
The kth upper generalized exponent set for 
primitive matrices* 

Van-Ling Shao 

Department of Mathematics 
North China Institute of Technology 
Taiyuan, Shanxi 030051, P. R. China 

Yu-Bin Gao 

Department of Mathematics 
University of Science and Technology of China 

Hefei, Anhui 230026, P. R. China 
ybgao@mail.ustc.edu.cn 

Abstract 

Let Pn,d be the set of n x n non-symmetric primitive matrices with ex
actly d nonzero diagonal entries. For each positive integer 2 ~ k ~ n -1, 
we determine the kth upper generalized exponent set for Pn,d and char
acterize the extremal matrices by using a graph theoretical method. 

1 Introduction 

An n x n nonnegative matrix A is called primitive if there exists some positive 
integer t such that At > O. The least such positive integer t is called the exponent of 
A, denoted by ')'(A). 

In [1], Brualdi and Liu defined the kth upper generalized exponent F(A, k) as 
follows. 

Definition 1.1 [1] Let A be a primitive matrix of order nand 1 ~ k ~ n - 1. Set 

F(A, k) = min{p I no set of k rows of AP has a column of all zeros }. 

F(A, k) is called the kth upper generalized exponent of A. 
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The kth upper generalized exponent is a generalization of the traditional concept 
of the exponent. Background can be found in [1]. 

It is well-known that for each nonnegative matrix A there exists an associ
ated digraph D(A) whose adjacency matrix has the same zero entries as A. A 
digraph D is primitive iff D is strongly connected and g.c.d(rl, r2, "', r A) = 1, where 
{rl' r2, .. " r A} is the set of distinct lengths of the directed cycles of D. A is primitive 
iff D(A) is primitive. 

Definition 1.2 [1] Let X be the vertex subset of a primitive digraph D. The ex
ponent eXPD(X) is the smallest positive integer p such that for each vertex y of D, 
there exists a walk of length p from at least one vertex in X to y. 

Definition 1.3 [1] Let D be a primitive digraph of order nand 1 :S k :S n - 1. Set 

F(D, k) = max{exPD(X) I X ~ V(D), IXI = k}. (1.1) 

F(D, k) is called the kth upper generalized exponent of D. 

It is obvious that 
F(A, k) = F(D(A), k). (1.2) 

Let Pn,d be the set of n x n non-symmetric primitive matrices with exactly 
d nonzero diagonal entries, End(k) the set of kth upper generalized exponents of 
the matrices in Pn,d' In this paper, we determine the expone,nt set End(k) and 
characterize the extremal matrices. 

Notice that if k = 1, then F(A, k) = ')'(A). In this case, the exponent set End(l) 
has already been determined in [3]. So we will only consider the cases 2 :S k :S n - 1. 

We will make use of the following notation. Let D be a primitive digraph with 
D = (V(D), E(D)). We denote the distance from vertex x to vertex y of D by 
d(x, y). If i,j E V(D), then (i,j) denotes an arc from vertex i to vertex j and [i,j] 
denotes an edge between two vertices i and j, i.e. a 2-cycle. 

2 The generalized exponent set End(k) 

Theorem 2.1 Let n, d, k be positive integers with 2 ~ k ~ n-1 and A E Pn,d' Then 

F(D(A), k) :S 2n - k - d. (2.1) 

Proof. Let X be any k-vertex subset of D(A) and let W be the set of loop vertices 
of D(A). 

(1) k:S n-d. 
Case 1: xnw ::j:. 0. Then eXPD(A) (X) ~ max d(XnW, y) :::; n-1 < 2n-k-d. 

