The k th upper generalized exponent set for primitive matrices*

Yan-Ling Shao
Department of Mathematics
North China Institute of Technology
Taiyuan, Shanxi 030051, P. R. China
Yu-Bin Gao
Department of Mathematics
University of Science and Technology of China
Hefei, Anhui 230026, P. R. China
ybgao@mail.ustc.edu.cn

Abstract

Let $P_{n, d}$ be the set of $n \times n$ non-symmetric primitive matrices with exactly d nonzero diagonal entries. For each positive integer $2 \leq k \leq n-1$, we determine the k th upper generalized exponent set for $P_{n, d}$ and characterize the extremal matrices by using a graph theoretical method.

1 Introduction

An $n \times n$ nonnegative matrix A is called primitive if there exists some positive integer t such that $A^{t}>0$. The least such positive integer t is called the exponent of A, denoted by $\gamma(A)$.

In [1], Brualdi and Liu defined the k th upper generalized exponent $F(A, k)$ as follows.

Definition 1.1 [1] Let A be a primitive matrix of order n and $1 \leq k \leq n-1$. Set $F(A, k)=\min \left\{p \mid\right.$ no set of k rows of A^{p} has a column of all zeros $\}$.
$F(A, k)$ is called the k th upper generalized exponent of A.

[^0]The k th upper generalized exponent is a generalization of the traditional concept of the exponent. Background can be found in [1].

It is well-known that for each nonnegative matrix A there exists an associated digraph $D(A)$ whose adjacency matrix has the same zero entries as A. A digraph D is primitive iff D is strongly connected and g.c.d $\left(r_{1}, r_{2}, \cdots, r_{\lambda}\right)=1$, where $\left\{r_{1}, r_{2}, \cdots, r_{\lambda}\right\}$ is the set of distinct lengths of the directed cycles of $D . A$ is primitive iff $D(A)$ is primitive.

Definition 1.2 [1] Let X be the vertex subset of a primitive digraph D. The exponent $\exp _{D}(X)$ is the smallest positive integer p such that for each vertex y of D, there exists a walk of length p from at least one vertex in X to y.

Definition 1.3 [1] Let D be a primitive digraph of order n and $1 \leq k \leq n-1$. Set

$$
\begin{equation*}
F(D, k)=\max \left\{\exp _{D}(X)|X \subseteq V(D),|X|=k\}\right. \tag{1.1}
\end{equation*}
$$

$F(D, k)$ is called the k th upper generalized exponent of D.
It is obvious that

$$
\begin{equation*}
F(A, k)=F(D(A), k) \tag{1.2}
\end{equation*}
$$

Let $P_{n, d}$ be the set of $n \times n$ non-symmetric primitive matrices with exactly d nonzero diagonal entries, $E_{n d}(k)$ the set of k th upper generalized exponents of the matrices in $P_{n, d}$. In this paper, we determine the exponent set $E_{n d}(k)$ and characterize the extremal matrices.

Notice that if $k=1$, then $F(A, k)=\gamma(A)$. In this case, the exponent set $E_{n d}(1)$ has already been determined in [3]. So we will only consider the cases $2 \leq k \leq n-1$.

We will make use of the following notation. Let D be a primitive digraph with $D=(V(D), E(D))$. We denote the distance from vertex x to vertex y of D by $d(x, y)$. If $i, j \in V(D)$, then (i, j) denotes an arc from vertex i to vertex j and $[i, j]$ denotes an edge between two vertices i and j, i.e. a 2 -cycle.

2 The generalized exponent set $E_{n d}(k)$

Theorem 2.1 Let n, d, k be positive integers with $2 \leq k \leq n-1$ and $A \in P_{n, d}$. Then

$$
\begin{equation*}
F(D(A), k) \leq 2 n-k-d \tag{2.1}
\end{equation*}
$$

Proof. Let X be any k-vertex subset of $D(A)$ and let W be the set of loop vertices of $D(A)$.
(1) $k \leq n-d$.

