
The crossing number of C6 X en 

R. Bruce Richter 

Department of Combinatorics and Optimization, 
Faculty of Mathematics 
University of Waterloo 

Waterloo, Ontario, Canada N2L 3G 1 

Gelasia Salazar'" 

IICO-UASLP 
Av. Karakorum 1470, Lomas 4ta. Seccion 

San Luis Potosi, SLP 
Mexico 78210 

Abstract 

It is proved that the crossing number of C6 X Cn is 4n for every n 2: 6. 
This is in agreement with the general conjecture that the crossing number 
of Cm x en is (m - 2)n, for 3 ::; m :s; n. 

1. INTRODUCTION 

Hararyet al. [5] conjectured that the crossing number of Cm x Cn is (m - 2)n, for 
all m, n satisfying 3 :s; m :s; n. This has been verified for m = 3,4, and 5 [8, 4, 3, 
7, 6], and for the special cases m = n = 6 [1] and m = n = 7 [2]. Our goal in this 
article is to prove the following. 

Main Theorem. The crossing number of C6 X Cn is 4n, for every n 2: 6. 

The crossing number cr( G) of a graph G is the minimum number of pairwise 
crossings of edges in a drawing of G in the plane. It is well-known [12] that the 
crossing number of a graph is attained by a good drawing, a drawing in which no 
edge crosses itself, no adjacent edges cross, and no two edges cross each other more 
than once. 

It is easy to exhibit drawings of em x Cn with exactly (m - 2)n crossings, 
for every m, n satisfying 3 ::; m ::; n (see [5]). Thus, the difficult part of the Main 
Theorem is the inequality cr(C6 X Cn) 2: 4n. We prove this by induction on n, as 
in [8,3,5]. The strategy is as follows. The base case is n = 6, proved in [1]. Let 'D 
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be an optimal drawing of C6 X Cn, where n ~ 7, and suppose that the statement of 
the Main Theorem holds for C6 X Cn - 1 . We show that if two 6-cycles cross each 
other in V, then there is an optimal drawing V' (not necessarily different from V) 
of C6 X Cn in which a 6-cycle is crossed at least four times; thus in this case the 
inequality cr(C6 x Cn) ~ 4n follows easily from the induction hypothesis. On the 
other hand, if the n 6-cycles are pairwise disjoint, then it follows from Theorem 1 
in [9] that there are at least 4n crossings in 1) (Theorem 1 in [9] establishes that if 
n ~ m ~ 3, then every drawing of Cm x Cn with the n m-cycles pairwise disjoint 
has at least (m - 2)n crossings). 

This paper is organized as follows. In Section 2 we show that the Main Theo
rem follows from Theorem 1 in [9] (which we state as Theorem 2) and our Theorem 
1. In Section 3 we establish a technical lemma used in the proof of Theorem 1, 
and in Section 4 we prove Theorem 1 for one particular case. Section 5 contains 
the proof of Theorem 1, and in Section 6 we make some final remarks. 

2. THE MAIN THEOREM FOLLOWS FROM THEOREM 1 

As in [6], it is convenient for our subsequent work to color the edges in C6 X Cn 
red and blue, so that the edges of the n 6-cycles are red and the edges of the 6 
n-cycles are blue. 

We often make no distinction between a cycle and its corresponding closed 
curve in a drawing of C6 X Cn, if no confusion arises. However, if we say that a 
cycle C is crossed in a drawing 1) of C6 X Cn, it must be understood that an edge 
of C is crossed in 1). If 1) is the only drawing considered in a discussion, we omit 
reference to V and simply speak of the crossings of a cycle or of an edge. 

An arc A is a homeomorph of [0, 1] contained in a drawing. As with cycles, 
we say that an arc A in a drawing 1) is crossed at the point p if an edge crosses A 
at p, and omit reference to 1) if no confusion arises. If q and r are the end points 
of A, then A \ {q, r} is the interior of A. 

An optimal drawing of a graph G is a drawing whose number of crossings 
equals cr(G). An optimal drawing of C6 X Cn is really optimal if the number of 
red-red crossings is least among all optimal drawings of C6 X Cn . 

