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Abstract 

The average connectivity of a digraph is the average, over all ordered 
pairs of vertices, of the maximum number of internally disjoint directed 
paths connecting these vertices. Among the results in this paper, we 
determine the minimum average connectivity among all orientations of 
the complete multipartite graph K n1 ,n2, ... ,nk and the maximum average 
connectivity when all partite sets have the same order. 

1 Introduction 

The average connectivity and the average edge-connectivity of a graph were studied 
in [1, 3, 4]. These measures give a more accurate picture of the reliability of a 
graph than the corresponding conventional parameters. Furthermore, unlike other 
measures of reliability such as the toughness and integrity of a graph, which are 
NP-hard, they have the advantage that they can be computed efficiently. 
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The concept of the average connectivity of a digraph was introduced in [5]. Let 
D = (V, E) be a digraph with vertex set V, arc set E, order p = IVI 2: 2 and 
size q = lEI. Let u and v be two distinct vertices of D. The connectivity I'\;(u, v) 
from u to v is the maximum number of internally disjoint directed u-v paths in 
D. The total connectivity of D is defined by K(D) = Eu,vEV K,(u, v). The average 
connectivity K,(D) of D is the average connectivity over all ordered pairs (u, v) of 
vertices of D, that is, 

_ 1 ( ) K(D) 
K,(D) = ( ) L K,(u,v) = ( )" 

p p - 1 u,vEV P P - 1 

As is the case with the average connectivity and average edge-connectivity of a 
graph, the average connectivity of a digraph can be computed in polynomial time 
using network flow techniques. The problem of finding the maximum average connec
tivity among all orientations of a graph G appears to be difficult. Why this problem 
may be difficult, even for trees is discussed in [5]. This suggests obtaining bounds 
for this parameter for special classes of graphs. Let K,max (G) ( K,min (G) ) denote the 
maximum (respectively, minimum) average connectivity among all orientations of G. 

In [5] we show that for every tree T of order p 2: 3, (2p2 + 14p - 43) / (9p(p - 1)) ::; 
K,maAT) ::; 1/2 and these bounds are sharp. Hence for every tree T of order p 2: 3, 
2/9 < Kmax(T) ::; 1/2. Moreover, we show in [5] that Kmin(Kp) = (p + 1)/6 for p 2: 2, 
K,maAKp) = (p - 1)/2 for odd p 2: 3 and Kmax(Kp) = (2p2 - 5p + 4)/(4(p - 1)) for 
even p 2: 2. 

A complete multipartite graph is a complete k-partite graph for some k 2: 2. If 
the partite sets of a complete k-partite graph have cardinalities nl, n2, ... ,nk, then 
we denote this graph by Kn1 ,n2, ... ,nk' If ni = n for all i, then K n1 ,n2, ... ,nk is denoted 
by Kk(n)' In this paper, we determine Kmax(Kk(n)) for k 2: 2 and n 2: 2, and we 
determine K,min(Kn1,nz, ... ,nk)' 

2 Maximum Values 

In this section we establish a general upper bound on K,max(Kn1 ,n2 .... ,nk)' 

Theorem 1 Let G = K n1 ,n2, ... ,nk have order p, where nl ::; n2 ::; ... ::; nk. Then, 

Proof. Let Vb V2 , •• • ,Vk denote the partite sets of G, where IViI = ni for i = 
1,2, ... , k. Let D be an orientation of G, and let u and v be two distinct vertices 
of D. Then, K,(u, v) ::; min{odvu,idvv}, and so K,(u, v) + K,(v,u) ::; min{odvu + 
idv U, OdD v + idv v}. Consequently, if u E Vi and v E Vj, with i < j, then I'\;(u, v) + 
K,( v, u) ::; p - nj. This is true for all ninj pairs of vertices of D with one vertex in Vi 
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and the other in Vj. On the other hand, if u, v E Vi, then K,( u, v) + K,( v, u) :::; p ni. 
This is true for all (~i) pairs of vertices in Vi. Hence, 

The upper bound stated in the theorem now follows since K(D) = K(D)/p{p - 1) 
and D is an arbitrary orientation of G. 0 

As a special case of Theorem 1, we have an upper bound on Kmax{G) when 
G = Kk(n)' 

Corollary 2 For n 2: 2, 

Proof. By Theorem 1, 

o 

We show that the upper bound in Corollary 2 can be improved slightly if k is 
even and n is odd: 

Lemma 3 For even k ~ 2 and odd n ~ 3, 

_ n(k - 1) kn - 2 
K,max(I<k(n») :::; 2 - 4(kn - 1)' 