YEV(D(A») 

Case 2: XnW = 0. Let ly = d(W,y) = d(wy,y) (wy E W) and hy = d(X,wy) for 
any y E V(D). Then ly :S n - d, hy :S n - k and eXPD(A) (X) :S max (hy + ly) :S 

YEV(D(A» 
2n - k - d. 
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(2) k ~ n - d + 1. 
X must include at least one loop vertex. \XnWI ~ k-(n-d) = k+d-n. Notice 

that max d(X n W, y) :::; n - (k + d - n) = 2n - k - d. We have eXPD(A)(X) :::; 
YEV(D(A)) 

2n - k - d. 
The proof of the theorem is completed .• 

Theorem 2.2 Let n, d, k be positive integers with 2 :::; k ::; n - 1, d = 1. Then 

{k + 1, k + 2,,,,, 2n - k - I} ~ Enl(k). (2.2) 

Proof. Firstly, suppose k ::; m ::; n - 1. We consider Dl = D(A) with ver
tex set V(D1) = {I, 2,,,', n} and arc set E(Dt} = ((1,1), (1,2), (2,3), "', 
(m - 1, m), (m, m + 1), (m, m + 2)"", (m, n), (m + 1, 1), (m + 2,1)"", (n, I)}. 

It is obvious that A E Pn,l. Take Xo = {2,3,· .. ,k + I}. It is not difficult to 
verify that there is no walk of length 2m - k from any vertex of Xo to the vertex 
m + 1. So we have 

F(D!, k) ~ eXPDl (Xo) ~ 2m - k + 1. (2.3) 

On the other hand, let X be any k-vertex subset of D1• If 1 EX, then 

eXPDl (X) ~ m < 2m - k + 1. (2.4) 

If 1 rt X, letting i be the vertex of X which is closest to 1, then d( i, 1) ~ m + 1 -
k 1 + 1 = m - k + 1 and 

eXPDl (X) ~ m - k + 1 + m = 2m - k + 1. (2.5) 

Combining (2.3), (2.4) and (2.5) we have 

F(Db k) = 2m - k + 1. (2.6) 

Next, suppose k + 1 :::; m ~ n - l.We consider D2 = D(A) with vertex set 
V(D2 ) = {I, 2" . " n} and arc set E(D2 ) = {(1, 1), [1,2]' (2,3), (3, 4)" ", (m -1, m), 
(m, m + 1), (m, m + 2)", " (m, n), (m + 1,1), (m + 2, 1)"", (n, I)}. 

It is obvious that A E Pn,l. Take Xo = {3, 4, ... , k + 2}. It is not difficult to 
verify that there is no walk of length 2m - k -1 from any vertex of Xo to the vertex 
m + 1. Then F(D2' k) ~ eXPD2(XO) ~ 2m - k. 

On the other hand, let X be any k-vertex subset of D2 . If {I, 2} n X =1= 0, then 
exp D2 (X) :::; m + 1 :::; 2m - k. If {I, 2} n X = 0, letting j be the vertex of X which is 
closest to 1, then d(j, 1) ~ m+ 1- k - 2+ 1 = m- k and eXPD2(X) ~ m - k +m = 
2m- k. 

So we have 
F(D2' k) = 2m - k. (2.7) 

Notice that k ::; m ~ n - 1 for Dl and k + 1 ::; m ~ n - 1 for D2 . Combining 
(2.6) and (2.7) we obtain (2.2) .• 

21 



Theorem 2.3 Let n, d, k be positive integers with 2 ::; k ::; n - 1, d = 1. Then 

{2, 3,"" k} ~ En1{k). (2.8) 

Proof. (1) 2 ::; k ::; n - 2. 
Suppose 2 ::; m ::s; k. We consider D3 = D(A) with vertex set V(D3) = 

{I, 2, "', n} and arc set E(D3) = {(I, 1), [1, 2], (2,3), (3,4), .. ·, (m - 1, m), (m, 
m + 1), (m, m + 2)"", (m, n), (m + 1,1), (m + 2,1)"", (n, 1), (m + 1,2), 
(m + 2,2), .. " (n, 2)}. 