Case 1: $X \cap W \neq \emptyset$. Then $\exp _{D(A)}(X) \leq \max _{y \in V(D(A))} d(X \cap W, y) \leq n-1<2 n-k-d$.
Case 2: $X \cap W=\emptyset$. Let $l_{y}=d(W, y)=d\left(w_{y}, y\right)\left(w_{y} \in W\right)$ and $h_{y}=d\left(X, w_{y}\right)$ for any $y \in V(D)$. Then $l_{y} \leq n-d, h_{y} \leq n-k$ and $\exp _{D(A)}(X) \leq \max _{y \in V(D(A))}\left(h_{y}+l_{y}\right) \leq$ $2 n-k-d$.
(2) $k \geq n-d+1$.
X must include at least one loop vertex. $|X \cap W| \geq k-(n-d)=k+d-n$. Notice that $\max _{y \in V(D(A))} d(X \cap W, y) \leq n-(k+d-n)=2 n-k-d$. We have $\exp _{D(A)}(X) \leq$ $2 n-k-d$.

The proof of the theorem is completed.
Theorem 2.2 Let n, d, k be positive integers with $2 \leq k \leq n-1, d=1$. Then

$$
\begin{equation*}
\{k+1, k+2, \cdots, 2 n-k-1\} \subseteq E_{n 1}(k) . \tag{2.2}
\end{equation*}
$$

Proof. Firstly, suppose $k \leq m \leq n-1$. We consider $D_{1}=D(A)$ with vertex set $V\left(D_{1}\right)=\{1,2, \cdots, n\}$ and arc set $E\left(D_{1}\right)=\{(1,1),(1,2),(2,3), \cdots$, $(m-1, m),(m, m+1),(m, m+2), \cdots,(m, n),(m+1,1),(m+2,1), \cdots,(n, 1)\}$.

It is obvious that $A \in P_{n, 1}$. Take $X_{0}=\{2,3, \cdots, k+1\}$. It is not difficult to verify that there is no walk of length $2 m-k$ from any vertex of X_{0} to the vertex $m+1$. So we have

$$
\begin{equation*}
F\left(D_{1}, k\right) \geq \exp _{D_{1}}\left(X_{0}\right) \geq 2 m-k+1 . \tag{2.3}
\end{equation*}
$$

On the other hand, let X be any k-vertex subset of D_{1}. If $1 \in X$, then

$$
\begin{equation*}
\exp _{D_{1}}(X) \leq m<2 m-k+1 \tag{2.4}
\end{equation*}
$$

If $1 \notin X$, letting i be the vertex of X which is closest to 1 , then $d(i, 1) \leq m+1-$ $k-1+1=m-k+1$ and

$$
\begin{equation*}
\exp _{D_{1}}(X) \leq m-k+1+m=2 m-k+1 \tag{2.5}
\end{equation*}
$$

Combining (2.3), (2.4) and (2.5) we have

$$
\begin{equation*}
F\left(D_{1}, k\right)=2 m-k+1 \tag{2.6}
\end{equation*}
$$

Next, suppose $k+1 \leq m \leq n-1$. We consider $D_{2}=D(A)$ with vertex set $V\left(D_{2}\right)=\{1,2, \cdots, n\}$ and arc set $E\left(D_{2}\right)=\{(1,1),[1,2],(2,3),(3,4), \cdots,(m-1, m)$, $(m, m+1),(m, m+2), \cdots,(m, n),(m+1,1),(m+2,1), \cdots,(n, 1)\}$.

It is obvious that $A \in P_{n, 1}$. Take $X_{0}=\{3,4, \cdots, k+2\}$. It is not difficult to verify that there is no walk of length $2 m-k-1$ from any vertex of X_{0} to the vertex $m+1$. Then $F\left(D_{2}, k\right) \geq \exp _{D_{2}}\left(X_{0}\right) \geq 2 m-k$.

On the other hand, let X be any k-vertex subset of D_{2}. If $\{1,2\} \cap X \neq \emptyset$, then $\exp _{D_{2}}(X) \leq m+1 \leq 2 m-k$. If $\{1,2\} \cap X=\emptyset$, letting j be the vertex of X which is closest to 1 , then $d(j, 1) \leq m+1-k-2+1=m-k$ and $\exp _{D_{2}}(X) \leq m-k+m=$ $2 m-k$.

So we have

$$
\begin{equation*}
F\left(D_{2}, k\right)=2 m-k . \tag{2.7}
\end{equation*}
$$

Notice that $k \leq m \leq n-1$ for D_{1} and $k+1 \leq m \leq n-1$ for D_{2}. Combining (2.6) and (2.7) we obtain (2.2).

