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Abstract 

The BIB design in PG(n,2), which is the n-dimensional projective 
geometry over GF(2), has the following automorphisms: 

(i) an automorphism of order v = 2n+1 
- 1; 

(ii) an automorphism of order w = 2n - 1. 

A BIB design with the first automorphism is called a cyclic BIB design, 
and one with the second is called a 2-rotational BIB design. In PG(n, 2), 
a BIB design generated by the points and planes has parameters v = 
2n +1 1, k = 7, ,\ = 2n

-
1 -1. As far as we know, it is not known whether 

a BIB design consisting of points and planes in PG(5, 2) is resolvable, or 
not. 

In this paper, we shall show that the BIB design generated by the 
planes in PG(5,2) has the above 2 automorphisms. Furthermore, these 
designs are cyclically resolvable. Similarly, it is well known that the 
BIB design generated by points and lines in PG(2m + 1,2) for positive 
integer m is resolvable, but it is not known whether the design is cyclically 
resolvable, or not. 

1 Introd uction 

A pair (V, B) is called a BIB design if V is a set of v points and B is a collection of 
b k-subsets of V (called blocks) such that every pair of points is contained in exactly 
,\ blocks. 

For a BIB design (V, B), let a be a permutation on V. If Blr = {Blr I B E B} = B 
then a is called an automorphism of (V, B), where Blr = {b1, b'2, ... , bk} for any 
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B = {bl , b2 , .•• , bd E B. If an automorphism (J of (V, B) has a cycle of length v, the 
design is called cyclic. 

Let T be an automorphism of a BIB design (V, B). If a design (V, B) has an 
automorphism T of order ViI which admits a single fixed point 00, and if each of its 
orbit lengths is ViI then (V, B) is called l-rotational. It is well known that the BIB 
design generated by the planes in PG(n, 2) has the following automorphisms: 

(i) (J : a cyclic automorphism of order v = 2n+1 - 1; 

(ii) T : a 2-rotational automorphism of order w = 2n 1. 

For a cyclic BIB design, we can identify V with Zv {O, 1, ... , v-I} (mod v). In 
this case a: x H x+1 (mod v) and Brr = B+1 = {b i +1,b2 +1, ... , bk +1} (mod v). 
The block orbit containing B = {bl , b2 , • .. , bd is defined by the set of distinct blocks 

B ui = B + i = {bi + i, b2 + i, ... , bk + i} (mod v) 

for i E ZV' If a block orbit has v blocks, then the block orbit is called full, otherwise 
short. We fix one block from each block orbit and call it a base block. 
For a 2-rotational BIB design, we can identify 

V = Zwx{O,I}U{oo} 
{Oo, 10,' ", (w 1)0} U {Ol, 11,"', (w - l)d U {oo }(mod w). 

In this case T : x H x + 1 (mod w) and BT = B + 1 (mod w). The block or­
bit containing B = {b l , b2 , • •. , bd is defined by the set of distinct blocks BTi = 
B + i (mod w) for i E Zw. 

If R is a set of blocks such that every point of V is contained in exactly one block 
in R, then R is called a resolution class (spread). If the set of blocks in a BIB design 
(V, B) is partitioned into resolution classes Rl , R2 , ..• , Rd then the design is called 
resolvable. And n = {Rl' R2 , ••• , Rd} is called a resolution. 

Assume that a cyclic BIB design (V, B) is resolvable and let n = {Rl' R2 , •.. , 

Rd } be a set of resolution classes of (V, B). For a resolution class Ri , let Ri + 1 
= {B + 1 (mod v) I B E Rd, and n + 1 = {R l + 1, R2 + 1, ... , Rd + I}. If n + 1 = 
{R1 + 1, R2 + 1, ... , Rd + I} = n then the design is called cyclically resolvable. Sim­
ilarly, let a design (V, B) be a 2-rotational and a resolvable design. For a resolution 
class Ri of (V, B), let Ri + 1 = {B + 1 (mod w) I B E Ri}' If n + 1 = n then the 
design is also called cyclically resolvable. 

In this paper, a cyclic BIB design which is cyclically resolvable is merely called a 
cyclically resolvable BIB design and denoted by CRB( v,k,A), although several authors 
named it as "cyclically resolvable cyclic BIB (CRCB) design". A 2-rotational BIB 
design which is cyclically resolvable is called a 2-rotationally resolvable BIB design 
denoted by 2-RRB(v,k,A). 

