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Abstract 

In a Steiner triple system of order v, STS(v), a set of three lines inter­
secting pairwise in three distinct points is called a triangle. A set of lines 
containing no triangle is called triangle-free. The minimum number of 
triangle-free sets required to partition the lines of a Steiner triple system 
S, is called the triangle chromatic index of S. We prove that for all ad­
missible v, there exists an STS(v) with triangle chromatic index at most 
8V3v. In addition, by showing that the projective geometry PG( n, 3) 
may be partitioned into O( 6n / 5) caps, we prove that the STS( v) formed 
from the points and lines of the affine geometry AG(n, 3) has triangle 
chromatic index at most Avs, where s = loge 6/(3 loge 5) ~ 0.326186, and 
A is a constant. We also determine the values of the index for STS( v) 
with v ::; 13. 

1 Introduction 

Recent papers [5, 7] have investigated generalised chromatic indices for Steiner triple 
systems. The former paper was concerned with the so-called 2-parallel chromatic 
index, and the latter with four of the five three-line chromatic indices. In the current 
paper we present results on the remaining three-line chromatic index of a Steiner 
triple system S, namely the triangle chromatic index X(B5 , S). We shall show that 
this behaves very differently from the other two- and three-line chromatic indices. 
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For Steiner triple systems of order 3n , our estimate of a lower bound for X(B5 , S) is 
related to the question of partitioning the projective geometry PG(n, 3) into the min­
imum number of caps and, in turn, to the chromatic number of the affine geometry 
AG(n,3). 

A balanced incomplete block design BIBD(v, k, A) is an ordered pair (V, B), where 
V is a set of cardinality v (the points) and B is a collection of k-element subsets of 
V (the blocks) which has the property that every 2-element subset of V is contained 
in precisely A blocks. A BIBD (v, 3, 1) is called a Steiner triple system of order v, 
STS(v), and the blocks are then also referred to as triples or lines. It is well-known 
that an STS(v) exists if and only if v == 1 or 3 (mod 6); such values of v are called 
admissible. If S is an STS(v) then its chromatic index X'(S) is the smallest number 
of colours required to colour the lines of S, each with a single colour, so that no two 
intersecting lines receive the same colour. The generalisation of this concept given in 
[5] relates to colouring the lines of an STS( v) so as to avoid monochromatic copies of 
a configuration C. By a configuration C we simply mean a collection of lines of an 
STS(v). The resulting chromatic index is denoted by X(C, S). The possible 2-1ine 
configurations are: (a) two lines intersecting in a point, and (b) two parallel (i.e. 
non-intersecting) lines. In the former case X( C, S) is just the ordinary chromatic 
index X'(S). The latter case gives rise to the 2-parallel chromatic index denoted by 
X"(S). There are five 3-line configurations BI , B2 , B3 , B 4 , B5 which appear in Steiner 
triple systems and these are shown in Figure 1 with their traditional names. 

YZ.6 
Bl 

(3-ppc) 
B2 

(Hut) 
B3 

(3-star) 
B4 

(3-path) 

Figure 1: The five 3-line configurations. 

B5 
(Triangle) 

It is generally difficult to determine the precise value of X(C, S) for given C and 
S. However, it is possible to obtain upper and lower bounds in some cases. For 
admissi ble v we may define 

x(C, v) = max{x(C, S) : S is an STS(v)} and 

K(C, v) = min{x(C, S) : S is an STS(v)}. 

(And we can make similar definitions for X'(S) and X"(S).) 
Regarding the ordinary chromatic index, for v == 3 (mod 6) we have X' (v) 

(v - 1)/2, a result which is equivalent to the theorem of Ray-Chaudhuri andWilson 
[14] concerning the existence of Kirkman triple systems. For v == 1 (mod 6) and 
v 2: 19 we have X'(v) = (v + 1)/2, which is equivalent to the existence of Hanani 
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triple systems [16]. In the 2-parallel case, it is shown in [5] that if v ~ 27 then, for 
v == 3 or 7 (mod 12), X"(v) = (v-l)/2, and for v == lor 9 (mod 12), X"(V) = (v+l)/2. 
In [7], X( C, v) is precisely determined (for all sufficiently large v) for each of the three­
line configurations C = Bl , B2 or B3 , and an asymptotic estimate for X(B4 , v) is also 
given. In the case of each of these two- and three-line configurations~ X( C, v) rv kv 
as v -+ 00, for an appropriate constant k. In the current paper we prove that 
X(B5 , v) :::; 8V3v. 
- In the course of our investigations we need a few more items of basic terminology. 
A set of n parallel (Le. mutually disjoint) lines of an STS( v) is called an (n- )partial 
parallel class, abbreviated to (n- )ppc. If n = v /3, the maximum possible value, then 
an n-ppc is called a (full) parallel class. An STS(v) whose lines may be partitioned 
into full parallel classes is said to be resolvable. Such a design together with its 
partition is called a Kirkman triple system, KTS( v). These exist if and only if v == 3 
(mod 6) [14]. A BIBD(v, k,;\) is said to be cyclic if it has an automorphism of order 
v. The design may then be formed as a union of orbits of k-element subsets of the 
point set V under the action of the cyclic group generated by this automorphism. 