We claim that the Main Theorem is a consequence of Theorems 1 and 2 below. 
We remark that Theorem 2 was proved in [9] (our Theorem 2 is precisely Theorem 
1 in [9]). 

Theorem 1. Let V be a really optimal drawing of C6 X Cn. Suppose that two 
red cycles cross each other in V. Then there is an optimal drawing of C6 X Cn in 
which some red cycle has at least four crossings. 

Theorem 2 (Theorem 1 in [9]). Let m, n be such that n ~ m ~ 3. Then every 
drawing of Cm x Cn such that either the n m-cycles are pairwise disjoint or the m 
n-cycles are pairwise disjoint has at least (m - 2)n crossings. I 

Proof of Main Theorem. First note that C6 X Cn can be drawn with exactly 
4n crossings (see for instance [5]). Therefore cr(C6 x Cn) :::; 4n. We prove the 
reverse inequality by induction on n. The base case, cr(C6 x C6 ) ~ 24, is proved 
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in [1]. Let n 2: 7 and suppose that cr(C6 x Cn-l) ~ 4(n - 1). Let V be a 
really optimal drawing of C6 X Cn . If no two red cycles cross each other, then the 
number of crossings cr{V) in V is at least 4n by Theorem 2. On the other hand, 
by Theorem 1, if two red cycles cross each other, then a red cycle R has at least 
four crossings in an optimal drawing V'. By the induction hypothesis, the drawing 
V" of C6 X Cn - l obtained by deleting the edges of R from V' has at least 4{n - 1) 
crossings. Hence cr(C6 x Cn) = cr(V') ~ cr(V") + 4 ~ 4(n - 1) + 4 = 4n. I 

3. RED CYCLES WITH FEWER THAN FOUR CROSSINGS 

Our first step towards the proof of Theorem 1 is a characterization of the drawings 
where a given red cycle has fewer than four crossings. 

Lemma 3. Let V be a drawing of C6 X Cn . Let R be a red cycle with fewer than 
four crossings. Suppose that there are different components Cl and C2 ofJ~?\R such 
that each of Cl and C2 contains at least one vertex. Then the following statements 
hold. 

(i) One of Cl and C2 contains exactly one vertex v. 
(ii) The component of1R2 

\ R that contains v is intersected only by v and by the 
four edges incident with v. 

(iii) Both red edges incident with v cross R. 
(iv) One blue edge incident with v crosses R, and the other blue edge incident with 

v is incident with a vertex in R. 
( v) R has three crossings, none of which is a self-crossing. 

Proof. In order to obtain a contradiction, suppose that each Ci contains two 
different vertices Ui and Vi. Each vertex is in one red cycle and one blue cycle, and 
no two vertices have more than one monochromatic cycle in common. Therefore, 
for each i, at least three different monochromatic cycles {Di,l, Di,2, Di,3} intersect 
Ci , and at least one of these cycles, say Di,l, is red. 

There is an i E {1,2} such that each of Di,ll D i ,2, and Di,3, crosses R. For 
suppose there are j, k E {I, 2, 3} such that all the edges in Dl,j are contained in Cl 
and all the edges in D2,k are contained in C2 • Clearly Dl,j and D2 ,k are of the same 
color, since every two cycles of different color have a common vertex. It follows 
that, possibly with the exception of R, each cycle of color different from that of 
Dl,j and D 2 ,k crosses R, since every such cycle has a common vertex with each of 
Dl,j and D 2,k. Since there are at least six cycles of each color, this contradicts the 
hypothesis that R is crossed at most three times. 

Thus we can assume without any loss of generality that each of Dl,l, Dl,21 and 
D l ,3, crosses R. Since Dl,l is red, it has no vertices in common with R. Therefore 
Dl,l crosses R at least twice. Since both Dl,2 and Dl ,3 cross R, it follows that R 
has at least four crossings in total, contradicting the assumption that R has fewer 
than four crossings. Therefore we conclude that one of Cl and C2 contains exactly 
one vertex. 