Theorem 2.3 Let n, d, k be positive integers with $2 \leq k \leq n-1, d=1$. Then

$$
\begin{equation*}
\{2,3, \cdots, k\} \subseteq E_{n 1}(k) \tag{2.8}
\end{equation*}
$$

Proof. (1) $2 \leq k \leq n-2$.
Suppose $2 \leq m \leq k$. We consider $D_{3}=D(A)$ with vertex set $V\left(D_{3}\right)=$ $\{1,2, \cdots, n\}$ and arc set $E\left(D_{3}\right)=\{(1,1),[1,2],(2,3),(3,4), \cdots,(m-1, m),(m$, $m+1),(m, m+2), \cdots,(m, n),(m+1,1),(m+2,1), \cdots,(n, 1),(m+1,2)$, $(m+2,2), \cdots,(n, 2)\}$.

It is obvious that $A \in P_{n, 1}$. Take $X_{0}=\{n, n-1, \cdots, n-k+1\}$. Then $\left|X_{0}\right|=k$. Since $n-k+1 \geq 3$, it is not difficult to verify that there is no walk of length $m-1$ from any vertex of X_{0} to the vertex $m+1$. Then $F\left(D_{3}, k\right) \geq \exp _{D_{3}}\left(X_{0}\right) \geq m$.

On the other hand, let X be any k-vertex subset of D_{3}. If $1 \in X$, then $\exp _{D_{3}}(X) \leq m$. If $1 \notin X$, then $X \cap\{m+1, m+2, \cdots, n\} \neq \emptyset$ and $\exp _{D_{3}}(X) \leq m$.

So we have $F\left(D_{3}, k\right)=m$. Noticing that $2 \leq m \leq k$, we obtain (2.8).
(2) $k=n-1$.

Suppose $1 \leq m \leq n-2$. We consider $D_{1}=D(A)$ in Theorem 2.2.
Take $X_{0}=\{2,3, \cdots, n\}$. Then $\left|X_{0}\right|=n-1$. It is not difficult to verify that there is no walk of length m from any vertex of X_{0} to the vertex $m+1$. Then $F\left(D_{1}, k\right) \geq \exp _{D_{1}}\left(X_{0}\right) \geq m+1$.

On the other hand, let X be any k-vertex subset of D_{1}. Since $X \cap\{m+1$, $m+2, \cdots, n\} \neq \emptyset, \exp _{D_{1}}(X) \leq m+1$.

So we have $F\left(D_{1}, k\right)=m+1$. Noticing that $1 \leq m \leq n-2$, we obtain (2.8).
Theorem 2.4 Let n, d, k be positive integers with $2 \leq k \leq n-d, d \geq 2$. Then

$$
\begin{equation*}
\{d+k-1, d+k, \cdots, 2 n-k-d\} \subseteq E_{n d}(k) \tag{2.9}
\end{equation*}
$$

Proof. Suppose $d+k-1 \leq m \leq n-1$. Firstly, we consider $D_{4}=D(A)$ with vertex set $V\left(D_{4}\right)=\{1,2, \cdots, n\}$ and arc set $E\left(D_{4}\right)=\{(1,1),(2,2), \cdots,(d, d),(1,2),(2,3)$, $\cdots,(m-1, m),(m, m+1),(m, m+2), \cdots,(m, n),(m+1,1),(m+2,1), \cdots,(n, 1)\}$.

It is obvious that $A \in P_{n, d}$. Take $X_{0}=\{d+1, d+2, \cdots, d+k\}$. It is not difficult to verify that there is no walk of length $2 m-d-k+1$ from any vertex of X_{0} to the vertex $m+1$. So we have

$$
\begin{equation*}
F\left(D_{4}, k\right) \geq \exp _{D_{4}}\left(X_{0}\right) \geq 2 m-d-k+2 . \tag{2.10}
\end{equation*}
$$

On the other hand, let X be any k-vertex subset of D_{4}. If $\{1,2, \cdots, d\} \cap X \neq \emptyset$, then

$$
\begin{equation*}
\exp _{D_{4}}(X) \leq m<2 m-d-k+2 . \tag{2.11}
\end{equation*}
$$

If $\{1,2, \cdots, d\} \cap X=\emptyset$, letting i be the vertex of X which is closest to 1 , then $d(i, 1) \leq m+1-d-k+1=m-k-d+2$ and

$$
\begin{equation*}
\exp _{D_{4}}(X) \leq m-d-k+2+m=2 m-d-k+2 \tag{2.12}
\end{equation*}
$$

