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Abstract 

It has been conjectured that r(Cnl Km) = (m - 1)(n - 1) + 1 for all 
(n, m) =1= (3,3) satisfying n ~ m. We prove this for the case m = 5. 
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1 Introduction 

The independence number 0;( G) of a graph G is the cardinality of its largest indepen
dent set. Given a graph H without isolated vertices, the Ramsey number r(H, Km) 
is the smallest integer N such that every graph G of order N either contains H as 
a subgraph or satisfies a( G) 2:: m. In one of the earliest contributions to graphical 
Ramsey theory [1], Bondy and Erdos proved the following result for the case where 
H ~ Cn , a cycle of length n. 

Theorem (Bondy, Erdos). For all n 2:: m 2 
- 2, 

The condition n 2:: m 2 - 2 is required because of the proof technique, and it 
has been thought from the beginning that the conclusion is likely to hold under 
a rather less restrictive hypothesis. The problem of determining for each m the 
smallest n for which r(Cn, Km) = (m - l)(n - 1) + 1 is among those given in [3], 
and it is conjectured in [8] and elsewhere that r(Cn,Km ) (m -l)(n -1) + 1 for 
all (n, m) =1= (3,3) satisfying n 2:: m. This is trivial for m 2. It was confirmed for 
m 3 in early work on graphical Ramsey theory [4], and recently it was proved for 
m = 4 [9]. In this paper, we shall prove that the conjecture is true for m = 5. 

Theorem 1. For all n 2:: 5, r(Cn , K 5) = 4n - 3. 

Note. The condition n 2:: 5 is best possible. From early work of Clancy [2], it is 
known that r(C4 , K 5) = 14. There is a unique graph G of order 13 such that C4 ¢. G 
and a( G) ::; 4. This graph is exhibited in [6] and elsewhere. 

To reach our goal, it is only necessary to prove that for n ~ 5 every Cn-free graph 
G of order 4n 3 satisfies a(G) 2:: 5. The fact that r(Cn , K 5 ) 2:: 4n - 3 follows 
from the simple example of G ~ 4Kn - 1 , which contains no Cn and has independence 
number a( G) 4. 

2 Proofs 

The proof of Theorem 1 will be given through a sequence of lemmas. As usual, b( G) 
denotes the minimum degree, that is o(G) = minvEv(G) degv. 

Lemma 1. Suppose that for some n 2:: 4 there exists a graph G of order 4(n - 1) + 1 
such that Cn ¢. G and a( G) ::; 4. Then o( G) 2:: n - 1. 

Proof. Suppose to the contrary that some vertex v E V (G) satisfies deg v ::; n - 2. 
Deleting v and its neighborhood, we obtain a graph H of order at least 3(n -1) + l. 
By the result in [9] either Cn C H or a(H) 2:: 4. Since Cn ¢. G, we must assume 
that latter. But then v together with the appropriate four vertices from V(H) yields 
a five-element independent set in G, a contradiction. 0 

The following lemma is proved in [7]. 
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Lemma 2. Suppose 6(G) 2: 4 and C5 ¢. G. Then a(G) 2: 6.(G). 

The following result is given in [5]. In the interest of completeness, it is included 
here with proof. 

Lemma 3. r( C5, K 5 ) = 17. 

Proof. Suppose there exists a graph G of order 17 such that C5 ct. G and a( G) :::; 4. 
By Lemma 1 we know that 6(G) 2: 4. Let u E V(G) be a vertex of degree 8(G), let 
r denote the neighborhood of u, and let W denote the set of vertices that remain 
after u and its neighborhood have been deleted. There are two cases. 

Case {i}: 6(G) = 4. In this case (W) is a C5-free graph of order 12 with no 
four-element independent set. All such graphs are found in [7], and they are listed in 
the Appendix (§3) of this paper for the reader's convenience. Inspection shows that 
each one contains a K4 with at least two vertices of degree three. In particular, for 
each possibility there is a cycle (Wl, W2, W3, W4, WI) in which Wl and W2 have degree 
three in (W). Since 8(G) = 4, Wl is adjacent to some vertex in r and so is W2. If Wl 

and W2 are each adjacent to v E r then (v, WI, W4, W3, W2, v) is a C5 in G. If WI and 
W2 are adjacent to VI and V2, respectively, where VI =I- V2, then (u, VI, WI, W2, V2, u) is 
a C5 in G. In either case, we have obtained the desired contradiction. 