Suppose that Cl has exactly one vertex v. It is clear that Cl is intersected by 
the edges incident with v. Since there are no other vertices in Cl , both red edges 
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incident with v must cross R. Since R has fewer than four crossings, at most one 
blue edge incident with v crosses R. On the other hand, at most one vertex in R is 
adjacent to any given vertex not in R. It follows that one blue edge incident with 
v crosses R and the other one joins v with a vertex in R. Therefore R has exactly 
three crossings with edges incident with v. Since v is not in R, it follows that none 
of these crossings is a self-crossing. I 

4. SELF-CROSSING RED CYCLES 

Our aim in this section is to prove Theorem 1 for the case where one of RI and R2 
has a self-crossing. 

Proposition 4. Let V be a really optimal drawing of C6 X Cn . Suppose that the 
red cycles Rl and R2 cross in V, and suppose that one of RI and R2 crosses itself 
in V. Then either RI or R2 has at least four crossings in V. 

Proof. By symmetry we can assume that RI has a self-crossing. By the Jordan 
Curve Theorem, RI and R2 cross each other an even number of times. Thus, if 
they cross in more than two points then we are done, and so we assume that they 
cross each other in exactly two points p and q. If one of Rl and R2 self-crosses 
more than once then it has at least four crossings in total, and so we can also 
assume that neither RI nor R2 crosses itself more than once. 

The points p and q divide Ri into two curves Ai and B i , for each i. One of 
Al and Bll say All is simple, and the other one has a self-crossing. The curve BI 
contains at least two vertices, since otherwise the good-drawing condition for 1) 

would be violated. 
Since the interiors of the curves A2 and B2 are contained in different compo

nents of ]R2 \ Rll it follows from statement (v) of Lemma 3 that either one of A2 
and B2 does not contain any vertex, or RI has at least four crossings. Since in the 
latter case we are done, we assume that A2 does not contain any vertex. 

Suppose that Al contains more than one vertex. Since BI contains at least 
two vertices, and Al and BI are contained in different components of ]R2 \ R 2 , it 
follows from statement (i) of Lemma 3 that R2 has at least four crossings. Since 
in this case we are done, we assume that Al contains at most one vertex. If Al 
does not contain any vertex, then Al and A2 are contained in edges that cross 
each other more than once. Since this violates the good-drawing property of V, 
we conclude that Al contains exactly one vertex VI. 

We modify V to obtain a drawing V" of C6 X Cn in the following way. Let p" 
and q" be points in B 2 , contained in small neighbourhoods of p and q respectively. 
Substitute A2 by an arc A~ very close to AI, so that the end points of A~ are p" 
and q". It is easy to see that we can draw A~ close enough to AI, so that an edge 
e crosses A~ only if either e crosses Al or e is a blue edge incident with VI' Let V" 
be the drawing thus obtained. Clearly, V" is a drawing of C6 X On, and RI and 
R2 do not cross each other in V". 

The arc A~ must be crossed at least twice, since otherwise V" would have 
fewer crossings than 1), contradicting the optimality of 1). If A~ is crossed by an 
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edge that also crosses AI, then RI has at least four crossings in total. Since in this 
case we are done, we assume that A~ is crossed only by the two blue edges incident 
with VI. Then V and V" have the same number of crossings. On the other hand, 
V" has fewer red-red crossings than V, since the two crossings of A~ are blue-red 
crossings. This contradicts the real-optimality of V, since V" is also optimal. I 

5. PROOF OF THEOREM 1 

We prove Theorem 1 in two steps. In the first step we obtain a detailed picture of 
what the drawing V must look like if neither RI nor R2 has at least four crossings. 
In the second step we show, using Claim 7, that under these conditions we can 
guarantee the existence of an optimal drawing V' in which some red cycle has at 
least four crossings. 

Proof oj Theorem 1. Let V be a really optimal drawing of C6 X Cn, and let 
Rll R2 be red cycles that cross each other in V. Let us suppose that both Rl and 
R2 are crossed fewer than four times in V. As explained above, we divide this 
proof in two steps. 

STEP 1. In this step we obtain a detailed picture of the properties of the drawing 
V that follow from the assumption that both RI and R2 have fewer than four 
crossings. 