Proof. Let D be an orientation of Kk(n) and let u be a vertex of D. Since k is even 
and n is odd, (k - l)n is odd. It follows that either odD u ~ ((k - l)n - 1)/2 or 
OdD U ~ ((k-1)n+1)/2 and idD u:::; ((k-1)n-1)/2. Suppose u and v are two distinct 
vertices of D such that odDu:::; ((k-1)n-1)/2 and odDv:::; ((k-1)n-1)/2. Then 
K,(u,v) :::; min{odDu,idDv} :::; odDu and K(V,U) :::; min{idDu,odDv} :::; odDv. 
Thus, K,(u, v) + K,(v, u) :::; odD U + odD V :::; (k - l)n - 1. Similarly, if idD u :::; 
((k -l)n - 1)/2 and idD v :::; ((k -l)n -1)/2, then K(U, v) + K(V, u) :::; (k -l)n-1. 
Suppose now that there are m vertices of D with out degree at most (( k - l)n - 1) /2. 
Then there are kn - m vertices of D with outdegree at least ((k - l)n + 1)/2 and 
in degree at most ((k - l)n - 1)/2. It follows that 
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The expression on the right hand side of the above inequality is a quadratic in m 
and is maximised when m = kn/2. Thus, 

K(D) 

I t follows that 

_ < (k - l)n - 1 k2n2 
_ (k - l)n - 1 kn 

K;(D) - 2 + 4(kn)(kn - 1) - 2 + 4(kn - 1) 

This completes the proof of the lemma. 0 

Next we determine the maximum average connectivity of multipartite tourna
ments. We consider orientations T of the complete k-partite graph, Kk(n) , with 
k 2:: 2 and n 2:: 2 such that R(T) = Rmax(Kk(n»). First we determine Rmax(Kk(n») for 
k even and n odd. 

Lemma 4 For even k 2:: 2 and odd n ~ 3, 

_ n(k-1) kn 2 
K;max(Kk(n») = 2 - 4(kn - 1)' 

Proof. By Lemma 3, Rmax(Kk(n») ::; ((k - l)n - 1)/2 + kn/4(kn - 1). Hence it 
suffices to show that there is an orientation T of Kk(n) such that R(T) = ((k - l)n-
1)/2 + kn/4(kn - 1). 

Let VI, "\12, ... , Vk denote the partite sets of Kk(n)' For i = 1,2, ... ,k, let Vi = 
{Vi,l, Vi,2, ... , Vi,n}' Let ~I = {Vi,ll"" Vi,(n+I)/2} and ~2 = {Vi,(n+3)/2, ... , Vi,n} be 
a partition of Vi into two sets of cardinalities (n + 1)/2 and (n - 1)/2, respectively. 
Construct T from Kk(n) by orienting for every i, 1 ~ i ~ k, and every j, 1 ~ 
j ~ (k - 2)/2, the edges joining Vi and Vi+i from Vi to Vi+i' where subscripts are 
expressed modulo k. For 1 ~ i ::; k/2 and for each j E {I, 2}, we orient every edge 
uv with U E Vii and v E ~~k/2 as (u, v) and we orient every edge uv with u E ~i 
and v E ~~02 as (v, u). 

Let X denote the set of vertices of T with in degree (( k - 1) n - 1) /2, and let 
Y = V(T) - X. Then each vertex of Y has in degree ((k - l)n + 1)/2 and out degree 
(( k - l)n - 1) /2. It follows from the proof of Lemma 3 that K;( u, v) + K;( V, u) ::; 
(k - l)n - 1 if u and v both belong to X or both belong to Y. 

Claim 1 If u, v E X, then K;T(U, v) + K;T(V, u) = n(k - 1) - 1. 

Proof. For notational convenience, we may assume that u E VI and U = VI,I' 

Suppose first that v E Vm where 2 ::; m ~ k/2. For the case where 2 + k/2 ::; m ::; 
k - 1, the argument is similar. Since v E X, v E V~. For notational convenience, 
we may assume that v = Vm,I' For every f, 2 ~ f < m, let PlR_m denote the 
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collection of n paths of the type VI,!' Vi,j, Vm ,l where 1 ::; j ::; n. Let Pim he the 
collection of n paths consisting of the path VI,!' Vm,l, the (n - 1)/2 paths of the type 
VI,!' Vm,j, Vm+k/2,j, VI,j, Vm,1 where 2::; j ::; (n+1)/2 and the (n-1)/2 paths of the type 
VI,l, Vm,j, Vm+k/2,j, Vm,l where (n+3}/2 ::; j ::; n. For m+ 1 ::; r ::; k/2, let P 1rk denote 
the collection of n paths of the type VI,!, Vr,j, Vr+k/2,j, Vm,1 where 1 ::; j ::; n. Let 
P 1,1+k/2 be the collection of (n - 1)/2 paths of the type VI,I, V1+k/2,j, VI,j+(n-I)/2, Vm,1 

