On maximal (k, b)-linear-free sets of integers and its spectrum*

Lihua You Gexin Yu Bolian Liu

Department of Mathematics
South China Normal University
Guangzhou, 510631, P.R. of China

Abstract

Let k and b be integers with $k>1$. A set A of integers is called (k, b) -linear-free if $x \in A$ implies $k x+b \notin A$. Such a set A is maximal in $[1, n]=\{1,2, \ldots, n\}$ if $A \cup\{t\}$ is not (k, b)-linear-free for any t in $[1, n] \backslash A$. Let $M=M(n, k, b)$ be the set of all maximal (k, b)-linear-free subsets of $[1, n]$ and define $f(n, k, b)=\max \{|A|: A \in M\}$ and $g(n, k, b)=$ $\min \{|A|: A \in M\}$. In this paper a new method for constructing maximal (k, b)-linear-free subsets of $[1, \mathrm{n}]$ is given and formulae for $f(n, k, b)$ and $g(n, k, b)$ are obtained. Also, we investigate the spectrum of maximal (k, b)-linear-free subsets of $[1, n]$, and prove that there is a maximal (k, b) -linear-free subset of $[1, n]$ with x elements for any integer x between the minimum and maximum possible orders.

1 Introduction

Throughout the paper n, k and b are fixed integers, $k>1$. For integers c and d, let $[c, d]=\{x: x$ is an integer and $c \leq x \leq d\}$. We denote $\left(k^{i}-1\right) /(k-1)$ by $\left\langle k^{i}\right\rangle$.

A set A of integers is called k-multiple-free if $x \in A$ implies $k x \notin A$. Such a set A is maximal in $[1, n]$ if $A \cup\{t\}$ is not k-multiple-free for any t in $[1, n] \backslash A$. Let $f(n, k)=\max \{|A|: A \subseteq[1, n]$ is k-multiple-free $\}$. A subset A of $[1, n]$ with $|A|=f(n, k)$ is called a maximal k-multiple-free subset of $[1, n]$.

In [1], E.T.H. Wang investigated 2-multiple-free subsets of $[1, n]$ (these are called double-free subsets) and gave a recurrence relation and a formula for $f(n, 2)$. In [3] Leung and Wei obtained a recurrence and a formula for $f(n, k)$.

Naturally the concept of multiple-free can be generalized to multiple and translat-ion-free, or linear-free. A set A of integers is called (k, b)-linear-free if $x \in A$ implies $k x+b \notin A$. Clearly, if $b=0, A$ is k-multiple-free; if $b=0, k=2, A$ is double-free.

[^0]Such a set A is maximal in $[1, n]$ if $A \cup\{t\}$ is not (k, b)-linear-free for any t in $[1, n] \backslash A$. We write $M=M(n, k, b)$ for the set of all maximal (k, b)-linear-free subsets of $[1, n]$ and define $f(n, k, b)=\max \{|A|: A \in M\}, g(n, k, b)=\min \{|A|: A \in M\}$.

In this paper we focus on three problems concerning $f(n, k, b)$ and $g(n, k, b)$: (1) constructing maximal (k, b)-linear-free subsets of $[1, n]$ and obtaining formulae for $f(n, k, b)$ and $g(n, k, b)$; (2) determining the spectrum $\{|A|: A \in M\}$; (3) giving several formulae in some special cases. As it turns out, we deal with the same topic as the work of Liu and Zhou ([5]), but our approach and results are different.

2 Main results

First we introduce some preliminary results.
A subset A of $[1, n]$ is adjacency-free if A never contains both i and $i+1$ for any i, and such an A is maximal adjacency-free if $A \cup\{t\}$ is not adjacency-free for any t in $[1, n] \backslash A$.

Lemma 1 [4] There is a maximal adjacency-free subset A of $[1, n]$ if and only if $\left\lceil\frac{n}{3}\right\rceil \leq|A| \leq\left\lceil\frac{n}{2}\right\rceil$.

Put $\mathrm{P}=\{p: p \in[1, n]$ and $p \neq k m+b$ for any $m \in N\}$, and define $n(p)=$ $\left\lfloor\log _{k} \frac{n+b /(k-1)}{p+b /(k-1)}\right\rfloor, Q_{p}=\left\{p, p k+b, p k^{2}+b\left\langle k^{2}\right\rangle, \cdots, p k^{n(p)}+b\left\langle k^{n(p)}\right\rangle\right\}$, for any $p \in P$.

