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Abstract 

Let k and b be integers with k > 1. A set A of integers is called (k, b)
linear-free if x E A implies kx + b ¢ A. Such a set A is maximal in 
[I,n] = {1,2, ... ,n} if AU{t} is not (k,b)-linear-free for any t in [1,nJ\A. 
Let M = M(n, k, b) be the set of all maximal (k, b)-linear-free subsets 
of [1, n] and define f(n, k, b) = max{IAI : A E M} and g(n, k, b) = 
min{IAI : A EM}. In this paper a new method for constructing maximal 
(k, b)-linear-free subsets of [I,n] is given and formulae for f(n, k, b) and 
g(n, k, b) are obtained. Also, we investigate the spectrum of maximal 
(k, b)-linear-free subsets of [1, n], and prove that there is a maximal (k, b)
linear-free subset of [1, n] with x elements for any integer x between the 
minimum and maximum possible orders. 

1 Introduction 

Throughout the paper n, k and b are fixed integers, k > 1. For integers e and d, let 
[e, d]={x : x is an integer and e ~ x ~ d}. We denote (ki - 1)/(k - 1) by (k i

). 

A set A of integers is called k-multiple-free if x E A implies kx ¢ A. Such a 
set A is maximal in [1,n] if Au it} is not k-multiple-free for any t in [1,n] \ A. 
Let f(n,k)=max{IAI : A ~ [1,n] is k-multiple-free}. A subset A of [1,n] with 
IAI = f(n, k) is called a maximal k-multiple-free subset of [1, n]. 

In [1], E.T.H. Wang investigated 2-multiple-free subsets of [1, n] (these are called 
double-free subsets) and gave a recurrence relation and a formula for f(n, 2). In [3] 
Leung and Wei obtained a recurrence and a formula for f (n, k). 

Naturally the concept of multiple-free can be generalized to multiple and translat
ion-free, or linear-free. A set A of integers is called (k, b)-linear-free if x E A implies 
kx + b ¢ A. Clearly, if b = 0, A is k-multiple-free; if b = 0, k = 2, A is double-free. 
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Such a set A is maximal in [1, n) if A U it} is not (k, b)-linear-free for any t in 
[1, n] \A. We write M = M(n, k, b) for the set of all maximal (k, b)-linear-free subsets 
of [1, n] and define f(n, k, b) = max{IAI : A EM}, g(n, k, b) = min{IAI : A EM}. 

In this paper we focus on three problems concerning f(n, k, b) and g(n, k, b): 
(1) constructing maximal (k, b)-linear-free subsets of [1, n) and obtaining formulae 
for f(n, k, b) and g(n, k, b); (2) determining the spectrum {IAI : A E M} ; (3) giving 
several formulae in some special cases. As it turns out, we deal with the same topic 
as the work of Liu and Zhou ([5]), but our approach and results are different. 

2 Main results 

First we introduce some preliminary results. 
A subset A of [1, n] is adjacency-free if A never contains both i and i + 1 for any 

i, and such an A is maximal adjacency-free if A U {t} is not adjacency-free for any t 
in [1, n) \ A. 

Lemma 1 [4] There is a maximal adjacency-free subset A of [1, n) if and only if 

r~l :s; IAI :s; r~l 
Put P={p : p E [1, n] and p =1= km + b for any mEN}, and define n(p) = 

llogk;~t>f:=i~J , Qp = {p,pk + b,pk2 + b(k2
), ••• ,pkn(p) + b(kn(p»)}, for any pEP. 

Lemma 2 [1, n] = UpEpQp 

Proof. For any s E [1, n), if s i- km + b then s E Qs, otherwise s = km + b 
for some m E [1, n]. In this case, if m =1= kq + b then s, m E Qm, otherwise m = 
kq + b, s qk2 + b(k2 ) for some q E N. By repeating the above procedure, we will 
eventually obtain s = rkj + b(kj) E Qr for some j E N, r E [1, n], and r =1= kt + b for 
any tEN. So [1, n] ~ UpEpQp' 

Clearly UpEpQp ~ [1, n] . We have UpEpQp = [1, n].D 

It is evident that Qp n Qr = 0 if p and r are distinct elements of P. So we have 

Lemma 3 Let S be a subset of [1,n), Sp = S n Qp for any pEP. Then 
S = UpEPSp, and S is a maximal (k, b)-linear-free subset of [1, n] if and only if Sp is 
a maximal (k, b)-linear-free subset in Qp. 

Now we define a one-to-one correspondence <p from Qp to [1, n(p) + 1) by <p(pki + 
b(ki)) = i + 1. Then we have 

Lemma 4 Sp is a maximal (k, b)-linear-free subset in Qp if and only if cp(Sp) is 
maximal adjacency-free in [1, n(p) + 1] . 