Combining (2.10), (2.11) and (2.12) we have

$$
\begin{equation*}
F\left(D_{4}, k\right)=2 m-d-k+2 . \tag{2.13}
\end{equation*}
$$

Next, we consider $D_{5}=D(A)$ with vertex set $V\left(D_{5}\right)=\{1,2, \cdots, n\}$ and arc set $E\left(D_{5}\right)=\{(1,1),(2,2), \cdots,(d, d),[1,2],(2,3),(3,4), \cdots,(m-1, m),(m, m+1),(m$, $m+2), \cdots,(m, n),(m+1,1),(m+2,1), \cdots,(n, 1),(m+1,2),(m+2,2), \cdots,(n, 2)\}$.

It is obvious that $A \in P_{n, d}$. Take $X_{0}=\{d+1, d+2, \cdots, d+k\}$. It is not difficult to verify that there is no walk of length $2 m-d-k$ from any vertex of X_{0} to the vertex $m+1$. Then $F\left(D_{5}, k\right) \geq \exp _{D_{5}}\left(X_{0}\right) \geq 2 m-d-k+1$.

On the other hand, let X be any k-vertex subset of D_{5}. If $\{1,2, \cdots, d\} \cap X \neq \emptyset$, then $\exp _{D_{5}}(X) \leq m \leq 2 m-d-k+1$. If $\{1,2, \cdots, d\} \cap X=\emptyset$, letting j be the vertex of X which is closest to 2 , then $d(j, 2) \leq m+1-d-k+1=m-k-d+2$ and $\exp _{D_{5}}(X) \leq m-k-d+2+m-1=2 m-k-d+1$.

So we have

$$
\begin{equation*}
F\left(D_{5}, k\right)=2 m-k-d+1 . \tag{2.14}
\end{equation*}
$$

Notice that $d+k-1 \leq m \leq n-1$. Combining (2.13) and (2.14) we obtain (2.9).

Theorem 2.5 Let n, d, k be positive integers with $2 \leq k \leq n-d, d \geq 2$. Then

$$
\begin{equation*}
\{2,3, \cdots, d+k-2\} \subseteq E_{n d}(k) \tag{2.15}
\end{equation*}
$$

Proof. Suppose $2 \leq m \leq d+k-2$. We consider $D_{5}=D(A)$ in Theorem 2.4.
Take $X_{0}=\{n, n-1, \cdots, n-k+1\}$. Then $\left|X_{0}\right|=k$. Since $n-k+1 \geq d+1$, it is not difficult to verify that there is no walk of length $m-1$ from any vertex of X_{0} to the vertex $m+1$. Then $F\left(D_{5}, k\right) \geq \exp _{D_{5}}\left(X_{0}\right) \geq m$.

On the other hand, let X be any k-vertex subset of D_{5}. If $\{1,2, \cdots, d\} \cap X \neq \emptyset$, then $\exp _{D_{5}}(X) \leq m$. If $\{1,2, \cdots, d\} \cap X=\emptyset$, then $X \cap\{m+1, m+2, \cdots, n\} \neq \emptyset$ and $\exp _{D_{5}}(X) \leq m$.

So we have $F\left(D_{5}, k\right)=m$. Noticing that $2 \leq m \leq d+k-2$, we obtain (2.15).
Theorem 2.6 Let n, d, k be positive integers with $n-d+1 \leq k \leq n-1, d \geq 2$. Then

$$
\begin{equation*}
\{1,2, \cdots, 2 n-k-d\} \subseteq E_{n d}(k) . \tag{2.16}
\end{equation*}
$$

Proof. Suppose $k+d-n \leq m \leq n-1$. We consider $D_{4}=D(A)$ in Theorem 2.4.
Take $X_{0}=\{1,2, \cdots, k+d-n, d+1, d+2, \cdots, n\}$. Then $\left|X_{0}\right|=k$. It is not difficult to verify that there is no walk of length $m+1-(k+d-n)-1=n+m-k-d$ from any vertex of X_{0} to the vertex $m+1$. Then $F\left(D_{4}, k\right) \geq \exp _{D_{4}}\left(X_{0}\right) \geq n+m-k-d+1$.