It is obvious that A E Pn,l. Take Xo = in, n -1,"" n - k + I}. Then IXol = k. 
Since n - k + 1 ~ 3, it is not difficult to verify that there is no walk of length m - 1 
from any vertex of Xo to the vertex m + 1. Then F{D3 , k) ~ eXPD3(XO) ~ m. 

On the other hand, let X be any k-vertex subset of D3 . If 1 EX, then 
eXPD3(X) ::s; m. If 1 rf. X, then X n {m + 1, m + 2"," n} #- ° and eXPD3(X) ::s; m. 

So we have F(D3, k) = m. Noticing that 2 ::s; m ::s; k, we obtain (2.8). 
(2) k = n - l. 
Suppose 1 ::; m ::; n - 2. We consider Dl = D(A) in Theorem 2.2. 
Take Xo = {2, 3,"" n}. Then IXol = n - 1. It is not difficult to verify that 

there is no walk of length m from any vertex of Xo to the vertex m + 1. Then 
F(Dl' k) 2: eXPDl (Xo) ~ m + 1. 

On the other hand, let X be any k-vertex subset of D l . Since X n {m + 1, 
m + 2,"', n} #- 0, eXPDl (X) ::s; m + 1. 

So we have F(Dl' k) = m + 1. Noticing that 1 ::s; m ::; n - 2, we obtain (2.8) .• 

Theorem 2.4 Let n, d, k be positive integers with 2 ::; k ::; n - d, d 2: 2. Then 

{d + k - 1, d + k,"', 2n - k - d} ~ End(k). (2.9) 

Proof. Suppose d+k -1 ::s; m ::s; n-1. Firstly, we consider D4 = D(A) with vertex 
set V(D4) = {I, 2"", n} and arc set E(D4) = {(I, 1), (2,2)"", (d, d), (1,2), (2,3), 
.. " (m - 1, m), (m, m + 1), (m, m + 2)" . " (m, n), (m + 1, 1), (m + 2, 1)"", (n, In. 

It is obvious that A E Pn,d. Take Xo = {d + 1, d + 2, ... , d + k}. It is not difficult 
to verify that there is no walk of length 2m - d - k + 1 from any vertex of Xo to the 
vertex m + 1. So we have 

(2.10) 

On the other hand, let X be any k-vertex subset of D4 • If {I, 2"", d} n X i- 0, 
then 

(2.11) 

If {I, 2, .. " d} n X = 0, letting i be the vertex of X which is closest to 1, then 
d(i, 1) ::; m + 1 - d - k + 1 = m - k - d + 2 and 

eXPD4 (X) ::s; m - d - k + 2 + m = 2m - d - k + 2. (2.12) 

Combining (2.10), (2.11) and (2.12) we have 

F(D4' k) = 2m - d - k + 2. (2.13) 
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Next, we consider D5 = D(A) with vertex set V(D5) = {I, 2, ... , n} and arc set 
E(D5) = {(I,I),(2,2),· .. ,(d,d),[1,2)'(2,3),(3,4), .. ·,(m-l,m),(m,m + l),(m, 
m + 2)" . " (m, n), (m + 1, 1), (m + 2, 1)"", (n, 1), (m + 1,2), (m + 2,2)" .. , (n, 2)}. 

It is obvious that A E Pn,d' Take Xo = {d + 1, d + 2, ... ,d + k}. It is not difficult 
to verify that there is no walk of length 2m - d - k from any vertex of X 0 to the 
vertex m + 1. Then F(D5' k) ~ eXPDs (Xo) ~ 2m - d - k + 1. 

On the other hand, let X be any k-vertex subset of D5 • If {I, 2,' .. , d} n X i=- (/), 
then eXPD5 (X) ~ m ::; 2m - d - k + 1. If {I, 2"", d} n X = (/), letting j be the 
vertex of X which is closest to 2, then d(j, 2) ~ m + 1 - d - k + 1 = m - k - d + 2 
and eXPD5(X) ~ m - k - d + 2 + m -1 = 2m - k - d + l. 