where 2 ::; j ::; (n + 1)/2. Then, {PUk I 2 ::; e < m} U {PIm } U {Plrm I m < r ::; 
k/2} U {PI,1+k/2} is a collection of (n(k - 1) - 1)/2 internally disjoint u-v paths in 
T. Thus, ,..;(u, v) 2:: (n(k - 1) - 1)/2. On the other hand, for m + 1 ::; e ::; k/2, let 
Pmll be the collection of n paths of the type Vm,l, Vf,j, vHk/2,j, VI,I where 1 ::; j ::; n. 
Let Pm ,l+k/2 be the collection of (n - 1)/2 paths of the type Vm,l, V1+k/2,j, VI,I where 
(n + 3)/2 ::; j ::; n. For 2 + k/2 ::; r ::; m - 1 + k/2, let Pmrl denote the collection 
of n paths of the type Vm,l, Vr,j, VI,I where 1 ::; j ::; n. Let P m,m+k/2 be the collection 
of n paths consisting of the (n + 1)/2 paths of the type Vm,l, Vm+k/2,j, VI,I where 
1 ::; j ::; (n+1)/2 and the {n-1)/2 paths of the type Vm,b V1+k/2,j, Vm+k/2,j+(n-l)/2, VI,I 

where 2 ::; j ::; (n + 1)/2. Then, {Pmfl 1m + 1 ::; e ::; k/2} U {Pm,1+k/2} U {Pmri I 
2 + k/2 ::; r ::; m - 1 + k/2} U {Pm,m+k/2} is a collection of (n(k - 1) - 1)/2 
internally disjoint v-u paths in T. Thus, ,..;(v, u) 2:: (n(k - 1) - 1)/2. Consequently, 
,..;(u, v) + ",;(v, u) 2:: n(k - 1) - 1. 

Suppose secondly that v E Vm where m = 1 + k/2. Since v EX, V E V~. 
For notational convenience, we may assume that v = vm,n. For 2 ::; e ::; k/2, let 
PUm denote the collection of n paths of the type VI,!, Vf,j, vm,n where 1 ::; j ::; n. 
Let P im he the collection of {n - 1)/2 paths of the type VI,I, Vm,j, v!,j+(n-l)/2, vm,n 

where 2 ::; j ::; (n + 1)/2. Then, {PHm I 2 ::; e ::; k/2} U {PIm } is a collection of 
(n(k - 1) - 1)/2 internally disjoint u-v paths in T. On the other hand, let Pm! he 
the collection of (n - 1)/2 paths consisting of the path vm,n, VI,I and all paths of 
the type vm,n, VI,j, Vm,j, VI,j+(n-I)/2, Vm,H(n-I)/2, VI,I where 2 ::; j ::; {n - 1)/2. For 
2 + k/2 ::; e ::; k, let Pmfl denote the collection of n paths of the type vm,n, Vf,j, VI,I 

where 1 ::; j ::; n. Then, {P md U {P mll I 2 + k /2 ::; e ::; k} is a collection of 
(n(k -1) -1)/2 internally disjoint v-u paths in T. Consequently, ,..;(u, v) + ,..;(v, u) 2:: 
n(k - 1) - 1. 

Suppose finally that V E Vi. For notational convenience, we may assume that 
V = Vl,2' For 2 ::; e ::; k/2, let PU2 denote the collection of n paths of the type 
VI,I, Vl,j, vHk/2,j, Vl,2 where 1 ::; j ::; n. Let P I2 be the collection of (n -1)/2 paths of 
the type VI,I,V1+k/2,j, Vl,j+(n-I}/2, V1+k/2,j+(n-l)/2,Vl,2 where 2::; j ::; (n+1)/2. Then, 
{P1l2 12 ::; e ::; k/2} U {PI2 } is a collection of (n(k -1) -1)/2 internally disjoint u-v 

paths in T. Thus, ,..;(u, v) 2:: (n(k - 1) - 1)/2. Similarly, ",;(v, u) 2:: (n(k - 1) 1)/2. 
Consequently, K{U, v) + K(V, u) 2:: n(k - 1) - 1. 

Hence, ,..;(u, v) + ",;(v, u) 2:: n(k - 1) - 1 for all pairs of vertices u and v hoth of 
which belong to X. However, for all such pairs u and v, ,..;(u, v)+",;{v, u) ::; (k-1)n-1 
as observed earlier. Hence, ,..;(u, v) + ,..;(v, u) = (k -l)n -1. This completes the proof 
of Claim 1. 0 
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The proof of the following claim is similar to that of Claim 1, and is therefore 
omitted. 

Claim 2 If u, v E Y, then KT(U, v) + KT(V, u) = n(k 1) 1. 

Claim 3 If u E X and v E Y, then KT(U, v) + KT(V, u) = n(k - 1). 