The notion of a CRB was first introduced by Genma, Mishima and Jimbo [4], and 
they showed a direct construction in the case when the block size is odd. Mishima 
and Jimbo [7) classified cyclically resolvable cyclic Steiner 2-designs into three types 
according to their relation with cyclic quasiframes, cyclic semiframes, or cyclically 

74 



resolvable cyclic GDDs (group divisible design). Furthermore, Lam and Miao [5] 
presented a direct construction of cyclically resolvable cyclic Steiner 2-designs for 
one of the three types above, no matter whether the block size is odd or even. And 
Lam, Miao and Mishima [6] enumerated all of the non-isomorphic CRB(52, 4, 1) 
by using a tactical decomposition. On the other hand, it is well known that the 
incidence relation of points and lines in PG(n, q) is a BIB design with parameters 
v qn+l 1, k = 3, ,\ = 1. Beutelspacher [3] showed the existence of a resolution in 
PG(2i 1, q) for i 2 2. Baker [1] and Wettl [10] gave constructions of resolutions 
in PG(2m + 1,2), for any positive integer m. The resolution given by Baker [1] has 
a 2-rotational automorphism on the point set. Recently, Sarmiento [8] showed that 
the BIB design consisting of points and lines in PG(5, 2) was cyclically resolvable by 
using a computer, and enumerated all inequivalent resolutions. In PG(n, 2), a BIB 
design consisting of points and planes has parameters 

v = 2n +1 
- 1, k = 7, ,\ = 2n

-
1 

- 1. 

As far as we know, there is no known result on whether the BIB design generated 
by the planes in a projective geometry is resolvable, or not. So our aim is to find a 
cyclic resolution of the BIB design generated by the planes in PG(5,2). In section 
2, we shall show that a cyclic BIB design consisting of points and planes in PG(5, 2) 
is cyclically resolvable. In section 3, we consider 2-rotational automorphism and we 
will show that a 2-rotational BIB design is cyclically resolvable. 

2 Cyclically resolvable BIB design of planes in 
PG(5,2) 

In this section, we will show a cyclic resolution of the BIB design generated by 
planes in PG(5,2). In PG(5,2), there are 63 points and in a plane there are 7 
points, furthermore every 2 points in PG(5,2) are contained in 15 planes. Thus, 
let (V, B) be the BIB design consisting of points and planes in PG(5, 2), the design 
(V, B) has v 63, k = 7,'\ = 15. Let a be a primitive element of GF(26), then the 
points of PG(5, 2) are represented by a O, aI, ... ,av - 1. In this paper, a is fixed to be 
a root of the primitive irreducible polynomial f(x) = x6 + x4 + x3 + X + 1 and we 
denote a point a i by i to simplify the notation. The design (V, B) has 1395 blocks, 
and the blocks in (V, B) can be partitioned into 22 full orbits and a single short orbit. 
A full block orbit has length 63 and a short block orbit has length 9. We denote 
the full orbits by 0 0 ,01, ••• ,021 and the short orbit by Os. Let Bo, B I , ••. , B21 , Bs 
be bf),se blocks of 0 0 ,01, . •. ,021 , Os, respectively. These base blocks are listed in 
Table 1. 
Let R be a resolution class of a eRB. Then R + i (mod v) are also resolution classes 
for any i. Let d be the smallest positive integer such that R + d = R. Then d is 
called the orbit length of R. And {R, R + 1, ... , R + d I} is called the cyclic orbit of 
resolution classes including R, denoted by CRd• It is obvious that dlv and if B E R 
then B + d E R. Thus if R does not contain any block of the short orbit, then it is 
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Table I: Base blocks of block orbits generated by planes in PG(5, 2) 

full orbits 

orbit base block orbit base block 
0 0 {O, 1, 2, 20, 49, 56, 57} 0 11 {O, 1, 22, 37, 43, 46, 56} 
0 1 {O, 1, 3, 13, 50, 53, 56} 0 12 {O, 1, 29, 33, 38, 44, 56} 
O2 {O, 1, 4, 14, 16, 35, 56} 0 13 {O, 2,4,35, 40, 49, 51} 
0 3 {O, 1, 5, 30, 36, 45, 56} 0 14 {O, 2, 5, 15, 30, 34, 49} 
0 4 {O, 1, 6, 26, 31, 56, 59} 0 15 {O, 2, 6, 26, 37, 43, 49} 
0 5 {O, 1, 10, 28, 32, 56, 6O} 0 16 {O, 2, 11, 23, 29, 44, 49} 
0 6 {O, 1, 11, 23, 47, 56, 61} 017 {O, 2, 17, 36, 39, 45, 49} 
0 7 {O, 1, 12, 24, 41, 52, 56} 0 18 {O, 2, 22, 31, 46, 49, 59} 
0 8 {O, 1, 15, 17, 34, 39, 56} 0 19 {O, 3, 13, 18, 37,43, 54} 
0 9 {O, 1, 18, 40, 51, 54, 56} 0 20 {O, 3, 13, 22, 40, 46, 51} 
0 10 {O, 1, 21, 25, 42, 56, 58} 0 21 {O, 3, 13, 24, 36, 41, 45} 

the regular short orbit 

{O, 9, 18, 27, 36, 45, 54} 

easy to see that kid and 

d v 
R = {Bit + jt + ud I t = 1, ... , k; u = 0, ... , d - I} 

holds for suitable base blocks Bit and for suitable integers jt. By relations between 
the length of resolution and the differences of base blocks, we can get the following 
facts: 

(i) Possible d is 7,21 or 63 if R does not contain any block of the short orbit; 

(ii) R {Bs, Bs + 1, ... , Bs + ~ - I}, that is, R consists of all blocks in the short 
orbit and d = 1. 