By Proposition 4, neither RI nor R2 has a self-crossing. Since Rl and R2 
cross each other in an even number of points, it follows that they cross each other 
in exactly two points p and q. Let Ai and Bi be the arcs with end points p and q 
contained in Ri, for each i E {I, 2}. 

Claim 5. Each of AI, A2, B I , and B2 contains at least one vertex. 

Proof. At least one of Ai and Bi contains a vertex for each i, since each Ri contains 
six vertices. If two arcs in {AI, A2, B I , B 2 } contain no vertices, then the edges that 
contain these two arcs cross each other more than once. Since this would violate 
the good-drawing condition for V, it follows that at most one of At, A2 , B l , and 
B2 contains no vertices. 

Suppose that one of these four arcs, say AI, contains no vertices. We show 
that this implies that there is an optimal drawing V" of C6 X en with fewer red-red 
crossings than V, contradicting the real-optimality of V. 

Since At is the only arc in {At, A2, Bt, B2} that contains no vertices, each 
of A2 and B2 contains at least one vertex. Since the interiors of A2 and B2 are 
contained in distinct components of lR2\Rt, it follows from Statement (i) in Lemma 
3 that one of A2 and B 2 , say A2 , contains exactly one vertex V2. 

Now we obtain from V a drawing V" in the following way. Let p" and q" be 
points in BI very close to p and q respectively. Substitute Al by an arc A~ very 
close to A2 , so that p" and q" are the ends of A~. It is easy to see that we can 
draw A~ close enough to A 2 , so that an edge e crosses Al only if e crosses A2 or 
if it is incident with V2. Let V" be the drawing thus obtained. Since V" is also a 
drawing of C6 X Cn, it follows from the optimality of V that Al is crossed at least 
twice. 
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Let CV2 be the component of]R2 \ RI (in V) that contains V2. It follows from 
Statement (ii) in Lemma 3 that the only edges that intersect CV2 are the four edges 
incident with V2. Since every edge that crosses A2 intersects CV2 ' it follows that 
A2 is not crossed by any edge. Therefore, since A~ is crossed at least twice, it 
follows that Aq is crossed once by each blue edge incident with V2, and that Aq is 
not crossed by any other edge. Thus 1)" is also optimal. However, V" has fewer 
red-red crossings than V, contradicting the real-optimality of V .• 

By Claim 5, each of Al and BI contains at least one vertex. Since the interiors 
of Al and BI are contained in different components of IR2 \ R 2 , it follows from 
Statement (i) in Lemma 3 that one of these arcs, say AI, contains exactly one 
vertex VI. By an analogous argument we can assume that A2 contains exactly one 
vertex V2. 

Let VR1 UR2 be the drawing of RI and R2 induced by V. We denote by 
FA, FB, F12 , and F21 the faces in 1)RIUR2 bounded by the pairs of arcs {AI, A 2 }, 

{Bl' B2 }, {Ab Bd, and {A2' Bd respectively. 
Let CV1 be the component of ]R2 \ R2 that contains VI' Since by assumption 

R2 has fewer than four crossings, it follows from Statement (i) of Lemma 3 that 
VI is the only vertex contained in CV1 ' An analogous argument shows that V2 is 
the only vertex contained in CV2 ' where CV2 denotes the component of]R2 \ RI that 
contains V2. We note that CV1 consists of the union of the faces FA and Fl2 with 
the interior of the arc AI' Similarly, CV2 consists of the union of FA and F21 with 
the interior of the arc A 2 . 

Claim 6. No edge intersects FA-

Proof. We show that if an edge intersects FA, then we can modify V to obtain 
an optimal drawing V" with fewer red-red crossings than V, contradicting the 
real-optimality of V. 

Suppose that FA is intersected by some edge. Since FA is contained in both 
CV2 and CVI , it follows from Statement (ii) of Lemma 3 that the only edges that can 
intersect FA are the blue edges incident with both VI and V2. Thus, VI and V2 must 
be joined by a blue edge e that intersects FA, and no edge other than e intersects 
FA· 

Since e is incident with both VI and V2, and Al and A2 form the boundary of 
FA, it follows from the good-drawing property of V that e is contained in FA. By 
Statement (iv) of Lemma 3, the other blue edge eI incident with VI crosses R2 at 
a point q2, and the other blue edge e2 incident with V2 crosses RI at a point ql. 
Now we explain how to modify V to obtain the drawing 1)". 