Lemma $2[1, n]=\cup_{p \in P} Q_{p}$
Proof. For any $s \in[1, n]$, if $s \neq k m+b$ then $s \in Q_{s}$, otherwise $s=k m+b$ for some $m \in[1, n]$. In this case, if $m \neq k q+b$ then $s, m \in Q_{m}$, otherwise $m=$ $k q+b, s=q k^{2}+b\left\langle k^{2}\right\rangle$ for some $q \in N$. By repeating the above procedure, we will eventually obtain $s=r k^{j}+b\left\langle k^{j}\right\rangle \in Q_{r}$ for some $j \in N, r \in[1, n]$, and $r \neq k t+b$ for any $t \in N$. So $[1, n] \subseteq \cup_{p \in P} Q_{p}$.

Clearly $\cup_{p \in P} Q_{p} \subseteq[1, n]$. We have $\cup_{p \in P} Q_{p}=[1, n]$. \square
It is evident that $Q_{p} \cap Q_{r}=\emptyset$ if p and r are distinct elements of P. So we have
Lemma 3 Let S be a subset of $[1, \mathrm{n}], S_{p}=S \cap Q_{p}$ for any $p \in P$. Then $S=\cup_{p \in P} S_{p}$, and S is a maximal (k, b)-linear-free subset of $[1, n]$ if and only if S_{p} is a maximal (k, b)-linear-free subset in Q_{p}.

Now we define a one-to-one correspondence φ from Q_{p} to $[1, n(p)+1]$ by $\varphi\left(p k^{i}+\right.$ $\left.b\left(k^{i}\right\rangle\right)=i+1$. Then we have

Lemma $4 S_{p}$ is a maximal (k, b)-linear-free subset in Q_{p} if and only if $\varphi\left(S_{p}\right)$ is maximal adjacency-free in $[1, n(p)+1]$.

Let $N_{n(p)}=\left\{Q_{i}: i \in P\right.$, and $\left.\left|Q_{i}\right|=n(p)+1\right\}$ for any $p \in P$. Clearly, $Q_{p} \in N_{n(p)}$, so $N_{n(p)} \neq \emptyset$.

In the following Lemma, if $a<b$, we define $\left\lfloor\frac{a-b}{c}\right\rfloor=0$.
Lemma 5

$$
\left|N_{n(p)}\right|= \begin{cases}\left\lfloor\frac{n-b\left\langle k^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor-2\left\lfloor\frac{n-b\left\langle k^{n(p)+1}\right\rangle}{k^{n(p)+1}}\right\rfloor+\left\lfloor\frac{n-b\left\langle\chi^{n(p)+2}\right.}{k^{n(p)+2}}\right\rfloor & \text { for } n(p)<n(1) \\ \left\lfloor\frac{n-b\left\langle n^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor & \text { for } n(p)=n(1) .\end{cases}
$$

Proof. Case 1. If $n(p)<n(1)$, for any $i \in[1, n]$ such that $\left|Q_{i}\right|=n(p)+1$, we have $i k^{n(p)}+b\left\langle k^{n(p)}\right\rangle \leq n$ and $i k^{n(p)+1}+b\left\langle k^{n(p)+1}\right\rangle>n$, then $i \in\left\lfloor\left\lfloor\frac{n-b\left\langle n^{n}(p)+1\right.}{k^{n(p)+1}}\right\rfloor+\right.$ $\left.1,\left\lfloor\frac{n-b\left\langle k^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor\right\rfloor$.

If $i=k m+b$ for some $m \in N$, then $k m+b \in\left[\left\lfloor\frac{n-b\left(k^{n(p)+1}\right)}{k^{n(p)+1}}\right\rfloor+1,\left\lfloor\frac{\left.n-b k^{n(p)}\right)}{k^{n(p)}}\right\rfloor\right]$, so $m \in\left[\left\lfloor\frac{n-b\left\langle k^{n(p)+2}\right)}{k^{n(p)+2}}\right\rfloor+1,\left\lfloor\frac{n-b\left\langle k^{n(p)+1}\right)}{k^{n(p)+1}}\right\rfloor\right]$.