Proof. For notational convenience, we may assume that u E VI and u = VI,I' 

Suppose first that v E Vm where 2 ~ m ~ k/2. For the case where 2 + k/2 ~ 
m :s; k - 1, the argument is similar. Then, v E V';'. For notational convenience, 
we may assume that v = Vm,n. For 2 :s; f < m, let PIlm denote the collection of n 
u-v paths of the type VI,I, Ve,j, vm,n where 1 :::; j :::; n. Let Plm be the collection of 
n u-v paths consisting of the path VI,I, vm,n, the (n + 1)/2 u-v paths of the type 
VI,I, Vm,j, Vm+k/2,j, Vm,n where 1 :::; j :::; (n+1)/2 and the (n-3)/2 u-v paths of the type 
VI,llVm ,j,Vm+k/2,j,VI,j-(n-I)/2,Vm ,n where (n+3)/2:::; j:::; n-1. Form+1:::; r ~ k/2, 
let Pirk denote the collection of n u-v paths of the type VI,I, Vr,j, Vr+k/2,j, vm,n where 
1 :s; j :::; n. Let Pt,1+k/2 be the collection of (n + 1) /2 u-v paths consisting of the 
path VI,I, V1+k/2,1, Vm+k/2,n, VI,(n+I)/2, vm,n and the (n - 1)/2 u-v paths of the type 
VI,I,V1+k/2,j,VI,j+(n-l)/2,Vm ,n where 2 :::; j :::; (n + 1)/2. Then, {Pllk I 2 ~ f < 
m} U {PIm } U {Plrm I rn < r :::; k/2} U {P1,1+k/2} is a collection of (n(k - 1) + 1)/2 
internally disjoint u-v paths in T. Thus, K( u, v) 2:: (n(k 1) + 1) /2. On the other 
hand, for m + 1 :::; f :s; k/2, let Pmel be the collection of n paths of the type 
Vm,n, Ve,j, vHk/2,j, VI,1 where 1 :::; j :::; n. Let P m ,1+k/2 be the collection of n paths 
consisting of the (n-1)/2 paths of the type v m ,n,V1+k/2,j,VI,1 where (n+3)/2 ~ j ~ n 
and the (n+1)/2 paths of the type vm,n, V1+k/2,j, Vm+k/2,j, VI,1 where 1 :s; j :s; (n+1)/2. 
For 2 + k/2 :::; r :s; rn - 1 + k/2, let Pmri denote the collection of n paths of the type 
vm,n, Vr,j, VI,1 where 1 :::; j :::; n. Let P m,m+k/2 be the collection of (n - 1) /2 paths of 
the type vm,n, Vm+k/2,j, VI,I where (n + 3)/2 :::; j ~ n. Then, {Pmf.1 I m + 1 :::; f ~ 
k/2} U {Pm ,1+k/d U {Pmri I 2 + k/2 :::; r :::; m -1 + k/2} U {Pm ,m+k/2} is a collection of 
(n(k -1) 1)/2 internally disjoint v-u paths in T. Thus, K(V, u) 2:: (n(k -1) - 1)/2. 
Consequently, K(U, v) + K(V, u) 2:: n(k - 1). 

Suppose secondly that v E Vm where m = 1 + k/2. By construction, v E V~. 
For notational convenience, we may assume that v = Vm,l' For 2 :::; f :::; k/2, let 
P Ilm denote the collection of n u-v paths of the type VI,I, Ve,j, Vm,I where 1 ~ j :::; n. 
Let P im be the collection of (n + 1)/2 u-v paths consisting of the path VI,I, Vm,l 

and the (n - 1)/2 u-v paths of the type VI,b vm,j, VI,j+(n-I)/2, v m,J+(n-I)/2, VI,j, Vm,l 

where 2 :::; j :::; (n + 1)/2. Then, {PIlm I 2 :::; f :::; k/2} U {P1m } is a collection of 
(n(k - 1) + 1)/2 internally disjoint u-v paths in T. Now, let Pml be the collection 
of (n 1)/2 v-u paths of the type Vm,l, VI,], Vm,j, VI,1 where (n + 3)/2 :::; j ~ n. 
For 2 + k/2 :::; f :::; k, let Pmll denote the collection of n v-u paths of the type 
Vm,I,Ve,j,Vl,I where 1 :::; j :::; n. Then, {Pmd U {Pmll I 2 + k/2 :::; f :::; k} is a 
collection of (n(k - 1) - 1)/2 internally disjoint v-u paths in T. Consequently, 
K(U, v) + K(V, u) 2:: n(k - 1). 