Denote by F; the vector space of dimension n over F3 , the field of order 3. We 
will take the elements of F3 to be 0,1 and 2 (= -1), and we will write elements of 
F; without brackets or commas, for example 0120 E Fi- The affine geometry of 
dimension n, AG(n, 3), is the set of all cosets of subspaces of F;. For k = 0, 1, ... , n, 
a k-flat of AG(n, 3) is a coset of a subspace of dimension k. The proy"ective geometry 
of dimension n, PG(n,3), is the set of equivalence classes of non-zero points from 
AG(n + 1,3) under the equivalence relation f"V given by x rv y if x = ;\y for ;\ = 1 or 
2. For k = 0,1, ... , n, a k-flat of PG(n, 3) is defined to be the image of a (k + 1)­
flat of AG(n + 1,3). In both AG(n,3) and PG(n,3), the O-flats are called points 
(in the former case identified with the elements of Fr), the I-flats are called lines 
and the 2-flats are called planes. The lines of AG(n, 3) comprise triples of distinct 
points {x, y, z} in Fr for which x + y + z = 0, and the points and lines of AG(n, 3) 
form an STS(3n ). Three distinct points x, y, z of PG(n, 3) are collinear if and only 
if x ± y ± z = 0 in F:+ 1. 

2 Decomposing PG(n, 3) into caps 

A cap in AG(n, 3) or PG(n, 3) is a set of points, no three of which are collinear. A cap 
of cardinality k is called a k-cap. A cap is maximal if it is not properly contained 
in any other cap. We will here denote by A(n) and P(n) the sizes of the largest 
maximal caps in AG(n,3) and in PG(n,3) respectively. For n :::; 5, Table 1 gives 
precise values for A(n) and P(n) with the exception of A(5) which Bruen, Haddad 
and Wehlau [2] have shown to lie between 45 and 48 (inclusive). 

Both (A(n))* and (P(n))* have a common limiting value c ~ 3. It is shown by 
Calderbank and Fishburn [3] that c> 2.210147. 
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n 1 2 3 4 5 

A(n) 2 4 9'" 20P 45 S A(5) S 48 

P(n) 2 4ll lOll 20P 56H 

(B: Bose [1]; H: Hill [10]; P: Pellegrino [13]; *: see, for example, [11]. The other 
values are easily checked.) 

Table 1. 

Denote the minimum number of caps required to partition AG(n, 3) and PG{n, 3), 
by a{n) and 1f{n) respectively. The values of A(n) and P(n) may be used to provide 
bounds for a(n) and 1f(n). The values 1f(1) = 2 and 1f(2) = 4 are easily verified. 
Ebert [6] proves that 1T(4r - 1) S (32r 

- 1)/2 giving, in particular, 1f(3) ~ 4. From 
consideration of P(3) it follows that 1f(3) = 4. We show below that 1f( 4) = 7 and 
that 7 S 1f(5) S 12. The values a(l) = 2 and a(2) = 3 are also easily verified. The 
following is a partition of AG(3, 3) into three caps QI, Q2 and Q3: 

Q1 = {000,200,020,220, 102,012,212, 122, Ill} 
Q2 = {001,201,021,221, 100,010,210, 120, 112} 
Q3 = {002, 202,022, 222, 101,011,211, 121, 110} 

By considering A(3) it follows that a(3) = 3. Haddad [8] shows that a( 4) = 5, and 
in [2] it is shown that a(5) = 6. These results are summarised in Table 2. 

n 1 2 3 4 5 
a(n) 2 3 3 5 6 
1f{n) 2 4 4 7 7 S 1T(5) ~ 12 

Table 2. 

Our results depend on recursive constructions given in Theorems 2.1 and 2.2. 

Theorem 2.1 Given a partition of AG(m, 3) into M caps and a partition of A G(n, 3) 
into N caps, we may form a partition of AG(m + n, 3) into MN caps. 
Proof. The points of AG(m + n, 3) may be considered as pairs (x, y) where x E Fr­
and y E Fr. Denote by PI, P2 , ••• , PM the caps decomposing AG(m,3) and by 
Ql, Q2"'" QN the caps decomposing AG(n, 3). Put Si,j = {(x, y) : x E ~,y E Qj}. 

The sets Si,j decompose AG(m + n, 3), the decomposition having M N parts. Sup­
pose that Zk = (Xk, Yk), k = 1,2,3, are points of Si,j satisfying Zl + Z2 + Z3 = 0. Then 
Xl + X2 + X3 = ° and so Xl = X2 = X3' Likewise, Yl = Y2 = Y3, and so Zl = Z2 = Z3. 

Thus each Si,j is a cap in AG(m + n, 3). 0 

Corollary 2.1 For m, n 2:: 1, a(m + n) S a(m)a(n). o 
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Theorem 2.2 Given a partition of AG(m, 3) into M caps, a partition of PG(n, 3) 
into N caps, and a partition of PG(m - 1,3) into L caps, we may form a partition 
of PG(m + n, 3) into MN + L caps. 
Proof. The points of PG(r,3) may be taken as those of FI+! \ {O}, with one 
representative point, say that with last non-zero coordinate equal to 1, selected from 
each of the two alternatives in each equivalence class. We may then consider the 
points of PG(m + n, 3) as pairs (x, y) where either 

(a) x E F?;t, y E PG(n, 3), or 

(b) x E PG(m -1,3), y = 0 E F;+l. 