Clearly,

$$
\begin{aligned}
&\left|N_{n(p)}\right|= \mid\left\{i: i \in P \text { and }\left|Q_{i}\right|=n(p)+1\right\} \mid \\
&= \mid\left\{i: i \in[1, n] \text { and }\left|Q_{i}\right|=n(p)+1\right\} \mid \\
& \quad-\mid\left\{i: i \in[1, n],\left|Q_{i}\right|=n(p)+1 \text { and } i \notin P\right\} \mid \\
&=\left(\left\lfloor\frac{n-b\left\langle k^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor-\left\lfloor\frac{n-b\left\langle k^{n(p)+1}\right\rangle}{k^{n(p)=1}}\right\rfloor\right) \\
& \quad-\left(\left\lfloor\frac{n-b\left\langle k^{n(p)+1}\right\rangle}{k^{n(p)=1}}\right\rfloor-\left\lfloor\frac{n-b\left\langle k^{n(p)+2}\right\rangle}{k^{n(p)+2}}\right\rfloor\right) \\
&=\left\lfloor\frac{n-b\left\langle k^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor-2\left\lfloor\frac{n-b\left\langle k^{n(p)+1}\right\rangle}{k^{n(p)+1}}\right\rfloor+\left\lfloor\frac{n-b\left\langle k^{n(p)+2}\right\rangle}{k^{n(p)+2}}\right\rfloor .
\end{aligned}
$$

Case 2. If $n(p)=n(1)$, then $k^{n(1)}+b\left\langle k^{n(1)}\right\rangle \leq n$ and $(k+b) k^{n(1)}+b\left\langle k^{n(1)}\right\rangle=$ $k^{n(1)+1}+b\left\langle k^{n(1)+1}\right\rangle>n$. Hence $1 \leq i<k+b$ for any $i \in[1, n]$ such that $\left|Q_{i}\right|=n(1)+1$, so $i \neq k m+b$ for any $m \in N$. We obtain $\left|N_{n(1)}\right|=\left\lfloor\frac{n-b\left\langle n^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor$. \square

Theorem 1

$$
\begin{align*}
& f(n, k, b)=\sum_{p \in P}\left\lceil\frac{n(p)+1}{2}\right\rceil=\sum_{i=1}^{n(1)}\left|N_{i}\right|\left\lceil\frac{i+1}{2}\right\rceil ; \tag{i}\\
& g(n, k, b)=\sum_{p \in P}\left\lceil\frac{n(p)+1}{3}\right\rceil=\sum_{i=1}^{n(1)}\left|N_{i}\right|\left\lceil\frac{i+1}{3}\right\rceil . \tag{ii}
\end{align*}
$$

Proof. (i) Let S be a (k, b)-linear-free subset of $[1, n]$. By Lemma 1 and Lemma 4, for each $p \in P,\left\{\left|S_{p}\right|: S_{p}\right.$ is a maximal (k, b)-linear-free subset in $\left.Q_{p}\right\}=$ $\left\{\left|\varphi\left(S_{p}\right)\right|: \varphi\left(S_{p}\right)\right.$ is a maximal adjacency-free subset in $\left.[1, n(p)+1]\right\}=\left[\left\lceil\frac{n(p)+1}{3}\right\rceil\right.$, $\left.\left\lceil\frac{n(p)+1}{2}\right\rceil\right]$.

By Lemma $3, S$ is a maximal (k, b)-linear-free subset of $[1, n]$ if and only if S_{p} is a maximal adjacency-free subset in $[1, n(p)+1]$. If $|S|=f(n, k, b)$, we can choose $\left|S_{p}\right|=\left\lceil\frac{n(p)+1}{2}\right\rceil$ for each $p \in P$. So $f(n, k, b)=\sum_{p \in P}\left\lceil\frac{n(p)+1}{2}\right\rceil=\sum_{i=1}^{n(1)}\left|N_{i}\right|\left\lceil\frac{i+1}{2}\right\rceil$ by the definition of $\left|N_{n(p)}\right|$.

The proof of (ii) is similar.
Example 1. Let $n=63, k=2$ and $b=1$. Then $n(1)=5,\left|N_{n(1)}\right|=\left\lfloor\frac{63-\left(2^{5}\right)}{2^{5}}\right\rfloor=$ 1 , and $\left|N_{i}\right|=\left\lfloor\frac{63-\left\langle i^{i}\right\rangle}{2^{2}}\right\rfloor-2\left\lfloor\frac{63-\left\langle 2^{i+1}\right\rangle}{2^{i+1}}\right\rfloor+\left\lfloor\frac{63-\left\langle 2^{i+2}\right\rangle}{2^{2+2}}\right\rfloor=2^{4-i}$, for $0 \leq i \leq 4$.
$f(63,2,1)=\sum_{i=0}^{n(1)}\left|N_{i}\right|\left\lceil\frac{i+1}{2}\right\rceil=2^{4} \times 1+2^{3} \times 1+2^{2} \times 2+2^{1} \times 2+2^{0} \times 3+1 \times 3=42$.
$g(63,2,1)=\sum_{i=0}^{n(1)}\left|N_{i}\right|\left\lceil\frac{i+1}{3}\right\rceil=2^{4} \times 1+2^{3} \times 1+2^{2} \times 1+2^{1} \times 2+2^{0} \times 2+1 \times 2=36$.
Now we consider the spectrum $\{|A|: A \in M\}$. We have

Theorem 2 For any value x in $[g(n, k, b), f(n, k, b)]$, there is a maximal (k, b) -linear-free subset of $[1, n]$ with x elements.