Suppose finally that v E Vi. Then, v E V? For notational convenience, we may 
assume that v = VI,n' For 2 :::; f ~ k/2, let P Iln denote the collection of n u-v 
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paths of the type VI,l, Vl,j, VHk/2, Vl,n where 1 :::; j :::; n. Let PIn be the collection of 
(n + 1)/2 u-v paths of the type VI,l,V1+k/2,j,Vl,n where 1 :::; j :::; (n + 1)/2. Then, 
{Pl£n I 2 :::; e :::; k/2} U {Pln} is a collection of (n(k -1) + 1)/2 internally disjoint u-v 
paths in T. Thus, J);(u, v) ~ (n(k -1) + 1)/2. On the other hand, for 2 :::; £ :::; k/2, let 
Pnll denote the collection of n v-u paths of the type Vl,n, Vl,j, vHk/2, VI,l where 1 :::; 
j :::; n. Let Pnl be the collection of (n - 1)/2 v-u paths of the type VI,n, V1+k/2,j, VI,l 

where (n + 3)/2 :::; j :::; n. Then, {Pnll I 2 :::; £ :::; k/2} U {Pnd is a collection of 
(n(k-1) -1) /2 internally disjoint v-u paths in T. Thus, 11,( u, v )+J);( v, u) ~ n(k-1)/2. 

Hence, J);(u, v) + J);(v, u) ~ n(k - 1) for all pairs of vertices u and v of T with 
u E X and v E Y. However, for all pairs u and v, K,(u, v) + J);(v, u) :::; n(k - 1) as 
observed earlier. Hence, J);(u, v) + J);(v, u) = n(k - 1). This completes the proof of 
Claim 3.0 

We now continue with the proof of Lemma 4. Since IXI IYI = kn/2, it follows 
from Claims 1, 2, and 3 that 

K(T) = (I;I)((k - l)n - 1) + (1;1)((k - l)n -1) + IXIIYI(k - l)n 

= enf2)((k - l)n - 1) + enf2)((k -l)n - 1) + ~k2n2(k - l)n 

= (k2n)((k - l)n - 1) + ~k2n2. 

It follows that 

-(T) (k - l)n - 1 k2n2 (k - l)n - 1 kn 
K, = + = +---2 4(kn)(kn - 1) 2 4(kn - 1)' 

This completes the proof of the theorem. 0 

Next we determine Rmax(Kk(n)) when both k and n even. 

Lemma 5 For even k ~ 2 and even n ~ 2, 

Proof. By Corollary 2, Rmax(Kk(n)) :::; n(k - 1)/2. Hence it suffices to show that 
there is an orientation T of Kk(n) such that K,( u, v) + K,( V, u) = n( k - 1) for all pairs 
of vertices of T, and so R(T) = n(k - 1)/2. 

Let VI, V2, . .. , Vk denote the partite sets of Kk(n)' For i = 1,2, ... , k, let Vi = 
{Vi,l, Vi,2, ... , Vi,n}' Further, let ViI = {Vi,l," ., Vi,n/2} and Vi2 = {Vi,(n+2)/2," ., Vi,n} 
be a partition of Vi into two sets each of cardinality n/2. Construct T from Kk(n) by 
orienting for every i, 1 :::; i :::; k, and every j, 1 :::; j :::; (k - 2)/2, the edges joining Vi 
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and Vi+j from Vi to Vi+j, where subscripts are expressed m~dulo k. For,l ~ i ::; k/2 
and for each j E {I, 2}, we orient every edge uv with u E Vi] and v E V:~k/2 as (u, v) 

and we orient every edge uv with u E vi and v E Vi3-
j as (v, u). 

Let u and v be any two distinct vertices of Kk(n)' We show that K,(u, v)+K,(v, u) ;::: 
n(k - 1). For notational convenience, we may assume that u E Vi and u = Vl,I' 

Suppose first that v E V~ where 2 ~ m ~ k/2. For the case where 2 + k/2 ~ 
m ::; k -1, the argument is similar. For notational convenience, we may assume that 
v = Vm,I' For 2 ~ f < m, let PUm denote the collection of n u-v paths of the type 
VI,I, Ve,j, Vm,1 where 1 ~ j ~ n. Let Pim be the collection of n u-v paths consisting 
of the path VI,I, Vm,I, the (n - 2)/2 u-v paths of the type Vl,b Vm,j, Vm+k/2,j, VI,j, Vm,1 
where 2 ~ j ::; n/2 and the n/2 u-v paths of the type VI,l, Vm,j, Vm+k/2,j, Vm,l where 
(n + 2)/2 ~ j ~ n. For m + 1 S r S k/2, let P1rk denote the collection of n 
u-v paths of the type VI,I, Vr,j, Vr+k/2,j, Vm,1 where 1 ~ j S n. Let PI ,1+k/2 be the 
collection of n/2 u-v paths of the type VI,I, V1+k/2,j, VI,j+n/2, Vm,1 where 1 ~ j ::; n/2. 
Then, {PUk I 2 ~ f < m} U {PIm } U {Plrm 1m < r ~ k/2} U {PI,1+k/2} is a collection 
of n(k - 1)/2 internally disjoint u-v paths in T. Thus, K,(u, v) ~ n(k - 1)/2. On 
the other hand, for m + 1 ~ f S k/2, let PmC! be the collection of n v-u paths 
of the type Vm,l, Ve,j, vHk/2,j, VI,I where 1 S j S n. Let Pm,l+k/2 be the collection 
of n v-u paths consisting of the n/2 v-u paths of the type Vm,l, VI+k/2,j, VI,I where 
(n + 2) /2 ~ j ~ n and the n/2 v-u paths of the type Vm,I, V1+k/2,j, Vm+k/2,j+n/2, VI,I 