Case {ii}: 6(G) ~ 5. In this case a(G) 2: ~(G) 2: 5 by Lemma 2, a contradiction. 
o 

Lemma 4. r( C6 , K 5) = 21. 

Proof. Suppose there exists a graph G of order 21 such that C6 ct. G and a( G) :::; 4. 
Let V(G) = {VI,V2, .. ' ,v2d. By Lemma 1, 6(G) 2: 5. Also, r(KI + P4,K5) = 19 
[5] and r( C6 , K 4 ) = 16, so we may assume that VI is adjacent to each vertex of the 

path (V2, V3, V4, V5)' and I ~ {V6, V7, VB, Vg} is an independent set. It is easy to check 
that since C6 ct G, no vertex in {V6, V7, ... , v2d is adjacent to two or more vertices 
of {V2,V3,V4,V5}. [Ifw is adjacent to V2 and V3 then (W,V2,VllV5,V4,V3,W) is aC6 in 
G, if W is adjacent to V2 and V4 then (w, V2, V3, VI, V5, V4, w) is a C6 in G, and so on.] 
Since a(G) :::; 4 each vertex of V(G) \ I is adjacent to at least one vertex of I. In 
view of these two facts, we may assume {V2V6,V3V7,V4VB,V5V9} C E(G). No vertex 
in {VIO, . .. , v2d is adjacent to two or more vertices of I; otherwise, G contains a 
C6 . Consider V6. Note that VI V6 ¢ E( G); otherwise (Vl, V5, V4, V3, V2, V6, vd is a 
C6 in G. Since 8(G) 2: 5 we may assume that V6Vj E E(G) for 10 :::; j :::; 13. 
Note that {V6,VlO,Vn,VI2,V13} spans a complete subgraph; if ViVj ¢ E(G) for some 
{i, j} C {10, 11, 12, 13}, then {V7, VB, Vg, Vi, Vj} is a five-element independent set in G. 
Now the argument can be repeated, except instead of simply containing KI + P4, we 
may assume that the subgraph induced by {Vl, V2,'" , V5} is complete. Then either 
some i :::; 5 makes {Vi, V6, V7, VB, Vg} a five-element independent set in G or else some 
Vj E I is adjacent to two or more vertices of {VI, V2, ... , V5} yielding a C6 in G, a 
contradiction. 0 

The following lemma provides tools which will be used repeatedly in the remaining 
proofs. Parts (a) and (b) were used in [1] and parts (c) and (d) appear in [9]. 
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Lemma 5. Suppose G contains the cycle (Ul, U2, ... , Un-I, Ul) of length n - 1 but 
no cycle of length n. Let X ~ V(G) \ {Ul, U2, ... , un-d. Then 

( a) No vertex x E X is adjacent to two consecutive vertices on the cycle. 

(b) If x E X is adjacent to Ui and Uj then UHIUj+1 tf. E(G). 

(c) If x E X is adjacent to Ui and Uj then no vertex x' E X is adjacent to both 
Ui+1 and Uj+2· 

(d) Suppose a(G) = m - 1 where m ~ (n + 3)/2, and {Xl, X2, ... ,Xm -l} C X is 
an (m - l)-element independent set. Then no member of this set is adjacent 
to m 2 or more vertices on the cycle. 

Proof. (a) Obvious. 
(b) If x E X is adjacent to Ui and Uj where UHIUj+1 E E(G) then 

is a Cn in G, a contradiction. 
(c) If x is adjacent to Ui and Uj and x' is adjacent to Ui+1 and Uj+2 then 

is a Cn in G, a contradiction. 
(d) First notice as did Bondy and Erdos that no x E X can be adjacent to 