Denote by PI, P2, ... , PM the caps decomposing AG(m,3), by QI, Q2,' .. , QN the 
caps decomposing PG(n,3), and by Rl, R2 , .•. ,RL the caps decomposing 
PG(m - 1,3). Put Si,j = {(x,y) : x E Pi,y E Qj} and Tk = {(x,y) : x E Rk,y = 
o E F:f+l}. The sets Si,j and Tk form a decomposition of the points of PG(m + n, 3), 
the decomposition having MN + L parts. Suppose that Zk = (Xk' Yk), k = 1,2,3, are 
points of Si,j satisfying Zl ± Z2 ± Z3 = O. Then Yl ± Y2 ± Y3 = O. But Yll Y2, Y3 E Qj 
and so the only solution of this is Yl = Y2 = Y3, giving Yl + Y2 + Y3 = O. Conse­
quently, Xl + X2 + X3 = 0 and the only solution of this in ~ is Xl = X2 = X3' Hence 
Zl = Z2 = Z3. Thus each Si,j is a cap in PG(m + n, 3). That each set Tk is a cap in 
PGCm + n, 3) follows immediately from the fact that the corresponding Rk is a cap 
in PG(m - 1,3). 0 

Corollary 2.2 For m, n ~ 1, 7r(m + n) ~ a(m)7r(n) + 7r(m - 1). o 

Remark. It is sometimes possible to improve the previous estimate for 7r(m + n) 
by amalgamating some, or even all, of the caps Tk with the caps Si,j described in 
Theorem 2.2. In general, 'J'k can be amalgamated with Si,j if, for each z = (x, y) 
with x E Pi, Y E Qj, and for each w = (u,O) with u E Rk (and 0 E F;+1) , we have 
(x ± u) distinct from every point of~. Note that this property is not dependent on 
j. Note also that it may therefore be advantageous to select the caps Rk not to form 
a minimal partition of PG(m -1,3) but, rather, to permit good amalgamation. One 
may further observe that it is not necessary to use the same cap partition {Pi} for 
each separate cap Qj. This may aid further amalgamations as in Lemma 2.2 below. 

As an example, consider the case m = 2. In Theorem 2.2, we may take PI = 
{OO, 10,01,11}, P2 = {02, 20, 12}, P3 = {21,22}, and Rl = {Ol}, R2 = {21}, R3 = 
{10,Il}. Here Tl can be amalgamated with S2,j (for any j), T2 with S3,k (for any k) 
and T3 with S3,k l (for any k' =I- k). Noting that 7r(n) ~ 2 for n ~ 1, we obtain the 
following result. 

Lemma 2.1 For n ~ 1, 7r(2 + n) ~ 37r(n). D 

Corollary 2.3 7 ~ 7r(5) ~ 12. 
Proof. The lower bound follows from P(5) = 56. The upper bound follows from 
the previous Lemma by taking n = 3. D 
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Lemma 2.2 7r(4) = 7. 
Proof. Take the partition of PG(3,3) into four caps Ql, Q2, Q3, Q4 given by 

Next put 

Q1 = {1000, 2100, 1110, 2001, 1201,0211,1010,2121,2021,2111} 

Q2 = {0010,0021,1211,0110,0201,2011,1210,2211,2210,1011} 

Q3 = {0001,2101, 1021,0011,2110,1101,0121, 1121,0221,1001} 

Q4 = {0100,0210,OIII, 1100,2010, I221,OI01,2221,2201,111I}. 

C1 = {(l,x), (2,x),x E Ql} 

C2 = {(I, x), (2, x), x E Q2} 

C3 = {(I, x), (2, x), x E Q3} 

C4 {(0,x),(2,x),XEQ4} 

C5 = {(O, x), x E Qd U {10000, 10100, 10111, 10101, 12010} 

C6 = {(O, x), x E Q2} U {II100, 12201, 10210} 

C7 = {(O,x),x E Q3} U {11221, 12221, 11111}. 

Then {Ci : i = 1, 2, ... , 7} forms a partition of PG( 4,3) into seven caps. Hence 
7r(4) :::; 7. Since P(4) = 20, we also have 7r(4) ~ 7. 0 

Theorem 2.3 For n ~ 6, 7r(n) ::; (67.6r - 7)/5, where r = ln51 J. 
Proof. Note that 7r(i) ::; 12 for i = 1,2,3,4,5. Put n = 5r + i, where r ~ 1 and 
1 :::; i :::; 5. Applying Corollary 2.2 r times, we have 

,,(n) ~ ,,(i)(,,(5))' + ,,(4) [(:\W~ 11] 

:::; 12.6r + ~(6r - 1) = (67.6r 7)/5. 