where 1 ~ j ~ n/2. For 2+k/2 S r ~ m-1+k/2, let Pmri denote the collection of n 
v-u paths of the type Vm,l, Vr,j, Vl,1 where 1 ~ j S n. Let P m,m+k/2 be the collection 
ofn/2 v-u paths of the type Vm,I,Vm+k/2,j,VI,l where 1 ~ j ~ n/2. Then, {Pmil I 
m+ 1 ~ f ~ k/2}U{Prn,1+k/2}U{Pmri 12+k/2 ~ r ~ m-l+k/2}U{Pm,m+k/2} is a 
collection of n(k-1)/2 internally disjoint v-u paths in T. Thus, K,(v, u) ~ n(k-1)/2. 
Consequently, K,(u, v) + K,(v, u) ;::: n(k - 1). 

Suppose secondly that v E Vm where m = 1 + k/2. For notational convenience, 
we may assume that v = Vm,l' For 2 ~ f ~ k/2, let Pllm denote the collection 
of n paths of the type VI,I, Ve,j, Vm,1 where 1 ~ j ~ n. Let Pim be the collection 
of n/2 paths consisting of the path VI,I, Vm,l and the (n - 2)/2 paths of the type 
VI,I, Vm,j, VI,j+n/2, Vm,j+n/2, VI,j, Vm,l where 2 ~ j ~ n/2. Then, {PIlm I 2 ~ .e ~ 
k/2} U {PIm } is a collection of n(k - 1)/2 internally disjoint u-v paths in T. On 
the other hand, let Pml be the collection of n/2 paths of the type Vm,I, VI,j, Vm,j, VI,I 

where (n + 2)/2 ~ j ~ n. For 2 + k/2 ~ f ~ k, let Pmel denote the collection of n 
paths of the type Vm,l, Ve,j, VI,I where 1 ~ j S n. Then, {Pmd U {Pmel I 2 + k/2 ~ 
e::; k} is a collection of n(k -1)/2 internally disjoint v-u paths in T. Consequently, 
K,(u, v) + K,(v, u) ;::: n(k - 1). 

Suppose finally that v E VI. For notational convenience, we may assume that 
v = VI,2' For 2 ~ e ~ k/2, let PU2 denote the collection of n paths of the type 
VI,I, Ve,j, vHk/2,j, VI,2 where 1 ~ j ~ n. Let P12 be the collection of n/2 paths of 
the type Vl,l, V1+k/2,j, VI,j+n/2, V1+k/2,j+n/2, VI,2 where 1 ~ j ~ n/2. Then, {PU2 I 
2 ::; f ~ k/2} U {PI2 } is a collection of n(k - 1)/2 internally disjoint u-v paths 
in T. Thus, K,(u, v) ~ n(k - 1)/2. Similarly, K,(v, u) ;::: n(k - 1)/2. Consequently, 
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r;;(u, v) + r;;(v, u) ~ n(k - 1). 
Hence for all pairs u and v of vertices of T, r;;(u, v) + r;;(v, u) ~ n(k -1). However, 

as shown in the proof of Theorem 1, r;;(u, v) + r;;(v, u) ~ n(k - 1). Consequently, 
r;;(u, v) + r;;(v, u) = n{k - 1). Since this is true for all (n2k) pairs of vertices of T, it 
follows that R(T) = n(k - 1)/2. 0 

Next we determine Rmax(Kk(n») for k odd. 

Lemma 6 For odd k ~ 3, 

_ n(k - 1) 
r;;max(Kk(n») = 2 . 

Proof. By Corollary 2, Rmax(Kk(n») ::; n(k - 1)/2. Hence it suffices to show that 
there is an orientation T of Kk(n) such that r;;(u, v) + K,(v, u) = n(k - 1) for all pairs 
of vertices of T, and so R(T) = n(k - 1)/2. 

Let Vi, V2, ... , Vk denote the partite sets of Kk(n)' For i = 1,2, ... , k, let Vi = 
{Vi,I, Vi,2, ... , Vi,n}' Construct T from Kk(n) by orienting for every i, 1 ::; i ::; k, and 
every j, 1 ::; j ~ (k - 1)/2, the edges joining Vi and Vi+j from Vi to Vi+j, where 
subscripts are expressed modulo k. 

