) I C is a x(G)-coloring of G}. 

Our first theorem establishes a connection between greedy defining sets and blocking 
sets. 
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Theorem 1. The vertices of any greedy defining set of a graph G is a blocking set of 
He for some coloring 0, and for a coloring C of G any blocking set of He introduces 
a greedy defining set of C. 

Proof. Let S be a greedy defining set of G, and C be the X(G)-coloring of G which 
is the extension of S. Let V (Hij ( V )) be any hyperedge of He. If S n V (Hij ( v)) = 0 
then when the precoloring is going to be extended to the coloring C, the vertex v 
may take the color i rather than j, but by the definition of Hij (v) we have 0 (v) = j. 
So we conclude that S is a blocking set for He. 
Conversely, we show that any blocking set B of lle is a greedy defining set for C. 
Consider the induced coloring of 0 on B. Suppose we extend the coloring of B 
induced by C, greedily, and we obtain the coloring C'. We claim that 0 = C'. 
We prove by induction on the order of the vertex v that C'(v) = O(v). Suppose 
v E V (G) \ B is the first vertex which is to be colored by the greedy procedure. 
Let C (v) = j and i < j. It is clear that Hij (v) is a desending source and it has to 
intersect the greedy defining set B. Therefore, v has a neighbor with color i in B, 
which implies that C'(v) ~ i. On the other hand, v has no neighbor with color j in 
B. So the greedy procedure colors v by j, and consequently C'(v) = j. Now suppose 
v E V(G) \ B is an arbitrary vertex with O(v) = j and let i < j. If there exists a 
vertex u in Hij (v) which is lower than v, then 0' (u) = i by the induction hypothesis 
Of (v) ~ j. Otherwise, Hij (v) is a descending source and hence some neighbor of v 
in Hij (v) belongs to B and therefore the color i appears in Hij (v). So G' (v) ~ j. On 
the other hand, the vertex v can't have a neighbor with color j (in the coloring 0), 
and because in every stage of the pre-coloring extention of the greedy defining set B, 
we have a partial coloring of the whole coloring C, we conclude that G'(v) = j. 0 

As a corollary we obtain M(G, a) = GDN(G, a). 

We now pose the problem of the complexity status of finding the greedy defining 
number of a coloring. We consider the following problem which we call GREEDY 
DEFINING NUMBER, or GDN for short: 

Instance: An ordered graph (G, a), a X(G)-coloring C and an integer k. 

Question: Does C have a greedy defining set of size less than or equal to k? 

Theorem 2. GDN is an NP-complete problem. .. 
Proof. It is easy to see that GDN E NP, since a nondeterministic algorithm needs 
only guess a subset of vertices with the appropriate size and check in polynomial 
time whether these colored vertices can be extended greedily to C. 
We transform the vertex cover problem VC to GDN. 
Let (F, k) be an instance ofVC where F is a simple graph and k an integer. In order 
to transform this instance to an instance of GDN we require a harmonious coloring 
of F. For this we consider a vertex coloring of F with exactly n = IV(F)I colors 
which is trivially a harmonious coloring. Let the set of colors be {1,2, ... ,n}. Now we 
construct an instance of GDN as follows: Let G be the graph obtained by attaching 
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a complete graph Kn to the vertex of F whose color in the harmonious coloring of 
F is n. There are n - 1 vertices of Kn which are not colored yet. We color these 
vertices by 1,2, ... , n - 1. We obtain an n-coloring of the whole graph G and denote 
it by C. Now we define an order a on V(G) as follows: 
Any vertex v E V(G) either belongs to V(Kn) or to V(F). If v E V(Kn) and v is 
colored by i, 1 :::; i :::; n, then we define the order of v to be i. If v E V(F) and its 
color is j, then we define its order to be 2n - j, where 1 :::; j :::; n. Our instance of 
GDN has been now constructed. It can be easily checked that 1-£e is isomorphic to 
F by a hypergraph isomorphism. So clearly a blocking set for 1-£e is a vertex cover 
of F and vice versa. The proof is complete by the previous theorem. 0 

We end the paper with an open problem. 

Problem. Is GREEDY DEFINING NUMBER for uncolored graphs an NP-complete 
problem? 
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