Proof. Suppose $S \in M$. By Lemma 1 and Theorem 1, we can choose S_{p} to have any value in the range $\left[\left\lceil\frac{n(p)+1}{3}\right\rceil,\left\lceil\frac{n(p)+1}{2}\right\rceil\right]$ for each $p \in P$. So we can obtain a maximal (k, b)-linear-free subset of $[1, n]$ and $|S|=x \in[g(n, k, b), f(n, k, b)]$. Also, when x is in $(g(n, k, b), f(n, k, b))$ there is more than one subset S which satisfies $|S|=x$.ㅁ

Theorem 3 If $n=k^{m}+b\left\langle k^{m}\right\rangle$ for some $m \in N$, then
(ii) $g(n, k, b)=\left\lceil\frac{m+1}{3}\right\rceil+(k+b-2)\left\lceil\frac{m}{3}\right\rceil+\sum_{i=1}^{m-1} k^{i-1}(k+b-1)(k-1)\left\lceil\frac{m-i}{3}\right\rceil$.

Proof. Case 1. If $n=k^{m}+b\left\langle k^{m}\right\rangle$, then $n(1)=m$ and $\left|N_{n(1)}\right|=1$.
Case 2. Suppose $n(p)=m-1$ for some $p \in P$. Then $p k^{m-1}+b\left\langle k^{m-1}\right\rangle \leq n=$ $k^{m}+b\left\langle k^{m}\right\rangle=(k+b) k^{m-1}+b\left\langle k^{m-1}\right\rangle$, so $2 \leq p \leq k+b-1$, and $\left|N_{m-1}\right|=k+b-2$.

Case 3. Suppose $n(p)=m-i-1, i \in[1, m-1]$ for some $p \in P$. By Lemma 5, $\left|N_{n(p)}\right|=\left\lfloor\frac{n-b\left\langle k^{m-i-1}\right\rangle}{k^{m-i-1}}\right\rfloor-2\left\lfloor\frac{n-b\left\langle k^{m-i}\right.}{k^{m-i}}\right\rfloor+\left\lfloor\frac{n-b\left\langle k^{m-i+1}\right.}{k^{m-i+1}}\right\rfloor=k^{i-1}(k+b-1)(k-1)$.

By Theorem 1, (i) and (ii) are obtained.
As we expected, if $b=0$, formula (ii) of Theorem 3 is exactly the same as Theorem 5 of Lai ([2]).

Theorem 4 Suppose $k+b>2$. Then $f(n, k, b)=g(n, k, b)$ if and only if $n<$ $k^{2}+k b+b$.

Proof. For convenience we denote "if and only if" by " \Longleftrightarrow ". By Theorem 1, $f(n, k, b)=g(n, k, b) \Longleftrightarrow \sum_{i=1}^{n(1)}\left|N_{i}\right|\left\lceil\frac{i+1}{2}\right\rceil=\sum_{i=1}^{n(1)}\left|N_{i}\right|\left\lceil\frac{i+1}{3}\right\rceil \Longleftrightarrow\left\lceil\frac{i+1}{2}\right\rceil=\left\lceil\frac{i+1}{3}\right\rceil$ for any $i \in[0, n(1)] \Longleftrightarrow n(1)<2 \Longleftrightarrow n<k^{2}+k b+b$. \square

Now we give some recurrence relations for $f(n, k, b)$ and $g(n, k, b)$.
Theorem 5 Suppose $n=k s+b$ for some $s \in N$.
(i) If $1 \leq i \leq k$, then $f(n+i, k, b)=f(n, k, b)+i$.
(ii) Suppose $n+k=p k^{m}+b\left\langle k^{m}\right\rangle$, where $p \in P$. If $m \equiv 0(\bmod 2)$, then $f(n+k, k, b)=f(n, k, b)+k$, otherwise $f(n+k, k, b)=f(n, k, b)+k-1$.
Proof (i) Suppose $n=k s+b$. Then $n+i \neq k r+b$ for any $r \in N, 1 \leq i \leq k$. Thus

$$
\left\lfloor\frac{n-b\left\langle k^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor= \begin{cases}\left\lfloor\frac{n+i-b\left\langle k^{n(p)}\right.}{k^{n(p)}}\right\rfloor & \text { for } n(p)>0 \\ \left\lfloor\frac{n+i-\left\langle k^{n(p)}\right\rangle}{k^{n(p)}}\right\rfloor-i & \text { for } n(p)=0 .\end{cases}
$$