Let u and v be any two distinct vertices of Kk(n)' We show that K,(u, v)+r;;(v, u) = 
n(k - 1). For notational convenience, we may assume that u E VI and u = VI,I' 

Suppose first that v E Vm where 2 ::; m ::; (k + 1)/2. For the case where 
(k + 3)/2 ::; m ::; k - 1, the argument is similar. For notational convenience, we may 
assume that v = Vm,l' For 2 ::; e < m, let PUm denote the collection of n paths of the 
type VI,I, Vl,j, Vm,1 where 1 ::; j ::; n. Let Pim be the collection of n paths consisting 
of the path VI,b Vm,1 and the n - 1 paths of the type VI,I, Vm,j, Vm+(k-I)/2,j, VI,j, Vm,l 

where 2 ::; j ::; n. For m + 1 ::; r ~ (k + 1)/2, let P1rk denote the collection of 
n paths of the type VI,I,Vr,j,Vr+(k-l)/2,j,Vm,1 where 1 ~ j::; n. Then, {Pl£k 12 ~ 
e < m} U {PIm } U {Plrm I m + 1 ::; r ~ (k + 1)/2} is a collection of n(k - 1)/2 
internally disjoint u-v paths in T. Thus, K,(u, v) ~ n(k - 1)/2. On the other 
hand, for m + 1 ~ e ~ (k + 1)/2, let Pml1 be the collection of n paths of the type 
Vm,I,Vl,j,Vl+(k-I)/2,j,VI,1 where 1 ::; j ::; n. For (k + 3)/2::; r ::; m + (k - 1)/2, let 
Pmri denote the collection of n paths of the type Vm,l, Vr,j, VI,I where 1 ::; j ~ n. 
Then, {Pmll 1m + 1 ~ e::; (k + 1)/2} U {Pmri I (k + 3)/2 ~ r ::; m + (k - 1)/2} is a 
collection of n(k-1)/2 internally disjoint v-u paths in T. Thus, K,(v, u) ~ n(k-1)/2. 
Consequently, K,(u, v) + r;;(v, u) ~ n(k -1). 

Suppose secondly that v E VI. For notational convenience, we may assume that 
v = VI,2' For 2 ::; e::; (k + 1)/2, let P1l2 denote the collection of n paths of the type 
Vl,1,Vl,j,Vl+(k-l)/2,j,Vl,2 where 1::; j::; n. Then, {P1£212 ~ e::; (k+1)/2} is a 
collection of n(k -1)/2 internally disjoint u-v paths in T. Thus, K,( u, v) ~ n(k 1)/2. 
Similarly, K,(v, u) ~ n(k - 1)/2. Consequently, r;;(u, v) + r;;(v, u) ~ n(k - 1). 

Hence for all pairs u and v of vertices of T, r;;( u, v) + r;;( v, u) ~ n( k - 1). However, 
as shown in the proof of Theorem 1, K,(u, v) + r;;(v, u) ~ n(k - 1). Conse4uently, 
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~(u, v) + ~(v, u) = n(k - 1). Since this is true for all (n2k) pairs of vertices of T, it 
follows that R(T) = n(k - 1)/2. 0 

Lemmas 4, 5, and 6 imply the following result. 

Theorem 7 For integers k 2 2 and n 2 2, 

if k is odd or if k and n are even 

if k is even and n is odd 

As a special case of Theorem 7, we have the following result. 

Corollary 8 

Rmax(Kn,n) = { 
i if n is even 

i - 2(~;~I) if n is odd 

3 Minimum Values 

We now turn our attention to the problem of finding the minimum average connec
tivity among all orientations of the complete multipartite graph. We begin with the 
following result in [5]. 

Theorem 9 (Henning and Oellermann [5]) If G is a graph of order p and size q, 
then Rmin (G) ~ q / p(p - 1) . Moreover, equality holds if and only if G is bipartite. 

As a special case of Theorem 9, we have the following result. 

Corollary 10 

- (K ) mn 
~min m,n = (m + n)( m + n 1) . 

For a digraph D and an (ordered) pair u, v of vertices of D, let ~~2(U, v) be the 
maximum number of internally disjoint u-v paths of D having length at least 2. Let 

K~2(D) = L ~~2(U, v). 
u,vEV 

Then the total connectivity is given by K(D) = q(D) + K>2(D), where q(D) is 
the number of arcs in D. So, K(D) ~ q(D) for any digraph D~ 

We now determine Rmin(Kn1 ,n2, ... ,nk)' For this purpose, let VI, V2, • .• , Vk be the 
partite sets of K n1 ,n2, ... ,nk where lViI = ni' An orientation of K n1 ,n2, ... ,nk is a transitive 
orientation, denoted K~,n2, ... ,nk' if for every i and j, 1 S; i < j S; k, the arcs between 
Vi and Vi are directed from Vi to Vi, 
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Lemma 11 If p = nl + n2 + ... + nk , then 