Let Nn(p)={Qi : i E P, and IQil = n{p) + I} for any pEP. Clearly, Qp E Nn(p) , 
so Nn(p) =1= 0. 

In the following Lemma, if a < b, we define l a~b J = O. 

Lemma 5 

IN I kn(p) kn(pHl + k n(p)+2 

{ 
In-b(kn(p)}J - 2l n - b(k

n
(P)+1)J In-b(k

n
(P)+2}J for n(p} < n(l) 

n(p) = In-b(kn(P)} J 
kn(p) for n(p} = n{I). 
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Proof. Case 1. If n(p) < n(I), for any i E [1, n] such that IQil = n(p) + 1, 
we have ikn(p) + b(kn(p») < nand ikn(p)+l + b(kn(p)+l) > n then i E [In-b(kn

(P)+l)J + - , kn(pHl 

1 Ln-b(kn(P»J] 
, kn(p) • 

• [In-b(kn(P)+l) J Ln-b(kn(P» J] If z = km + b for some mEN, then km + b E kn(p)+1 + 1, kn(p) , so 

[L
n - b(k n (P)+2)J 1 Ln - b(kn (P)+1)Jl 

m E kn(p)+2 +, kn(pHl • 

Clearly, 

I Nn(p) I = I{i : i E P and IQil = n(p) + 1}1 
= I{i: i E [l,n] and IQil = n(p) + 1}1 

-I{i: i E [1,n], IQil = n(p) + 1 and i rf- P}I 

= (In - b(kn(P»)J -In - b(kn(P)+l)J) 
kn(p) kn(p)=l 

- (In - b(kn(P)+l)J -In - b(k
n
(P)+2)J) 

kn(p)=l kn(p)+2 

= In - b(kn(P»)J - 2ln - b(kn(P)+l)J + In - b(k
n
(P)+2)J . 

kn(p) kn(p)+l kn(p)+2 

Case 2. If n(p) = n(I), then kn(l) + b(kn(1») ::; nand (k + b)kn(l) + b(kn(1») = 
kn(l)+1+b(kn(l)+1) > n. Hence 1::; i < k+bfor any i E [1,n] such that IQil = n(I)+I, 
so i -=I km + b for any mEN. We obtain INn(l)1 = l n-!~;t) J.O 

Theorem 1 

(i) f(n,k,b) = L:PEPrn(pJ+ll = E~li) INilri~11; 

(ii) g(n, k, b) = L:pEP rn(pJ+ll = E~li) I Nil ri11l 

Proof. (i) Let S be a (k, b)-linear-free subset of [1, nJ. By Lemma 1 and 
Lemma 4, for each pEP, {ISpl : Sp is a maximal (k, b)-linear-free subset in Qp} = 
{lcp(Sp)1 : cp(Sp) is a maximal adjacency-free subset in [1, n(p) + I]} = [rn(pJ+ll, 
rn(pJ+ll]. 

By Lemma 3 , S is a maximal (k, b)-linear-free subset of [1, n] if and only if Sp 
is a maximal adjacency-free subset in [1, n(p) + 1]. If lSI = fen, k, b), we can choose 
ISpl = rn(pJ+ll for each pEP. So I(n,k,b) = L:PEPr n(pJ+l1 = E~li) INilritll by 
the definition of I Nn(p) I· 

The proof of (ii) is similar.D 

63-(25 ) Example 1. Let n = 63, k = 2 and b = 1. Then n(l} = 5, INn(l)1 = l 25 J = 
1 and IN>I = l63-~2i)J - 2l63-~2i+l)J + l63-~2i+2)J = 24- i for 0 < i < 4 , z 2' 2,+1 2.+2 ,- - • 

1(63,2,1) = E~l~ INilritll = 24 x 1+23 X 1+22 X 2+21 X 2+20 x 3+1 x 3 = 42. 

g(63, 2, 1) = E~l~ INdri111 = 24 x 1+23 x 1 +22 x 1+21 x 2+20 x 2+1 x 2 = 36. 

Now we consider the spectrum {IAI : A EM}. We have 
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Theorem 2 For any value x in [g(n, k, b), f(n, k, b)], there is a maximal (k, b)
linear-free subset of [1, n] with x elements. 

Proof. Suppose S E M. By Lemma 1 and Theorem 1, we can choose Sp to 
have any value in the range [rn(pJ+ll, rn(pJ+11] for each pEP. So we can obtain a 
maximal (k, b)-linear-free subset of (1, n] and lSI = x E [g(n, k, b), f(n, k, b)]. Also, 
when x is in (g(n,k,b),f(n,k,b)) there is more than one subset S which satisfies 
lSI =x.D 

Theorem 3 If n = km + b(km) for some mEN, then 

(i) f(n, k, b) = rmt1l + (k + b - 2) rIfl + L:~11 ki-l(k + b - 1)(k - 1) rm;il; 
(ii) g(n, k, b) = rmp-1 + (k + b - 2) rW'l + L:~11 ki-l(k + b - l)(k - 1) rm;il. 