o 

Theorem 2.4 The limits limn--too(7r(n))~ and limn--too(a(n))~ both exist and have a 
common value l :::; 6k ~ 1.430969. Furthermore, 1 ~ 3/c, where c = limn--too(P(n))~. 
Proof. By Corollary 2.1, the function loge a is sub-additive and so (a(n))~ has a 
limiting value l = inf{(a(n))~}. By inspecting the values of a(n) given earlier, 
inf{(a(n)~} :::; (a(5))i = 6L Corollary 2.2 gives 

,,(rm + n) ~ (,,(n) + :~:)-_lD (,,(m))' , 

from which we may deduce that limsuPn--too(7r(n))~ :::; 1. 
Now consider a partition of PG(n, 3) into 7r(n) caps. If Gi is one of these caps 

then, for each x E Gi , take a representative of this point in F3+1, say x. Then 
define Ci = {y E F3+1 

: y = x or y = 2x for some x E Gi }. Each Ci forms a 
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cap in AG(n + 1,3) and these caps partition AG(n + 1,3) \ {o}. Consequently, 
a(n+ 1) ::; 7r(n)+ 1. From this inequality it easily follows that lim infn-H)() (7r(n) ) ~ ~ t. 
Thus we deduce that (7r(n))~ also has limiting value l. 

As noted earlier, both (A(n))~ and (P(n))~ have a common limiting value c > 
2.210147. Consequently, liminfn_Hlo(7r(n))~ and liminfn--+oo(a(n))~ are both at least 
3/c. Thus l ~ 3/c. 0 

3 The triangle chromatic index 

Theorem 3.1 If v is of the form v = 3n , then X(B51 v) :s; Avs , where A is a constant 
and s = i~:;.63 ~ 0.326186. -
Proof. Consider the Steiner triple system of order v = 3n formed from the points 
and lines of AG(n, 3). This is resolvable into (3n - 1)/2 parallel classes, each class 
being a coset of a line through the point O. Thus each parallel class corresponds 
to a point of PG(n - 1,3). If PI, P2 , ••• ,Pk denote k of these parallel classes and 
Pb P2, ... ,Pk are the corresponding points of PG (n - 1, 3), then Uf= 1 Pi is triangle­
free if the set {Pl,P2,'" ,pd forms a cap in PG(n -1,3). It follows that X(B5 , 3n ) is 
bounded above by 7r(n - 1). This gives K(B5 , 3n

) :s; (67.6r 
- 7) /5, wherer = l n~2 J, 

provided n ~ 7. Replacing 3n by v, we obtain X(B5, v) :s; Avs where s = i~;;e63 and 

A = 67/(5.361/ 5), and in fact this bound also holds for n = 1,2,3,4,5 and 6. 0 

In a sense, Theorem 3.1 is our best result for the triangle chromatic index in that 
it has the lowest exponent s. However, we can make progress when v is not of the 
form 3n by at least two distinct methods. One is to compute X(B5 , 8) for "small" 
systems 8 and to employ a product construction. A second is to obtain bounds on 
the analogous triangle chromatic index for transversal designs TD(3, n), i.e. Latin 
squares of side n. We firstly turn our attention to "small" systems 8. 

There is, up to isomorphism, precisely one STS(7), one STS(9), two STS(13)s 
and 80 STS(15)s. We denote the unique STS(7) by 87 and the unique STS(9) by 89 , 

Of the two STS(13)s, one is cyclic and one is not. The cyclic one we here denote by 
C, and the non-cyclic one by N. We may then state the following result. 

Lemma 3.1 X(B5 , 87) = 3, X(B5 , 89 ) = 2, X(B5 , C) = 4 and X(Bs, N) = 3. 
Proof. In each case the triangle chromatic index is at least two. For 87, it is 
easily seen that any set of four lines contains a triangle, so that X(Bs, 87 ) ~ 3. 
On the other hand, the following partition of the lines of 87 provides a triangle­
free 3-colouring: C1 = {{O, 1, 2}, {O, 3, 4}, {O, 5, 6}}, C2 = {{I, 3, 5}, {2, 4, 5}}, C3 = 
{{I, 4, 6}, {2, 3, 6}}. Hence X(Bs, 87 ) = 3. 

The system 89 is resolvable into four parallel classes PI, P2 , P3 and P4• The sets 
PI U P2 and P3 U P4 provide a partition of the lines of 89 giving a triangle-free 
2-colouring. Hence X(Bs, 89 ) = 2. 

For the systems of order 13 we have recourse to the computer. In both cases we 
find that there are no sets of ten or more lines which are triangle-free. Consequently, 
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the only possible partitions of the 26 lines into three disjoint colour classes must 
comprise sets of cardinalities nine, nine and eight. 

In the case of the cyclic system C, we find that there are 169 sets of nine lines 
and 2964 sets of eight lines which are triangle-free. However, it is not possible to 
select three of these sets which partition the 26 lines. (In fact the maximum coverage 
by three triangle-free sets is 25 lines.) Consequently X(B5 , C) ~ 4. The ordinary 
chromatic index of C, X' (C) equals eight and, by combining the corresponding colour 
classes in pairs, we obtain a triangle-free 4-colouring. Thus X(B5 , C) = 4. 