m - 1 or more vertices of the cycle. For, if 1 ~ jl < j2 < '" < jm-l ~ n - 2 
and x E X satisfies XUj E E (G) for all j E J = {iI, j2, . . . , jm- tl, then in view 
of (a) and (b) we see that {x} U {Uj+ 11 j E J} is an m-element independent set. 
Now suppose that 1 ~ kl < k2 < ... < km- 2 ~ n - 3 and x E {XI,X2, ... ,xm-d 
satisfies XUk E E(G) for all k E K = {k1, k2, ... ,km - 2}. [The condition n 2: 2m - 3 
ensures that there is such an indexing of the vertices on the cycle.] By what was just 
proved, x is not adjacent to any more vertices on the cycle, in particular x is not 
adjacent to Vs where s = km- 2 +2. But Vs is adjacent to some x' E {Xl, X2, ... ,xm-d 
since otherwise there would be an m-element independent set. By (b) we know that 
{uk+11 k E K} is an independent set, and by (c) no member of this set is adjacent 
to x'. It follows that {x, x'} U {uk+ll k E K} is an m-element independent set, a 
contradiction. 0 

The Standard Configuration. To prove that r(Cn , K5) = 4(n-1)+1 for n 2: 7, 
we shall in each case assume to the contrary that there exists a graph G of order 4(n-
1) + 1 such that Cn 1.. G and a(G) ~ 4. By Lemma 1, 8(G) 2: n - 1. By induction, 
r(Cn- I,K5) = 4(n - 2) + 1. Hence we may assume that (Ul,U2, ... ,Un-l,Ul) is 
a cycle of length n - 1 in G and, disjoint from this cycle, there is a four-element 
independent set I = {Vb V2, V3, V4}' Let C = V(Cn-d {Ul' U2,'" ,un-d denote 
the set of vertices on the cycle, and let W = V (G) \ (C U I) = {WI, W2, ... ,W3n-6} 
denote the set of vertices disjoint from CUI. Since a(G) ~ 4 each vertex in C is 
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adjacent to at least one vertex in I. In view of part (d) of Lemma 5 (with m = 5), 
no member of I is adjacent to 3 or more vertices on the cycle. Thus the set of edges 
E(C,I) = {uvi U E C, v E I} satisfies ICI:::; IE(C,I)I:::; 8. Ifv E I is adjacent 
to Ui and Uj and these two vertices have no other neighbors in I then UiUj E E( G); 
otherwise, Ui, Uj and the three members of I \ {v} yield a five-element independent 
set. Note that each vertex in I is adjacent to at least n - 3 vertices in W. Since 
4(n - 3) > 3n - 6, we may assume (if needed) that there are two vertices in I that 
are commonly adjacent to some vertex w E W. The structure just described will be 
called the standard configuration. 

Lemma 6. r(C7 , Ks) = 25. 

Proof. Assume the standard configuration. Then 6 :::; IE( C, J) I :S 8. The proof is 
divided into two parts. The first part deals with the possibility 7 :S IE(C, 1)1 :S 8 
and the second part with IE(e, 1)1 = 6. 

Part I: 7 :::; IE(C,!) I :::; 8. Note that each vertex in I is adjacent to at least one 
vertex in C. If not, then some other vertex in I is adjacent to at least r7/31 = 3 
vertices in C, contradicting part (d) of Lemma 5 (with m = 5). In case (i) below, 
we use the prerogative of assuming that VI and V2 are commonly adjacent to some 
w E W. We may assume that VI is adjacent to two vertices in C. There are two 
cases. 

Case {i}: VI is adjacent to Ul and U3. Note that U2U4 t/. E(G) and U2U6 t/. E(G), 
both by part (b) of Lemma 5. Also U4V2 t/. E(G); otherwise (w, VI, UI, U2, U3, U4, V2, w) 
is a C7 in G. In the same way, U6V2 t/. E(G). We now make two claims. 

Claim 1: USV2 t/. E(G). Suppose USV2 E E(G). Then U2V2 t/. E(G) by part (c) of 
Lemma 5 and U4U6 t/. E(G) as well; otherwise (w, VI, Ul, U6, U4, Us, V2, w) is a C7 in G. 
In this case, {U2' U4, U6, VI, V2} is a five-element independent set in G, a contradiction. 

Claim 2: U2V2 E E(G). Suppose U2V2 t/. E(G). Then U4U6 E E(G) since other
wise {U2' U4, U6, VI, V2} is a five-element independent set in G. Then Ul V2 t/. E( G); 
otherwise (W,VbU3,U4,U6,Ul,V2,W) is a C7 in G. In the same way U3V2 t/. E(G). 
Then UV2 t/. E(G) for all U E C, a contradiction. 