Let PBI and qB1 be points in BI contained in small neighbourhoods of P 
and q respectively. Similarly, let PB2 and qB2 be points in B2 contained in small 
neighbourhoods of p and q respectively. Delete the small sub arcs of BI going from 
PBI to P and from qBl to q, and delete the small subarcs of B2 going from PB2 to 
P and from qB2 to q. Also delete AI, A2, e, and the pieces of el and e2 contained 
in F12 and F21 respectively. 

Join PBI and qBI by an arc A~ very close to A2 contained in F2I , and join 
PB2 and qB2 by an arc A~ very close to Al contained in F12 . Let v? and v~ be 
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(new) vertices contained in A~ and A~ respectively. Join v~ and v~ by an edge e". 
Join v~ to q2 by an arc a~, so that the only edge that crosses a1 is an edge in A~. 
Similarly, join v~ to ql by an arc a~, so that the only edge that crosses a~ is an 
edge in A~. Let V" be the drawing thus obtained. It is trivial to check that V" is 
indeed a drawing of C6 X Cn . 

It is not difficult to see that the only crossings in V that are not present in 
V" are p and q. Similarly, it is not difficult to check that the only crossings in V" 
that are not present in V are the point Tl where a~ crosses A~ and the point T2 

where a~ crosses A~. Hence V" has the same number of crossings as V. On the 
other hand, V" has two fewer red-red crossings than V, since p and q are red-red 
crossings and Tl and T2 are red-blue crossings. This violates the real-optimality of 
V .• 

By Statement (ii) in Lemma 3, the only edges that intersect FA U F12 are the 
blue edges incident with Vi, and by Claim 6 none of these edges intersects FA. 
Therefore, the only edges that intersect F12 are a blue edge B V1 ,W2 joining Vi to a 
vertex W2 in R 2, and a blue edge BVl incident with Vi that crosses R2 at a point 
t2' A similar argument shows that the only edges that intersect F21 are the blue 
edge B V2 ,Wl joining V2 to a vertex Wi in Rb and the blue edge BV2 incident with 
V2 that crosses Rl at a point tl' 

By the definition of C6 X Cn , if two vertices in different red cycles Rand R' 
are adjacent, then every vertex in R is adjacent to a vertex in R'. Since the vertex 
Vi in Rl is adjacent to the vertex W2 in R2 , it follows that every vertex in RI is 
adjacent to a vertex in R2 • In particular, since VI and V2 are the only vertices in 
Ai and A2 respectively, each vertex in Bl different from Wl is adjacent to a vertex 
in B2 different from W2' 

STEP 2. The goal in this step is to show how to modify V to obtain an optimal 
drawing V' in which some red cycle has at least four crossings. The next result is 
crucial for the construction of V' . 

Claim 7. Let DVl and DV2 be the distinct blue cycles that contain Vl and V2 

respectively. Then there is an edge eU1 ,U2 joining vertices Ul and U2 in Bl and B2 
respectively, such that eU1 ,U2 crosses at least two edges not in DVI U D V2 ' 

We defer the proof of Claim 7 for the moment, and use this result to finish the 
proof of Theorem 1. 

Let Ul, U2, and eU1 ,U2 be as in Claim 7. By the remark at the end of Step 1, 
Ul =F Wi and U2 =F W2· Let bi denote the subarc of Bi going from Wi to ti, for each 
i E {I, 2}. It is straightforward to check that if Ul is in b1 , then Ul and U2 are in 
different components of D V2 ' and so eU1 ,U2 must cross an edge in D V2 ' A similar 
argument shows that if U2 is in b2 , then eU1 ,U2 crosses an edge in D V1 ' 

Now re-draw eU1 ,U2 in the following way to obtain a drawing V', Let eU1 ,U2 

pass through the faces F l2 , FA, and F2b so that eU1 ,U2 crosses each Ai exactly once. 
It is not difficult to check that if Ul is not in b1 , then eU1 ,U2 can be drawn without 
crossing D V2 ' Similarly, if U2 is not in b2 , then eU1 ,U2 can be drawn without crossing 
DV1 ' 
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We say that a crossing of eUI ,U2 (in either V or V') is of type I if it involves 
eUI ,U2 and an edge in DVI U D V2 ' If a crossing of eUI ,U2 is not of type I, then we 
say it is of type II. 