In the case of the non-cyclic system N, we find that there are 178 sets of nine lines 
and 3233 sets of eight lines which are triangle-free. An exhaustive computer search 
produced twelve sets of three from these 3411 sets, each of which partition the 26 lines 
of N into three triangle-free colour classes. One of these solutions corresponds to the 
following partition. (For clarity, blocks are listed without brackets and commas.) 

C1 = {2 3 6, 458, 027, 4612, 179, 2810, 3911, 110 12, 05 II} 
C2 = {I 2 5, 3 4 7, 6 7 10, 8 9 12, ° 9 10, 1 3 8, 2 4 9, 5 7 12, 1 6 II} 
C3 = {O 1 4, 5 6 9, 7 8 11, 4 10 11, 2 11 12, ° 3 12, 3 5 10, ° 6 8} 

It follows that X(B4 , N) = 3. o 

In the standard listing of the 80 non-isomorphic STS(15)s [12], #1 is the point­
line design obtained from PG(3,2). Denoting this design by D, we may state the 
following result. 

Lemma 3.2 X(B5 , D) = 3. 
Proof. The design D is cyclic and may be obtained from two full orbits and a one­
third orbit with starters {O, 1, 12}, {O, 2, 9} and {O, 5, 1O} respectively. We number 
the blocks as follows. The block {O, 1, 12} is numbered 1, {I, 2, 13} is numbered 2, 
and so on until {14, 0,11} is numbered 15. Then {O, 2, 9} is numbered 16, {I, 3, 10} 
is numbered 17, and so on until {14, 1, 8} is numbered 30. Finally, the blocks of 
the one-third orbit are numbered from 31 to 35 starting with {O, 5, 1O} and ending 
with {4, 9, 14}. Computer analysis gives several sets of 15 blocks which are triangle­
free. One of these is {I, 2, 3, 7,9,11,15,19,20,22,23,24,26,27, 35}. A second may 
be obtained from this by mUltiplying each block by 2 (mod 15). This intersects 
the original set in five blocks; discarding these we obtain a set of ten blocks which 
is triangle-free, namely {5, 10, 12, 16, 17, 18,21,28,29, 34}. The remaining set of ten 
blocks, {4, 6, 8,13,14,25,30,31,32, 33}, is also triangle-free. Hence X(B5 , D) ~ 3. 
However, D contains an STS(7) subsystem, and so X(B5 , D) ~ X(B5 , S7) = 3. 0 

The following Theorem is similar to Theorems 2.1 and 2.2. 

Theorem 3.2 Given a triangle-free colouring of an STS(u) in M colours and a 
triangle-free colouring of an STS(v) in N colours, we may obtain a triangle-free 
colouring of an STS(uv) in M N + M + N colours. 
Proof. Suppose that the point sets of the given systems are U and V, and that the 
sets of blocks are Bu and Bv respectively. We define an STS( uv) on U x V by taking 
as blocks all triples of the forms 
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(a) {(a,x),(b,y), (c,z)} where {a,b,c} E Bu and {x,y,z} E Bv, 

(b) {(a, x), (a, y), (a, z)} where a E U and {x, y, z} E Bv , 

(c) {(a, x), (b,x), (c,x)} where {a,b,c} E Bu and x E V. 

It is easy to see that the resulting blocks form an STS( uv). 
Denote the colour classes partitioning the STS(u) by PI, P2," ., PM and the 

colour classes partitioning the STS(v) by QI, Q2,' .. , QN. Put 

Ri,j = {{(a,x),(b,y),(c,z)}: {a,b,c} E Pi,{x,y,z} E Qj} 
Si = {{(a, x), (a, y), (a, z)} : a E U, {x, y, z} E Qi} 
Ti = {{(a, x), (b,x), (c,x)}: {a,b,c} E Pi,x E V}. 

Then the sets Ri,j, Si and Ti form a decomposition of the blocks of the STS(uv) into 
M N + M + N parts. 

Suppose that LI and L2 are intersecting triples in Ri,j. We may write LI = 
{(aI, xt}, (bl , yd, (Cl, zd} and L2 = {(aI, Xl)' (b2, Y2), (C2, Z2)}' If {bl , cd =j:. {b2, C2} 
then, without loss of generality, any third block which intersects LI and L2 (but not 
in (aI, Xl) has the form L3 = {(b l , yd, (C2' Z2), (d, w)}, and if this also lies in Ri,j then 
{al,bl,ct}, {al,b2,c2} and {b1 ,C2,d} form a triangle in Pi, a contradiction. So sup­
pose that {bl , cd = {b2, C2} so that L2 has the form L2 = {(al, Xl), (b l , Y2), (CI' Z2)} 
and any third block intersecting Ll and L2 (but not in (ab Xl)) and lying in Ri,j must, 
without loss of generality, have the form L3 = {(bl, YI), (Cl' Z2), (aI, wH. But then 
either (a) {XI, Yl, zd, {Xl, Y2, Z2} and {Yll Z2, w} form a triangle in Qj, or (noting that 
L3 E Ri,j and so Yl =j:. Z2) (b) YI = Y2, Zl = Z2 and w = Xl, giving LI = L2 = L3. Thus 
in either case (a) or (b) we have a contradiction. It follows that Ri,j is triangle-free. 