In view of part (a) of Lemma 5 and previously established facts, this means that 
V2 is adjacent to precisely one vertex in O. Hence if IE( C, 1) I = 8, we have already 
reached a contradiction. Now we may assume that U4 and U6 are both adjacent to 
V3 and Us is adjacent to V4' Then U4U6 E E(G); otherwise {U2,U4,U6,Vl,V4} is a 
five-element independent set in G. Note that U2V4 t/. E(G) by part (c) of Lemma 5. 
Also, UIV4 t/. E(G) and U3V4 t/. E(G), both by part (b) of Lemma 5. It follows that 
V4 is adjacent to precisely one vertex on the cycle, so IE( C, I) I = 2 + 1 + 2 + 1 = 6, 
a contradiction. This completes the proof in case (i). 

Case {ii}: VI is adjacent to Ul and U4. In this case, we do not make use of the 
assumption that VI and V2 are commonly adjacent to w E E(G). This means that 
the three vertices V2, V3, V4 are on an equal footing. A simple argument, sketched 
below, shows that a second vertex, which we may take to be V2, is adjacent to U2 

and Us or to U3 and U6' [If we deny this conclusion and use part (c) of Lemma 5, 
we find that if V E {V2' V3, V4} is adjacent to two vertices in 0, then one of those 

67 



vertices must be UI or U4. For each such v there is an extra edge in E( C, I) over 
the six that are required by the fact that each vertex in C is adjacent to at least 
one vertex in 1. Suppose there are k such vertices. By the observation just made, 
IE(C, 1)1 2:: 6 + k. On the other hand, the appropriate degree sum for vertices in 1 
yields IE(C,I)I = 2(k + 1) + (3 - k) = 5 + k.] Hence there are two subcases. 

Subcase raj: V2 is adjacent to U2 and Us· Then U3U6 rt. E(G) by part (b) 
of Lemma 5. For v E {V3,V4}, either U3V E E(G) or U6V E E(G); otherwise 
{U3, U6, VI, V2, V} is a five-element independent set in G. If U3V E E( G) then UI v rt. 
E(G) and U4V rt. E(G), by parts (c) and (a), respectively, of Lemma 5. If U6V E E(G) 
then UIV rt. E(G) and U4V rt. E(G) by parts (a) and (c), respectively, of Lemma 5. In 
view of this, {V'I, U4, V2, V3, V4} is a five-element independent set in G, a contradiction. 

Subcase (b J: V2 is adjacent to U3 and U6. The proof is similar to that of subcase 
(a). First U2US rt. E(G) by part (b) of Lemma 5. Then for v E {V3, V4} either 
U2V E E(G)orusv E E(G). Finally,foruiv rt. E(G) andu4v rt. E(G) for V E {V3,V4}, 
so {Ul' U4, Vl, V3, V4} is a five-element independent set in G, a contradiction. This 
completes the proof in Part 1. 

Part II: IE(C, I)I = 6. In this part, each vertex in C is adjacent to precisely one 
vertex in 1, so if v E 1 is adjacent to Ui and Uj then UiUj E E(G). Do not assume 
that VI and V2 are both adjacent to w E W, only that some pair Vi, Vj E 1 have this 
property. Without loss of generality, VI is adjacent to two vertices in C. There are 
two cases. 

Case (iJ: Vl is adjacent to UI and U4. Then we may assume that U2 is adjacent to 
V2. In view of parts (a), (b), and (c) of Lemma 5 and the fact that each vertex in C 
is adjacent to precisely one vertex in 1, it is clear that UiV2 rt. E( G) for i =J. 2. In the 
same way, we may assume that U3 is adjacent to V3 and then find that UiV3 rt. E for 
i f 3. Then we may assume that Us is adjacent to V4. Finally, however, V6 cannot 
be adjacent to any vertex in 1, a contradiction. 