On the other hand, let X be any k-vertex subset of D_{4} and $W=\{1,2, \cdots, d\}$. Since $|X \cap W| \geq k+d-n>0, \max _{y \in V\left(D_{4}\right)} d(X \cap W, y) \leq m+1-(k+d-n)=$ $n+m+1-k-d$, then $\exp _{D_{4}}(X) \leq n+m-k-d+1$.

So we have $F\left(D_{4}, k\right)=n+m-k-d+1$. Noticing that $k+d-n \leq m \leq n-1$, we obtain (2.16).

Theorem 2.7 Let n, d, k be positive integers with $2 \leq k \leq n-1$. Then

$$
\begin{equation*}
E_{n d}(k)=\{1,2,3, \cdots, 2 n-k-d\} . \tag{2.17}
\end{equation*}
$$

Proof. We consider $D=D(A)$ with vertex set $V(D)=\{1,2, \cdots, n\}$ and arc set $E(D)=\{(i, j) \mid i, j=1,2, \cdots, n\} \backslash\{(2,1),(d+1, d+1),(d+2, d+2), \cdots,(n, n)\}$.

It is obvious that $A \in P_{n, d}$ and $F(D, k)=1$. So $1 \in E_{n d}(k)$.
Combining (2.1), (2.2), (2.8), (2.9), (2.15) and (2.16) we obtain (2.17).

3 The extremal matrices

In this section,we characterize the extremal matrices of k th upper generalized exponent for $P_{n, d}$.

Theorem 3.1 Let n, d, k be positive integers with $k \leq n-d, A \in P_{n, d}, D=D(A)$. Then $F(D, k)=2 n-k-d$ iff D is isomorphic to one of the digraphs D_{1}^{*}, where D_{1}^{*} are strongly connected digraphs with vertex set $V\left(D_{1}^{*}\right)=\{1,2, \cdots, n\}$ and arc set $E\left(D_{1}^{*}\right)=\{(1,1),(2,2), \cdots,(d, d),(1,2),(2,3), \cdots,(n-1, n)\} \cup \Phi$.
(1) If $k=n-d$, then Φ is a subset of $\{(d+i, 1) \mid 1 \leq i \leq n-d\} \cup\{(i, j) \mid 1 \leq$ $j<i \leq d\}$.
(2) If $k<n-d$, then Φ is a subset of $\{(i, j) \mid 1 \leq j<i \leq d\} \cup\{(d+i, d+j) \mid$ $1 \leq j<i \leq n-d\} \cup\{(d+i, 1) \mid 1 \leq i \leq n-d\}$ such that D_{1}^{*} satisfies the conditions:
(i) There exists $d<x_{0} \leq n$ such that $d\left(x_{0}, 1\right)=n-k-d+1$;
(ii) Let P be a shortest path from x_{0} to 1 . Then the vertex set of P has the form $V(P)=\left\{x_{0}, 1, d+m, d+m+1, \cdots, d+s, d+l, d+l+1, \cdots, n-k+l+m-s-2\right\}$ where $m \geq 1, n-k+l+m-s-2 \leq n$ and $l \geq s+1$;
(iii) For any $j>d$ and $j \notin V(P) \backslash\left\{x_{0}\right\}$, there is no walk of length $2 n-k-d-1$ from j to n.

Proof. Take $X_{0}=\{d+1, d+2, \cdots, n\}$ (when $k=n-d$) or $X_{0}=\left\{j \in V\left(D_{1}^{*}\right) \mid j>\right.$ d and $\left.j \notin V(P) \backslash\left\{x_{0}\right\}\right\}$ (when $k<n-d$). It is not difficult to verify that $\left|X_{0}\right|=k$ and there is no walk of length $2 n-k-d-1$ from any vertex of X_{0} to the vertex n in D_{1}^{*}, so we have

$$
F\left(D_{1}^{*}, k\right) \geq \exp _{D_{i}}\left(X_{0}\right) \geq 2 n-k-d
$$

Combining with Theorem 2.1, we obtain

$$
F\left(D_{1}^{*}, k\right)=2 n-k-d .
$$

On the other hand, let $k \leq n-d, A \in P_{n, d}, D=D(A), F(D, k)=2 n-k-d, X$ be a k-vertex subset of D with $\exp _{D}(X)=2 n-k-d$, and let W be the set of loop vertices of D.

Case 1: $W \cap X \neq \emptyset$. Then $\exp _{D}(X) \leq \max _{y \in V(D)} d(X \cap W, y) \leq n-1<2 n-k-d$. It is a contradiction.