That each set Si and Ti is triangle-free follows immediately from the fact that 
the corresponding Qi and Pi are triangle-free. 0 

We may employ Theorem 3.2 together with the results of Lemmas 3.1 and 3.2 to 
establish, for example, the following result. 

Corollary 3.1 Ifv is of the form v = 71·13m ·15n , where l,m,n ~ 0, then X(B5, v) ~ 
V S 

- 1, where s = :~t~ ~ 0.712414. - 0 

An alternative approach to estimating X(B5 , v) involves consideration of the anal­
ogous problem for transversal designs TD(3, n). Such a design comprises three dis­
joint sets (called groups) each containing n points, together with a set of triples 
which collectively cover every pair of elements from distinct groups precisely once 
and which do not cover any pair of elements from a common group. A TD(3, n) is 
equivalent to a Latin square of side n. We will represent a TD(3, n) by taking a 
single set of n points, T = {O, 1, ... ,n - I} and considering the triples to be points 
of T3. Three triples are then said to form a triangle if they have the form 

(i, j, k), (i, j', k'), (i', j, k') 

where i, if, j, j', k, k' are six distinct points of T. 
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Lemma 3.3 Suppose that n is odd. Then the set of triples {( i, j, (i + j) /2) : 0 ::; i, 
j :::; n - I} (where arithmetic is modulo n) forms a TD(3, n). Also, for each fixed 
a E {O,I, ... ,n-l} the set of triples {(i,a+i,(a+2i)/2): 0:::; i:::; n-l} forms 
a parallel class of the TD (that is, a set of triples covering each point in each group 
precisely once). Furthermore, if A ~ to, 1, ... ,n - I} has the property that for every 
triple of distinct elements ab a2, a3 E A, a2+a3 :1= 2al (mod n), then the set of triples 
{(i,a + i, (a + 2i)/2): 0:::; i:::; n -1,a E A} is triangle-free. 
Proof. If n is odd then, working modulo n, any two elements of a triple 
(i,j, (i + j)/2) uniquely determines the third, and hence the set of all such triples 
forms a TD(3, n). For each fixed a, no two distinct triples of the form (i, a + i, 
(a + 2i)/2) can intersect, and each point in each group occurs precisely once in such 
a triple. Therefore {(i, a + i, (a + 2i)/2) : 0 ::; i :::; n - I} forms a parallel class of 
triples of the TD. Suppose next that aI, a2, a3 are three distinct residues modulo n 
and that the set {(i, a + i, (a + 2i)!2) : 0 ::; i :::; n - 1, a E {aI, a2, a3}} contains a 
triangle. Then, without loss of generality, we may assume that two triples of the 
triangle are (i,al +i, (al +2i)/2) and (i,a2+i, (a2+2i)/2), and that the third, again 
without loss of generality, is (j, a3 + j, (aa + 2j)/2) where aa + j == al + i (mod n) 
and (a3 + 2j)/2 == (a2 + 2i)/2 (mod n). But these congruencies yield 2al == a2 + aa 
(mod n). 0 

We can make use of known properties of PG(2, q) to obtain the following result. 

Lemma 3.4 If n = q2 + q + 1, where q is a prime power, the1f the triples of the 
TD(3, n) described in Lemma 3.3 may be partitioned into (q+ 1) triangle-free classes. 
Proof. If q is a prime power then the point-line design of PG(2, q) is a cyclic 
BIBD(q2 + q + 1, q + 1,1) formed from a single cyclic orbit. (This is a consequence 
of a result of Singer [15].) We may represent this design on the points 0, 1, ... ,q2 + q 
with cyclic automorphism generated by the mapping i f-t i + 1 (mod q2 + q + 1). 
Consider an orbit which forms this design and let the blocks containing the point 
o be {O,xi:x~, ... ,x~}, {o,xi,x~, ... ,x~}, ... , {O,xi+l,x~+l, ... ,x~+l}. Then the 
elements xj are all distinct and they cover all the points 1,2, ... , q2 + q precisely 
once. Within each of the blocks listed, no difference is repeated and so none of 
these blocks contain three distinct elements ab a2, aa for which a2 + aa == 2al (mod 
q2 + q + 1). Discarding 0 from all but the first block, we arrive at a partition 
of the residue classes modulo q2 + q + 1 into sets Ai (1 ~ i ~ q + 1) with the 
property that for every triple of distinct elements al, a2, aa E Ai, a2 + aa :1= 2al (mod 
q2 + q + 1). But then, by the preceding Lemma, the TD(3, q2 + q + 1) having triples 
{(i,j, (i + j)/2) : 0 :::; i,j :::; n - I} may have these triples partitioned into q + 1 
triangle-free classes {( i, a + i, (a + 2i) /2) : 0 ::; i :::; n - 1, a E Aj }. 0 

The result of the previous Lemma shows that there are transversal designs TD(3, n) 
whose triples may be partitioned into O( y'n) triangle-free classes. This is likely to 
be far from best possible since the partition is based on avoiding repeated differences 
within sets which themselves partition the residue classes modulo n. Whilst this is 
sufficient to avoid triples {aI, a2, aa} for which a2 + aa == 2al (mod n), and hence 
leads to a partition of the triples of a particular TD, it is by no means necessary. 
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Nevertheless, the growth rate of the cardinality of our partition is sublinear. In fact 
we can achieve O( v'n) even when n is not of the form q2 + q + 1 for q a prime power. 
We show this in the following three Lemmas. First, it is convenient to introduce 
some terminology. 