By Theorem 1, we have $f(n+i, k, b)=f(n, k, b)+i$.
(ii) Supose $n+k=p k^{m}+b\left\langle k^{m}\right\rangle$, where $p \in P$ and $m \equiv 0(\bmod 2)$, so $m \geq 2$. Let S be a maximal (k, b)-linear-free subset in $[1, n+k]$ with $|S|=f(n+k, k, b)$. Consider Q_{p}. By Theorem 1, $\left|S_{p}\right|=\left|S \cap Q_{p}\right|=\left\lceil\frac{n(p)+1}{2}\right\rceil=\left\lceil\frac{m+1}{2}\right\rceil=\frac{m}{2}+1$.

Let R be a maximal (k, b)-linear-free subset in $[1, n+k-1]$ with $|R|=f(n+k-$ $1, k, b)$. Since $[1, n+k-1]=[1, n+k]-\left\{n+k=p k^{m}+b\left\langle k^{m}\right\rangle\right\}$, consider Q_{p} and $n(p)=m-1$. By Theorem $1,\left|R_{p}\right|=\left|R \cap Q_{p}\right|=\left\lceil\frac{n(p)+1}{2}\right\rceil=\left\lceil\frac{(m-1)+1}{2}\right\rceil=\frac{m}{2}$.

We may choose R so that R and S have the same elements in any Q_{q} for all $q \in P$ except those in Q_{p}. Therefore $f(n+k-1, k, b)=f(n+k, k, b)-1$. But by (i), $f(n+k-1, k, b)=f(n, k, b)+k-1$. Hence $f(n+k, k, b)=f(n, k, b)+k$.

If $m \not \equiv 0(\bmod 2)$, then by employing the same S and R as above, we have $\left\lceil\frac{m+1}{2}\right\rceil=\frac{m+1}{2}=\left\lceil\frac{(m-1)+1}{2}\right\rceil$. This implies that $f(n+k, k, b)=f(n+k-1, k, b)=$ $f(n, k, b)+k-1$.

Example 2. Let $n=61, k=2$, and $b=1 . n+k=61+2=63=1 \times 2^{5}+1 \times\left\langle 2^{5}\right\rangle$, and $5 \equiv 1(\bmod 2)$. By (ii), $f(63,2,1)=f(61,2,1)+2-1$, so by Example 1, we obtain $f(61,2,1)=42-1=41$.

If $i=1<k=2$. By (i), $f(62,2,1)=f(61,2,1)+1=41+1=42$
On the other hand, it is easy to prove $f(61,2,1)=41$, and $f(62,2,1)=42$ by Theorem 1.

Similarly, we have
Theorem 6 Suppose $n=k s+b$ for some $s \in N$.
(i) If $1 \leq i \leq k$, then $g(n+i, k, b)=g(n, k, b)+i$.
(ii) Suppose $n+k=p k^{m}+b\left\langle k^{m}\right\rangle$, and $p \in P$. If $m \equiv 0(\bmod 3)$, then $g(n+k, k, b)=g(n, k, b)+k$, otherwise $g(n+k, k, b)=g(n, k, b)+k-1$.

Acknowledgement

The authors are grateful to the referee for pointing out some writing corrections.

References

1. E.T.H. Wang, On double-free sets of integers. Ars Combinatoria 28(1989) 97-100.
2. Hongyuan Lai, k-multiple-free Sets. Ars Combinatoria 34(1992) 17-24.
3. J.Y-T. Leung and W-D Wei, Maximal k-multiple-free sets of integers. Ars Combinatoria 38(1994) 113-117.
4. W.D. Wallis and Wan Di Wei, On the spectrum of maximal k-multiple-free sets of integers. Ars Combinatoria 41(1995) 57-64.
5. Bolian Liu and Zhou Bo, A generalization of maximal k-multiple-free sets of integers. Ars Combinatoria 52(1999) 285-288.

[^0]: *This research was supported by NNSF of P.R.China and Guangdong Province.