Case 2: $W \cap X=\emptyset$. Let $l_{y}=d(W, y)=d\left(w_{y}, y\right)\left(w_{y} \in W\right)$ and $h_{y}=d\left(X, w_{y}\right)$ for any $y \in V(D)$. If $l_{y}<n-d$ or $h_{y}<n-k$ for any $y \in V(D)$, then $\exp _{D}(X) \leq$ $\max _{y \in V(D)}\left(h_{y}+l_{y}\right)<2 n-k-d$. It is also a contradiction. If $l_{y}=n-d$ and $h_{y}=n-k$
for some $y \in V(D)$, then there exists a Hamilton path in D, and d loop vertices of D are consecutive at the beginning of this Hamilton path. Now assume that $\{(1,1),(2,2), \cdots,(d, d),(1,2),(2,3), \cdots,(n-1, n)\} \subseteq E(D)$. In this assumption, we have $y=n, w_{y}=d$ and $d(1, n)=n-1$. Further, $(i, j) \notin E(D)$ for $1 \leq i \leq n-2$ and $i+1<j \leq n$.

Subcase 2.1: $k=n-d$. It is clear that $X=\{d+1, d+2, \cdots, n\}$. Since that there is no walk of length $2 n-k-d-1$ from i to n for any $i \in X$, we have that $(i, j) \notin E(D)$ for $d+1 \leq i \leq n$ and $2 \leq j<i$. Thus, D is isomorphic to one of the D_{1}^{*}.

Subcase 2.2: $k<n-d$. Then D satisfies the conditions:
(1) For $i>d$ and $j \leq d$, if $(i, j) \in E(D)$, then $i \notin X, j=1$, and i is unique. Else $h_{y}<n-k$. It is a contradiction.
(2) $d(X, 1)=n-k-d+1$. Further, letting $d(X, 1)=d\left(x_{0}, 1\right)\left(x_{0} \in X\right)$ and P be a shortest path from x_{0} to 1 in D, the vertex set of P has the form
$V(P)=\left\{x_{0}, 1, d+m, d+m+1, \cdots, d+s, d+l, d+l+1, \cdots, n-k+l+m-s-2\right\}$ where $m \geq 1, n-k+l+m-s-2 \leq n$ and $l \geq s+1$.

Notice that $\exp _{D}(X)=2 n-k-d$. Combining (1) and (2), D must be isomorphic to one of the D_{1}^{*}.

Theorem 3.2 Let n, d, k be positive integers with $k \geq n-d+1, A \in P_{n, d}, D=D(A)$. Then $F(D, k)=2 n-k-d$ iff D is isomorphic to one of the digraphs D_{2}^{*}, where D_{2}^{*} are strongly connected digraphs with vertex set $V\left(D_{2}^{*}\right)=\{1,2, \cdots, n\}$ and arc set $E\left(D_{2}^{*}\right)=\{(1,1),(2,2), \cdots,(d, d),(k+d-n, k+d-n+1),(k+d-n+1, k+d-$ $n+2), \cdots,(n-1, n)\} \cup \Phi$, where Φ is a subset of $\{(i, j) \mid 1 \leq i \leq k+d-n ; 1 \leq j \leq$ $k+d-n)\} \cup\{(i, k+d-n+1) \mid 1 \leq i \leq k+d-n-1)\} \cup\{(i, j) \mid k+d-n+1 \leq i \leq$ $d ; 1 \leq j \leq i-1\} \cup\{(i, j) \mid d+1 \leq i \leq n ; 1 \leq j \leq k+d-n+1\} \cup\{(i, j) \mid d+2 \leq$ $i \leq n ; d+1 \leq j \leq i-1\}$. If $\left\{\left(d+i_{1}, d+j_{1}\right),\left(d+i_{2}, d+j_{2}\right), \cdots,\left(d+i_{t}, d+j_{t}\right)\right\} \subseteq \Phi$ $\left(j_{1} \leq j_{2} \leq \cdots \leq j_{t}\right)$, then there are no nonnegative integers $k_{1}, k_{2}, \cdots, k_{t}$ such that $k_{1}\left(i_{1}-j_{1}+1\right)+k_{2}\left(i_{2}-j_{2}+1\right)+\cdots+k_{t}\left(i_{t}-j_{t}+1\right)=n-k+m-1$ for $1 \leq m \leq j_{1}$.