A set of residues modulo n containing no repeated difference will be called a d­
set (modulo n). A collection of d-sets which partition the complete set of distinct 
residues modulo n will be called a complete family of d-sets (modulo n). The sets 
Ai (1 ::; i ::; q + 1) given in the proof of Lemma 3.4 form a complete family of d-sets 
modulo q2 + q + 1. 

Lemma 3.5 Suppose that S = {X1,X2,'" ,Xk} (with 0::; Xi < n for i = 1,2, ... , k) 
forms a d-set modulo n and that 2 ::; m < n. If 81 = {x E 8 : ° ::; x ::; l m;-l J} and 
82 = {x E S : l mil J ::; x ::; m - I}, then both 81 and 82 form d-sets modulo m. 
Proof. Suppose that a, f3 are distinct elements of 8 1 . Then ° ::; a, f3 < m/2 and 
so the difference between a and f3 satisfies 0 < la - f31 < m/2. Thus, if 81 contains 
two equal differences modulo m, then the two differences must be equal as positive 
integers. But this contradicts the fact that that 8 forms a d-set modulo n. Hence 
81 forms a d-set modulo m, and likewise for 82, 0 

Lemma 3.6 Suppose m 2: 4. Then there exists a complete family, F, of d-sets 
modulo m for which IF\ ::; 4l foJ - 4. 
Proof. Suppose initially that m 2:: 16, so that l foJ > 3. Then Bertrand's postulate 
[9] asserts the existence of a prime p satisfying l foJ < p ::; 2l foJ - 3. But then 
rm < p and so m < p2 +p+ 1. From the proof of Lemma 3.4, we can find a complete 
family Q of d-sets 'modulo p2 + P + 1, with IQI = p + 1. But then, by Lemma 3.5, 
there is a complete family, F, of d-sets modulo m with IFI = 21QI ::; 4lrmJ - 4. In 
the cases 4 ::; m ::; 15, we have 4l fo J - 4 2:: r~ 1 and we can establish the result by 
forming F from l ~ J pairs {O, I}, {2, 3}, ... , together with the singleton {m - I} in 
the case when m is odd. o 

Lemma 3.7 Suppose n 2: 5 is odd. Then the triples of the TD(3, n) defined in 
Lemma 3.3 may be partitioned into at most 4l v'nJ - 4 triangle-free classes. 
Proof. The result follows by combining the previous Lemma with Lemma 3.3. 0 

Theorem 3.3 If v == 3 (mod 6) and v 2:: 15 then X(Bs,v) ::; 12ly1J -11. 
Proof. We apply the Bose construction (see [4], p25) for an STS(6s + 3) using 
the TD(3,28 + 1) described in Lemma 3.3. The point set of the STS(68 + 3) is 
{O, 1, ... ,28} X {a, b, c}. The triples of the STS(68 + 3) are as follows: 

{(x, a), (x, b), (x, en : x E {O, 1, ... ,28} 

{(x, a), (y, a), ((x + y)/2, bn : x, y E {O, 1, ... ,28}, x -1= y 
{(x, b), (y, b), ((x + y)/2, cn : x, y E {O, 1, ... ,28}, x -1= y 

{(x, e), (y, e), ((x + y)/2, an : x, y E {O, 1, ... ,2s}, x -1= y. 

By Lemma 3.7, provided s 2: 2, the triples of the TD(3, 28 + 1) may be partitioned 
into at most 4l J28 + 1 J - 4 triangle-free classes. If A is one of these classes then 
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the set {{ (x, a), (y, a), ((x + y)/2, b)} : (x, y, (x + y)/2) E A} will be a triangle­
free set of triples of the STS(68 + 3). The same argument applies to the sets of 
triples {{(x, b), (y, b), ((x + y)/2, c)} : (x, y, (x + y)/2) E A} and {{(x, c), (y, c), ((x + 
y)/2, a)} : (x, y, (x + y)/2) E A}. Finally, the set of triples {{(x, a), (x, b), (x, c)} : 
x E {O, 1, ... ,28}} is also triangle-free. Thus the triples of the STS(68 + 3) are 
partitioned into at most 12 h/28 + 1 J - 11 triangle-free classes. With v = 68 + 3, the 
result follows. 0 