Proof. Case 1. If n = km + b(km), then n{l) = m and INn(l)1 = 1. 
Case 2. Suppose n(p) = m - 1 for some pEP. Then pkm- 1 + b(km-l) ::; n = 

km + b(km) = (k + b)km- 1 + b(km- 1
), so 2 ~ p ~ k + b - 1, and INm-d = k + b - 2. 

Case 3. Suppose n(p) = m - i-I, i E [1, m - 1] for some pEP. By Lemma 5, 
I Nn(p) I = l n-!~mt-il-l) J - 2l n_!~m.-i) J + Ln-!~m.:il+l) J = ki-l(k + b - l)(k - 1). 

By Theorem 1, (i) and (ii) are obtained.D 

As we expected, if b = 0, formula (ii) of Theorem 3 is exactly the same as 
Theorem 5 of Lai ([2]). 

Theorem 4 Suppose k + b > 2. Then f(n, k, b)=g(n, k, b) if and only if n < 
k2 + kb + b. 

Proof. For convenience we denote "if and only if" by "{:=}". By Theorem 1, 
f(n, k, b) = g(n, k, b) {:=} L:~i~) INil ri~11 = L~ii) INil r¥ 1 {:=} ri~ll = ri;11 for 
any i E [0, n(I)] {:=} n(l) < 2 {=::> n < k2 + kb + b.D 

Now we give some recurrence relations for f(n, k, b) and g(n, k, b). 

Theorem 5 Suppose n = ks + b for some sEN. 

(i) If 1 ~ i ~ k, then f(n + i, k, b) = f(n, k, b) + i. 
(ii) Suppose n + k = pkm + b(km), where pEP. If m == 0 (mod 2), then 

f(n + k, k, b) = f(n, k, b) + k, otherwise f(n + k, k, b) = f(n, k, b) + k - 1. 

Proof (i) Suppose n = ks + b. Then n + i i= kr + b for any r E N, 1 ~ i ~ k. 
Thus 

By Theorem 1, we have f(n + i, k, b) = f(n, k, b) + i . 
(ii) Supose n + k = pkm + b(km), where pEP and m == 0 (mod 2), so m 2: 2. 

Let 8 be a maximal (k, b)-linear-free subset in [1, n + k] with 181 = f(n + k, k, b). 
Consider Qp. By Theorem 1, ISpl = IS n Qpl = rn(pJ+ll = rmt 1l = T + 1. 

Let R be a maximal (k, b)-linear-free subset in (1, n + k -1] with IRI = f(n + k-
1, k, b). Since [1, n + k - 1] = [1, n + k] - {n + k = pkm + b(km)}, consider Qp and 
n(p) = m - 1. By Theorem 1, IRvI = IR n Qpl = rn (pJ+11 = r(m-;)+ll = T' 
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We may choose R so that Rand S have the same elements in any Qq for all 
q E P except those in Qp. Therefore f(n + k - 1, k, b) = f(n + k, k, b) 1. But by 
(i), fen + k - 1, k, b) = fen, k, b) + k - 1. Hence fen + k, k, b) = fen, k, b) + k. 

If m t= 0 (mod 2), then by employing the same Sand R as above, we have 
rmt1l = mt1 = pm-;)+11. This implies that fen + k, k, b) = fen + k - 1, k, b) = 
fen, k, b) + k - 1.0 

Example 2. Let n = 61, k = 2, and b = 1.n+k = 61+2 = 63 = 1 x 25+1 x (25
), 

and 5 == 1 (mod 2). By (ii), 2,1) = f(61, 2, 1) + 2 - 1, so by Example 1, we 
obtain f(61, 2, 1) = 42 - 1 = 41. 

If i = 1 < k = 2. By (i), f(62, 2,1) = f(61, 2,1) + 1 = 41 + 1 = 42 
On the other hand, it is easy to prove f(61, 2,1) = 41, and f(62, 2,1) = 42 by 

Theorem 1. 

Similarly, we have 

Theorem 6 Suppose n = ks + b for some sEN. 

(i) If 1 ~ i ~ k, then g(n + i, k, b) = g(n, k, b) + i. 
(ii) Suppose n + k = pkm + b(km), and pEP. If m == 0 (mod 3), then 

g(n + k, k, b) = g(n, k, b) + k, otherwise g(n + k, k, b) = g(n, k, b) + k - 1.0 
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