So we have 
F(D5 , k) = 2m - k - d + 1. (2.14) 

Notice that d + k -1 ::; m ~ n -1. Combining (2.13) and (2.14) we obtain (2.9). 
I 

Theorem 2.5 Let n, d, k be positive integers with 2 ~ k :::; n d, d ~ 2. Then 

{2, 3" . " d + k - 2} ~ End(k). (2.15) 

Proof. Suppose 2 ::; m ~ d + k - 2. We consider D5 = D(A) in Theorem 2.4. 
Take Xo = in, n - 1"", n - k + I}. Then IXol = k. Since n - k + 1 ~ d + 1, it 

is not difficult to verify that there is no walk of length m - 1 from any vertex of Xo 
to the vertex m + 1. Then F(D5' k) ~ eXPD5(XO) ~ m. 

On the other hand, let X be any k-vertex subset of D5 . If {I, 2" .. , d} n X i=- (/), 
then eXPD5(X) ~ m. If {I, 2,'" ,d} n X = 0, then X n {m + I,m + 2,"', n} i=- (/) 
and expDs (X) :::; m. 

So we have F(Ds, k) = m. Noticing that 2 :::; m ~ d + k - 2, we obtain (2.15). I 

Theorem 2.6 Let n, d, k be positive integers with n - d + 1 :::; k ~ n - 1, d ~. 2. 
Then 

{I, 2,,, ., 2n - k - d} ~ End(k). (2.16) 

Proof. Suppose k + d - n :::; m :::; n - 1. We consider D4 = D(A) in Theorem 2.4. 
Take Xo = {I, 2"", k+d-n, d+l, d+2,···, n}. Then IXol = k. It is not difficult 

to verify that there is no walk of length m+l-(k+d-n)-1 = n+m-k-d from any 
vertex of Xo to the vertex m + 1. Then F(D4' k) ~ eXPD4 (Xo) ~ n + m - k - d + 1. 

On the other hand, let X be any k-vertex subset of D4 and W = {I, 2, ... , d}. 
Since IX n WI ~ k + d - n > 0, max d(X n W, y) :::; m + 1 - (k + d - n) = 

yEV(D4) 

n + m + 1 - k - d, then eXPD4 (X) ~ n + m - k - d + 1. 
So we have F(D4' k) = n + m - k - d + 1. Noticing that k + d - n :::; m ::; n - 1, 

we obtain (2.16) .• 

Theorem 2.7 Let n, d, k be positive integers with 2 ~ k ~ n - 1. Then 

End(k) = {I, 2,3"", 2n - k d}. (2.17) 
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Proof. We consider D = D(A) with vertex set V(D) = {I, 2" . " n} and arc set 
E(D) = {(i, j) I i, j = 1,2" ", n} \ {(2, 1), (d + 1, d + 1), (d + 2, d + 2)" . " (n, n)}. 

It is obvious that A E Pn,d and F(D, k) = 1. So 1 E End(k). 
Combining (2.1), (2.2), (2.8), (2.9), (2.15) and (2.16) we obtain (2.17). I 

3 The extremal matrices 

In this section,we characterize the extremal matrices of kth upper generalized 
exponent for Pn,d' 

Theorem 3.1 Let n, d, k be positive integers with k ~ n - d, A E Pn,d, D = D(A). 
Then F(D, k) = 2n - k - d iff D is isomorphic to one of the digraphs Di, where 
Di are strongly connected digraphs with vertex set V (Di) = {I, 2, ... , n} and arc set 
E(Di) = {(I, 1), (2,2),,,,, (d, d), (1,2), (2,3), .. ·, (n - 1, n)} U <1>. 

(1) If k = n - d, then <I> is a subset of {(d + i, 1) 11 ~ i ~ n - d} U {(i,j) 11 ::; 
j < i ::; d}. 