Lemma 3.8 Suppose that n is even. Then the set of triples {(i, j, i + j) : 0 ::; 
i,j::; n - I} (where arithmetic i8 modulo n) forms a TD(3,n). Also, for each fixed 
a E {O, 1, ... ,n-1} the set of triples {(i,a+i,a+2i): 0::; i < n/2} forms a partial 
parallel class of the TD (that is, a set of triples covering each point in each group at 
most once). Similarly, {(i, a + i, a + 2i) : n/2 ::; i :::; n - I} forms a partial parallel 
class. Furthermore, if A ~ {O, 1, ... , n - I} has the property that for every triple of 
distinct elements aI, a2, a3 E A, a2 + a3 '¥= 2al (mod nY, then the two sets of triples 
{(i,a+i,a+2i): O:S; i < n/2,a E A} and {(i,a+i,a+2i): n/2:::; i:S; n-1,a E A} 
are both triangle-free. 
Proof. This is similar to the proof of Lemma 3.3. 0 

Lemma 3.9 Suppose n 2:: 4 is even. Then the triples of the TD(3, n) defined in 
Lemma 3.8 may be partitioned into at most 8L y'nJ - 8 triangle-free classes. 
Proof. The result follows by combining the previous Lemma with Lemma 3.6. 0 

Theorem 3.4 Ifv == 1 (mod 6) and v 2:: 13 then X(B5 ,v) :::; 24LF,J - 22. 
Proof. We apply the generalisation of the Bose construction due to Skolem (see [4], 
p26) for an STS(68 + 1). This requires a commutative half-idempotent quasigroup 
of order 28 which can be obtained from the TD(3, 28), described in Lemma 3.8, by 
permuting the elements of the third group as follows. For 0 :::; i, j :s; 28 - 1, replace 
the triple (i,j,i+j) by (i,j,i*j), where 

. . _ { (i + j) /2 if i + j is even, 
Z*J- (i+j-1)/2+8 ifi+jisodd, 

(arithmetic in Z). The resulting TD(3, 28) is isomorphic to the original, and the 
operation * defines the quasigroup. The quasigroup is commutative (( i * j) = 
(j * i)) and half-idempotent (the corresponding Latin square has diagonal entries 
0,1,2, ... , s -1, 0,1,2, ... , s -1 in that order). Being isomorphic to the original TD, 
the new TD may have its triples partitioned into at most 8L v'2SJ - 8 triangle-free 
classes. 

The point set of the STS(68 + 1) is {O, 1, ... ,28 -I} x {a, b, c} U {oo}. The triples 
of the STS(68 + 1) are as follows: 

{(x, a), (x, b), (x, c)} : x E {O, 1, ... ,8 -I} 

{( x, a), (x - s , b), oo} : x E {8, 8 + 1, ... , 2s - I} 
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{(x,b), (x - 8,e),00}: x E {8,8 + 1, ... ,28 -I} 
{ (x , e), (x - 8, a), OO} : x E {8, 8 + 1, ... , 2s - I} 

{(x, a), (y, a), (x * y, b)} : x, y E {O, 1, ... ,2s}, x =1= y 

{(x, b), (y, b), (x * y, e)} : x, y E {O, 1, ... , 2s}, x =1= y 

{(x, e), (y, e), (x * y, a)} : x, y E {O, 1, ... , 2s}, x =1= y. 

If A is a triangle-free class in the new TD then the set {{(x, a), (y, a), (x * y, b)} : 
(x, y,x * y) E A} will be a triangle-free set of triples of the STS(68 + 1). The same 
argument applies to the sets of triples {{(x, b), (y, b), (x * y, en : (x, y, x * y) E A} 
and {{(x, e), (y, c), (x * y, a)} : (x, y, x * y) E A}. Finally, the two sets of triples 
{{ (x, a), (x, b), (x, e)} : x E {O, 1, ... ,8 - I}} and {{ (x, a), (x - 8, b), 00 }, { (x, b), 
(x - 8 , c), 00 }, {(x, e), (x - s, a), oo} : x E {8, S + 1, ... , 2s - I}} are also triangle­
free. Thus the triples of the STS(68 + 1) are partitioned into at most 24l ffBJ - 22 
triangle-free classes. With v = 68 + 1, the result follows. D 

Corollary 3.2 For all admissible v, X(B5 , v) ::; AV1
/

2 for some absolute constant A. 
Proof. The result follows immediately from Theorems 3.3 and 3.4. In fact, A ::; BV3. 

D 

4 Concluding Remarks 

The final result of Section 3 is unlikely to be best possible. It relies on using specific 
TDs whose triples can be partitioned into triangle-free classes in a particular way, 
i.e. by combining parallel and partial parallel classes. The estimation of the partition 
size for this particular approach is itself dependent on a sufficient, but by no means 
necessary, partition of the points of "neighbouring" projective planes. The degree 
of closeness inherent in the word "neighbouring" is dependent on knowledge of the 
distribution of primes via Bertrand's Postulate. Moreover, Theorem 3.1 suggests 
that the exponent 1/2 in Corollary 3.2 may be significantly reduced. It would be 
interesting to determine a more precise bound valid for all admissible v. 

Of independent interest is the question, partially addressed in Section 2, of deter­
mining the minimum number of caps required to partition PG(n, 3). The best result 
we have here is Theorem 2.4. Again, the possibility of improvement remains open. 
One might also reasonably ask the corresponding question regarding PG(n, q). 
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