Now we show that (a) the number of crossings of type I in D' is not bigger 
than the number of crossings of type I in D, and (b) the number of crossings of 
type II in V' is not bigger than the number of crossings of type II in 1). This 
finishes the proof of Theorem 1, since it follows that V' is also optimal, and each 
of RI and R2 has four crossings in 1)'. 

The edge eUI ,U2 crosses DV2 in 1)' only if UI is in bl . On the other hand, if UI 

is in bl , then eUI ,U2 crosses DV2 in 1). Therefore eUI ,U2 crosses DV2 in V' only if 
eU1 ,U2 crosses DV2 in V. An analogous argument shows that eU1 ,U2 crosses DVI in 
V' only if eUl ,U2 crosses DVl in V. Hence (a) follows. 

To prove (b), we note that there are exactly two crossings of type II in V', 
namely the points where eUl ,U2 crosses Al and A2• On the other hand, by Claim 7 
there are at least two crossings of type II in V. Therefore the number of crossings 
of type II in 1)' is not bigger than the number of crossings of type II in 1). I 

Proof of Claim 7. Since Rl contains six vertices and Al has only one vertex, 
BI contains exactly five vertices. Let Yl, Ul and Zl be vertices in Bl distinct from 
Wl, ordered in such a way that as we go from p to q along Bl we find yl, Ul, and 
Zl in this order. Let Y2, U2, and Z2 be the vertices in B2 adjacent to Yb Ul, and Z2 

respectively. By the remark at the end of Step 1, none of Y2, U2, and Z2 is equal to 
W2· 

Let eUI ,U2 be the edge that joins Ul and U2' To finish the proof of Claim 7, we 
show that eUI ,U2 crosses at least two edges in neither DVI nor D V2 ' 

Let D y1 , DZI be the blue cycles containing Yl and Zl respectively. If DYI 

crosses eU1 ,U2' then it does so at least twice, since DYl crosses neither Rl nor R 2 • 

Similarly, if DZl crosses eU1 ,U2 then it does so in at least two points. Since in either 
case Claim 7 follows, we assume that eU1 ,U2 crosses neither DYl nor D Z1 ' 

Every red cycle has a common vertex with each of DYI and D Zl' In particular, 
each of R3 , R4, R51 and R6 has a common vertex with each of DYI and D Z1 ' It is 
easy to check that it follows that each of R3 , R4, R5, and R6 crosses eU1 ,U2' since 
neither Rl nor R2 is crossed by a red cycle in {R3, R4, R5 , R6}, and eUl ,U2 crosses 
neither DYl nor D Zl ' Thus in this case eUl ,U2 crosses at least four red cycles, and 
so Claim 7 follows. I 

6. COMMENTS 

Computing the exact crossing number of Cm x Cn has proved to be a very difficult 
task. However, in [10] it is shown that, if we specify in advance a b so that no two 
n-cycles intersect in more than b points, then limn-too cr (Om X On) / (m - 2) n = 1. 
The general conjecture is also supported by Theorem 2 and by this work. 

The best general lower bound known for the crossing number of em x On 
appears in [11], where it is proved that cr(Om x On) 2: (m - 2)n/3. 

Anderson et al. [2] have proved that the crossing number of 0 7 x 0 7 is 35. 
This is also in agreement with the general conjecture for cr(Om x On). It seems 
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reasonable to expect that this result, together with the techniques developed above, 
could be used to calculate cr(C7 x Cn). However, our experience suggests that such 
a proof would involve a lot more case analysis than the one we have presented to 
prove that cr(C6 x Cn) = 4n. 

The crossing number of Cm x Cn remains unknown for all other values of m 
and n. 
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