(2) Ifk < n-d, then <I> is a subset of{(i,j) 11 ~j < i ~ d}U{(d+i,d+j) I 
1 ~ j < i ~ n - d} U {( d + i, 1) I 1 ~ i ~ n - d} such that Dr satisfies the conditions: 

(i) There exists d < Xo ~ n such that d(xo, 1) = n - k - d + 1; 
(ii) Let P be a shortest path from Xo to 1. Then the vertex set of P has the form 

yep) = {xo,l,d+m,d+m+l,···,d+s,d+l,d+l+l,···,n-k+l+m-s-2} 

where m 2: 1, n - k + 1 + m - s - 2 ::; nand 1 2: s + 1; 
(iii) For any j > d and j rf- V(P)\{xo}, there is no walk of length 2n - k - d-1 

from j to n. 

Proof. Take Xo = {d+l,d+2, .. ·,n} (when k = n-d) or Xo = {j E V(Di) I j > 
d and j rt V(P)\{xo}} (when k < n - d). It is not difficult to verify that IXol = k 
and there is no walk of length 2n - k - d - 1 from any vertex of Xo to the vertex n 
in Di, so we have 

F(Dr, k) 2: eXPDi(Xo) 2: 2n - k - d. 

Combining with Theorem 2.1, we obtain 

F( Dr, k) = 2n - k - d. 

On the other hand, let k ~ n - d, A E Pn,d, D = D(A), F(D, k) = 2n - k - d, X 
be a k-vertex subset of D with eXPD(X) = 2n - k - d, and let W be the set ofloop 
vertices of D. 

Case 1: W n Xi- 0. Then eXPD(X) ::; ymr~~) d(X n W, y) ~ n - 1 < 2n - k - d. 

It is a contradiction. 
Case 2: W n X = 0. Let ly = deW, y) = dewy, y) (wy E W) and hy = d(X, wy) 

for any y E V(D). If ly < n - d or hy < n - k for any y E V(D), then eXPD(X) ::; 
max (hy + ly) < 2n - k - d. It is also a contradiction. If ly = n - d and hy = n - k 

yEV(D) 
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for some y E V(D), then there exists a Hamilton path in D, and d loop vertices 
of D are consecutive at the beginning of this Hamilton path. Now assume that 
{(I, 1), (2,2)"", (d, d), (1,2), (2,3)"", (n - 1, n)} ~ E(D). In this assumption, we 
have y = n, Wy = d and d(l, n) = n - 1. Further, (i,j) rt E(D) for 1 ::; i ::; n - 2 
and i + 1 < j ::; n. 

Subcase 2.1: k = n - d. It is clear that X = {d + 1, d + 2, ... , n}. Since that 
there is no walk of length 2n - k - d - 1 from i to n for any i EX, we have that 
(i, j) rt E(D) for d + 1 ::; i ::; nand 2 ::; j < i. Thus, D is isomorphic to one of the 

Dr· 
Subcase 2.2: k < n - d. Then D satisfies the conditions: 
(1) For i > d and j ::; d, if (i,j) E E(D), then i rt X, j = 1, and i is unique. Else 

hy < n - k. It is a contradiction. 
(2) d(X, 1) = n - k - d + 1. Further, letting d(X, 1) = d(xo, 1) (xo E X) and P 

be a shortest path from Xo to 1 in D, the vertex set of P has the form 

V(P) = {xo,l,d+m,d+m+l, .. ·,d+s,d+l,d+l+1,···,n-k+l+m-s-2} 

where m 2 1, n - k + I + m - s - 2 ::; nand 1 2 s + 1. 
Notice that eXPD(X) = 2n-k-d. Combining (1) and (2), D must be isomorphic 