Proof. Take $X_{0}=\{1,2, \cdots, k+d-n, d+1, d+2, \cdots, n\} \subseteq V\left(D_{2}^{*}\right)$. It is not difficult to verify that $\left|X_{0}\right|=k$ and there is no walk of length $2 n-k-d-1$ from any vertex of X_{0} to the vertex n, so we have

$$
F\left(D_{2}^{*}, k\right) \geq \exp _{D_{2}^{*}}\left(X_{0}\right) \geq 2 n-k-d
$$

Combining with Theorem 2.1, we obtain

$$
F\left(D_{2}^{*}, k\right)=2 n-k-d
$$

On the other hand, let $k \geq n-d+1, A \in P_{n, d}, D=D(A), F(D, k)=2 n-k-d$, let X be a k-vertex subset of D with $\exp _{D}(X)=2 n-k-d$, and let W be the set of loop vertices of D.

If $|X \cap W|>k+d-n$ or $\max _{v \in V(D)} d(X \cap W, v)<n-|X \cap W|$, we have $\exp _{D}(X)<$ $2 n-k-d$. It is a contradiction.

If $|X \cap W|=k+d-n$ and $\max _{v \in V(D)} d(X \cap W, v)=d(X \cap W, y)=n-|X \cap W|=$ $2 n-k-d$, noticing $\exp _{D}(X)=d(X \cap W, y)=2 n-k-d$, there exists a directed path of length $2 n-k-d$ in D with $n-k+1$ loop vertices. The loop vertices are consecutive at the beginning of this directed path. Now assume that $\{(1,1),(2,2), \cdots,(d, d)$, $(k+d-n, k+d-n+1),(k+d-n+1, k+d-n+2), \cdots,(n-1, n)\} \subseteq E(D)$. In this assumption, we have $y=n, X=\{1,2, \cdots, k+d-n, d+1, d+2, \cdots, n\}$. D also satisfies the conditions:
(1) $(i, j) \notin E(D)$ for $k+d-n \leq i \leq n-2$ and $i+2 \leq j \leq n$. Otherwise, $d(X \cap W, y)<2 n-k-d$, which gives a contradiction.
(2) $(i, j) \notin E(D)$ for $1 \leq i \leq k+d-n$ and $k+d-n+2 \leq j \leq n$. Otherwise, $d(X \cap W, y)<2 n-k-d$, which gives a contradiction.
(3) $(i, j) \notin E(D)$ for $d+1 \leq i \leq n$ and $k+d-n+2 \leq j \leq d$. Otherwise, $\exp _{D}(X) \leq 2 n-k-d-1$, which gives a contradiction.
(4) For $d+1 \leq i \leq n$, there is no walk of length $2 n-k-d-1$ from i to n. This implies that if $\left\{\left(\bar{d}+i_{1}, d+j_{1}\right),\left(d+i_{2}, d+j_{2}\right), \cdots,\left(d+i_{t}, d+j_{t}\right)\right\} \subseteq E(D)$, where $j_{1} \leq j_{2} \leq \cdots \leq j_{t}$ and $i_{s}>j_{s} \geq 1$ for $1 \leq s \leq t$. Then there are no nonnegative integers $k_{1}, k_{2}, \cdots, k_{t}$ such that $k_{1}\left(i_{1}-j_{1}+1\right)+\bar{k}_{2}\left(i_{2}-j_{2}+1\right)+\cdots+k_{t}\left(i_{t}-j_{t}+1\right)=$ $n-k+m-1$ for $1 \leq m \leq j_{1}$.

Noticing that $\exp _{D}(X)=2 n-k-d$ and D is a primitive digraph, D must be isomorphic to one of the D_{2}^{*}.

Acknowledgements

The authors would like to thank the referee for his many helpful suggestions and comments on an earlier version of this paper.

References

[1] Brualdi R.A. and Liu Bolian, Generalized exponents of primitive directed graphs, J. Graph Theory, 14 (1990), 483-499.
[2] Gao Yubin and Shao Yanling, The k th upper generalized exponent set for the class of non-symmetric primitive matrices, Australas. J. Combin., 19 (1999), 191-201.
[3] Liu Bolian, About the distribution of exponent set for the primitive matrices, Acta Math. Sinica, 6 (1989), 803-809.

[^0]: *Research supported by Shanxi Youth Science Foundation 981005.