Proof. Since 

and 

we have 

q(T) = 'L ninj 
l:5i<j:5k 

nln2n3 + nl(n2 + n3)n4 + ... + nl(n2 + n3 + ... + nk-dnk 
+ n2n3n4 + n2(n3 + n4)n5 + ... + n2(n3 + n4 + ... + nk-dnk 
+ ... + nk-2nk-lnk 

El:5i<j<t:5k ninjnt, 

K (T) = L ninj + 'L ninjnt· o 
l:5i<j:5k l:5i<j<t:5k 

Proof. We proceed by induction on k ~ 2. The result is obvious when k = 2. 
Assume that the result holds for k-partite tournaments. Consider now any complete 
(k + I)-partite graph G = K n1 ,n2, ... ,nk+l' Let Vi, V2, . .. , Vk+l be the partite sets of G 
where IViI = ni· Let D be an orientation of G such that R(D) = Rmin(G). Let Tl be 
the orientation of G obtained from D by reorienting all arcs of D that are directed 
from vertices in Vk +1 to vertices in Vj (1 ~ j ~ k) (if any) so that they are directed 
from vertices in Yj to those in Vk+1• Then all vertices of Vk+l have outdegree 0 in Tl . 

We now show that K(T1) ~ K(D), from which it clearly follows that R(Td ~ 
R(D). Let U E Vk+1 , and let Iu be the vertices adjacent to u in D and Ou the vertices 
adjacent from u in D. 

For each x E Iu and each y E Ou, x, U, y is a path of length 2 which gets counted 
once in K,D(X, y) and hence gets counted once in K>2(D). Let Pu be the collection 
of these paths that get counted in K>2(D). So for each U E Vk+1 , there are at least 
IIul'IOul paths of length 2 which each get counted once in K>2(D). As these paths 
no longer exist in T}, they do not get counted in K>2(Td. H~nce there are at least 
LUEVk+l IIul . IOul paths of length 2 which each get counted once in K?2(D) but do 
not get counted in K?2 (T1). 

For every x E lu and every y E Ou, there is at most one x-u containing the edge 
yu in Tl that is counted in K >2 (Td. Let Qu be the collection of these paths that 
get counted in K>2(Td. So fo~ each u E Vk+b there are at most Ilul . IOul paths of 
length 2 from vertices in D - Vk+1 to vertices of Vk+b that get counted in K>2(Td 
but do not get counted in K?2(D). Hence there are at most LUEVk+l Ilul' IOul-paths 
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of length 2 from vertices in D - Vk+1 to vertices of Vk+1, that get counted in K>2(T1) 

but do not get counted in K?2(D). 
All paths of length at least 2 in D, which are not in UUEVk+l 'Pu , but that were 

counted in K?2(D) either still exist in Tl (if they did not contain internal vertices of 
Vk+d or they no longer exist in Tl if they do contain internal vertices from Vk+l' As 
no paths of length at least 2 other than those in UUEVk+1 Qu, get counted in K?2(T1) if 
they are not also counted in K>2(D) it now follows that K>2(Td :::; K>2(D). Hence, 
R(Tr) :::; R(D). By our choice of D, R(Tl) = R(D). - -

Let D' D - Vk+1• Then, D' is an orientation of K n1 ,n2, ... ,nk' Moreover, 
K>2(T1) K>2(D') + q(D')nk+l' (Note that there are exactly q(D')nk+l paths 
of length at least 2 with one end in D' and the other in Vk +1 that get counted in 
K>2(Td. All other paths of length at least 2 that get counted in K>2(Td have both 
ends in D'.) -

By the inductive hypothesis, R(D') ~ R(T') where T' is a transitive orientation 
of Kn1 ,n2, ... ,nk' So, K(D') ~ K(T'). Since K1(D') = KdT') = q(D'), it follows that 
K?2(D') ~ K?2{T'). Hence, K?2(Td ~ K?2(T') + q(D')nk+1' 

Let T be the transitive orientation of G obtained from T' U Vk+1 by orienting all 
the edges of G between vertices of T' and Vk+l from vertices of T' to vertices of Vk+1• 

Then, 

K?2(T) = K?2(T') + q(T')nk+l = K?2(T') + q(D')nk+l :::; K?2(T1). 

So, K(T) :::; K(T1) = K(D). By our choice of D, K(T) = K(D). This completes 
the proof of Lemma 12. 0 

The results of lemmas 11 and 12 can be summarized as follows. 

Theorem 13 

where T is a transitive orientation of K n1 ,n2, ... ,nk and p = nl + n2 + ... + nk. 

We have yet to establish whether the transitive orientation of K n1 ,n2, ... ,nk is the 
only orientation that achieves Rmin(Kn1 ,n2, ... ,nk)' 
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