to one of the Di. I 

Theorem 3.2 Let n, d, k be positive integers with k 2 n-d+1, A E Pn,d, D = D(A). 
Then F(D, k) = 2n - k - d iff D is isomorphic to one of the digraphs D~, where 
D~ are strongly connected digraphs with vertex set V(D~) = {I, 2,···, n} and arc set 
E(D~) = {(I, 1), (2,2),···, (d, d), (k + d - n, k + d - n + 1), (k + d - n + 1, k + d -
n + 2),,,,, (n - 1, n)} U cI>, where ip is a subset of {(i, j) 11 ::; i ::; k + d - n; 1 ::; j ::; 
k+d-n)}U{(i,k+d-n+l) 11::; i::; k+d-n-1)}U{(i,j) I k+d-n+l::; i::; 
d; 1 ::; j ::; i-I} U {(i,j) I d + 1 ::; i ::; n; 1 ::; j ::; k + d - n + I} U {(i,j) I d + 2 ::; 
i::;n;d+1 ::;j::;i-l}. If{(d+iI,d+jl),(d+i2,d+h), .. ·,(d+it,d+jt)} ~ cI> 
(jl ::; j2 ::; ... ::; jt}, then there are no nonnegative integers kl' k2 , ••. , kt such that 
kl (i1 - jl + 1) + k2 (i2 - j2 + 1) + ... + kt(it - jt + 1) = n - k + m - 1 for 1 ::; m ::; ji' 

Proof. Take Xo = {1,2,"·,k+d-n,d+l,d+2, ... ,n} ~ V(D~). It is not 
difficult to verify that IXo I = k and there is no walk of length 2n - k - d - 1 from 
any vertex of Xo to the vertex n, so we have 

F(D;,k) 2 eXPD2(Xo) 2 2n - k - d. 

Combining with Theorem 2.1, we obtain 

F(D;,k) = 2n - k - d. 

On the other hand, let k 2 n - d + 1, A E Pn,d, D = D(A), F(D, k) = 2n - k - d, 
let X be a k-vertex subset of D with eXPD(X) = 2n - k - d, and let W be the set 
of loop vertices of D. 

If Ixnwi > k+d-n or max d(XnW,v) < n-lxnwl, we have eXPD(X) < 
VEV(D) 

2n - k - d. It is a contradiction. 
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If IX n wI = k + d - n and max d(X n W, v) = d(X n W, y) = n - IX n WI = 
VEV(V) 

2n-k-d, noticing expv(X) = d(XnW, y) = 2n-k-d, there exists a directed path of 
length 2n - k - d in D with n - k + 1 loop vertices. The loop vertices are consecutive 
at the beginning of this directed path. Now assume that {(I, 1), (2,2), "', (d, d), 
(k + d - n, k + d - n + 1), (k + d - n + 1, k + d - n + 2), ... , (n - 1, n)} ~ E(D). In 
this assumption, we have y = n, X = {I, 2, ... ,k + d - n, d + 1, d + 2, ... ,n}. D also 
satisfies the conditions: 

(1) (i, j) <t E(D) for k + d - n S; i S; n - 2 and i + 2 ::; j ::; n. Otherwise, 
d( X n W, y) < 2n - k - d, which gives a contradiction. 

(2) (i, j) <t E(D) for 1 ::; i S; k + d - nand k + d - n + 2 ::; j ::; n. Otherwise, 
d(X n W, y) < 2n - k - d, which gives a contradiction. 

(3) (i, j) <t E(D) for d + 1 S; i ::; nand k + d - n + 2 ::; j ::; d. Otherwise, 
eXPD(X) S; 2n - k - d - 1, which gives a contradiction. 

(4) For d + 1 S; i S; n, there is no walk of length 2n - k - d - 1 from i to n. This 
implies that if {(d + it, d + j1), (d + i2 , d + j2), .. " (d + it, d + jtH ~ E(D), where 
j1 S; j2 ::; .,. S; jt and is > js ~ 1 for 1 S; s ::; t. Then there are no nonnegative 
integers k1' k2,"', kt such that k1(i1 - j1 + 1) + k2{i2 - 12 + 1) + ... + kt{it - jt + 1) = 
n - k + m - 1 for 1 ::; m ::; j1' 

Noticing that expv(X) = 2n - k - d and D is a primitive digraph, D must be 
isomorphic to one of the D2. I 
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