Thus, there are CR1 , CR7 , CR21 or CR63 in (V, B). And by using a computer we 
can easily get the following Lemmas: 

Lemma 1. There exists at least one C R63 • 

Lemma 2. CR7 can be generated by 0 19 and 0 20 
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Table 2: An example of CRCB generated by planes in PG(5,2) 

1: [{a, 9,18,27,54,36, 45}*] 
63: [{0,1,2,56,49,57,20},{16,17,19,9,29,3,6},{11,12,15,4,46, 25, 27}, 

{37,38,48,30,60,35,21}, {52, 53, 10,45,31,47,14}, {58, 59,2 4,51,39,28,33}, 
{32,34,43,18,55,61, 13}, {5, 7, 22, 54, 44, 41, 50}, {40,42,62, 36,23, 26,8}] 

63: [{0,1,5,56,30,36,45},{15,16,25,8,12,43,47},{20,21,32,13,9,44,61}, 
{18,19,33,11,52,35,57},{48,49,7,41,31,28,22},{2,4,6,51,37,53,42}, 
{24,26,29, 10, 54,39, 58}, {60,62,3,46,23,34,40}, {14, 17,38,27,55,59,50}] 

21: [{O, 1, 6, 56, 26, 31, 59}, {Il, 12, 29, 4, 2, 51, 62}, {15, 18,37,28,61,3, 55}] 
7: [{O, 3,18,13,54,37, 43}] 

* the regular short orbit. 

Lemma 3. For d = 21, an R containing a block in 02,010,011,016 or 0 21 does not 
exist. 

Lemma 4. For d = 63, an R containing a block in all orbits of 02,010,011,016 and 
0 21 does not exist. 

From the above facts, we can easy see that the CRB generated by the planes in 
PG(5,2) can be partitioned into CRd'S of the following pattern: 

and in Table 2 we present an example of the above pattern. In the notation 

d : [{ bI , b2 , b3 }, {b4 , bs, b6 }, ••• ], 

d gives the length of the cyclic orbit of the resolution class, and base blocks are listed 
in the bracket. A base block with * implies a regular short orbit. For example, 
21:[{0, 1, 6, 56, 26, 31, 59},{1l, 12, 29, 4, 2, 51, 62}, {15, 18, 37, 28, 61, 3, 55}] is 
the cyclic orbit of resolution classes with length 21 and a representative class has the 
following blocks 

{{O,1,6,56,26,31,59},{21,22,27,14,47,52,17}, ... , 
{11,12,29,4,2,51,62},{32,33,50,25,23,9,20}, ... , 

{15,18,37,28,61,3,55},{36,39,58,49,19,24,13}, ... }. 

Recently, Sarmiento [9] enumerated all inequivalent cyclic resolutions of planes in 
PG(5,2). There exist exactly 82 cyclic resolutions. 
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3 2-rotationally resolvable BIB design of planes in 
PG(5,2) 

In this section, we consider a 2-rotational automorphism in PG(5, 2). In PG(5,2), 
we can identify V with the vector y = (Yi), for Yi E Z2 and i = 0,' .. , 5, except for 
the all zero vector. Note the vector (000001); we denote (000001) by the fixed point 
00. For this automorphism, the points of PG(5, 2) are represented by 

V = GF(25
) X {O, I} U {(00000l)} 

= {0o, 10, ... , 30o} U {Ol, 11,' .. , 30d U {ex)}, 

a 2-orbit of orbit length 31 and by a fixed point. As it is easy to treat, we consider 
a BIB design with a Frobenius cycle. A BIB design of planes in PG(5,2) has 63 
points and the block size is 7, thus we need 9 blocks to make a resolution. Let R 
be a 9-subset of blocks of a BIB design (V, 8). To generate the planes of PG(5, 2), 
we multiply each block of R by 2, and so obtain another 9 blocks. By continuing 
this process we obtain 45 blocks. Next, by adding one to each of these 45 blocks, we 
obtain 31 Singer cycles. By this process, we can obtain 9 x 5 x 31(= 1395) blocks; 
these 1395 block generate all planes of PG(5, 2). Thus, if R is a resolution class, 
then it is easy to generate cyclic resolution. So, in this section, our aim is to find a 
resolution by translating each of the base blocks by a Frobenius cycle and a Singer 
cycle. For example, the following 9 blocks are a resolution class. 

{40,OOl,211,8l,80,210,41}, 
{50, 60,20,230, 100, 170, 19o}, 
{29o, 261, 191,90, 131,280,31}, 
{140,250,301,17l,221,130,201}, 
{241, 30o, 21, 71,91, l10,00}, 
{160,291,61,220, 121, 10,01}, 
{12o, 231,281 , 181, 111,200, 15o}, 
{27o, 70,101, 161,260,151,141}, 
{11,51,271,240,180,30,251}. 

From these blocks we can generate all planes of PG(5, 2) by Frobenius cycles and 
Singer cycles. Furthermore, we find that there exist at most 92 inequivalent cyclic 
resolutions which admit Frobenius cycles and Singer cycles, by examining the mul­
tiplier automorphisms. 

Finally, all the results of this paper are mainly obtained by using a computer, thus 
our further project is to find a theoretical proof of these results. 
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