Case (iiJ: VI is adjacent to Ul and U3. Then UIU3 E E(G). We may assume that 
U2 is adjacent to V2. As before, we then find that UiV2 rt. E( G) for i f 2. Then, in 
the only acceptable configuration, U4 and U6 are both adjacent to V3, U4U6 E E(G), 
U5V4 E E(G) and UiV4 rt. E(G) for i f 5. Now we use the fact that there are two 
vertices Vi, Vj E 1 that are both adjacent to w E W. If VI and V3 are both adjacent 
to w then (W,VbUI,U2,U3,U4,V3,W) is a C7 in G. If VI and V4 are both adjacent 
to w then (w, VI, UI, U3, U4, Us, V4, w) is a C7 in G. If V2 and V4 are adjacent to w 
then (W,V2,U2,U3,U4,US,V4,W) is a C7 in G. Hence, by symmetry, we may assume 
that Vi and V2 are both adjacent to w E W. Let Z = {UI,'" , U6, Vl,'" ,V4, w} and 
Z'=V(G)\Z. 

As one may readily verify, for each vertex z E Z \ {VI, V2, w} there is a path of 
length six from w to z. Also for each z E Z \ {U4' U6, V4} there is a path of length 
six from Us to z. Since C7 ¢.. G, the degrees of Us, V2, V3, W in (Z)G are 3,2,2,2, 
respectively. Since 8(G) 2:: 6 there are at least 3 + 4 + 4 + 4 = 15 edges joining 

S ~ {U5' V2, V3, w} and Z'. Since IZ'I = 14, there must be two vertices in S that are 
adjacent to the same w' E Z'. Finally, the following path system shows that any two 
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vertices in S are joined by a path of length five in (Z)a: 

(U5, U4, U3, UI, U2, V2), 

(U5, U4, U3, U2, V2, w), 

(V2' U2, Ul, U3, VI, w), 

(U5, U4, U3, Ul, U6, V3), 

(V2' U2, Ul, U3, U4, V3), 

(V3, U4, U3, U2, V2, w). 

Since there are two vertices in S that are both adjacent to w' E Z', this gives a C7 

in G, a contradiction. 0 

Lemma 7. r(Cs, K 5) = 29. 

Proof. Assume the standard configuration. The edge count 7 101::; IE(C, 1)1::; 8 
gives two cases for consideration. 

Case {i}: IE(C, 1)1 = 7. In this case, each vertex in C is adjacent to exactly one 
vertex in I, one (exceptional) vertex in I is adjacent to only one vertex in C, and the 
other three are each adjacent to two vertices on the cycle. We may assume that Vl 

is not the exceptional vertex. Let N denote the neighbors of VI in C. By symmetry, 
there are two subcases. 

Subcase {a}: N = {Ul' U3}' Then Ul U3 E E (G), and we may assume that U2 

is adjacent to V2' It is easily checked that there is a path of order eight joining V2 

and Ui for i = 4,5,6,7. Since there would be a C8 otherwise, we may assume that 
UiV2 rf. E( G) for i = 1,3,4,5,6,7, so V2 must be the exceptional vertex. Then we 
may assume that V3 is adjacent to U4 and U6, and that V4 is adjacent to U5 and U7, 

so U5U7 E E(G). But this violates part (b) of Lemma 5. 
Subcase {b}: N {UI' U4}' Then UIU4 E E(G), and we may assume that that U2 

is adjacent to V2 and U3 is adjacent to V3' Note that there is a path of order eight 
joining Vi and Uj for i = 2,3 and j = 5,6,7. But V2 and V3 are not both exceptional, 
so we have a contradiction. 

Case {ii}: IE(C,1)1 = 8. In this case, one (exceptional) vertex in C is adjacent 
to two vertices in I, and each vertex in I is adjacent to two vertices in C. As noted 
earlier, we may assume that there is a vertex w E W that is adjacent to both VI and 
V2. Again let N denote the neighbors of VI in C. 

Subcase (a): N = {Ul' U3}. Note that there is a path of order eight joining V2 

and Ui for i = 4,5,6,7, so V2 cannot be adjacent to U4, U5, U6 or U7' Also V2 cannot 
be adjacent to Ul and U2 or to U2 and U3 by part (a) of Lemma 5. Finally, V2 cannot 
be adjacent to both Ul and U3 since there is only one exceptional vertex in C. Hence 
there do not exist two vertices on the cycle that can serve as neighbors of V2, a 
contradiction. 

Subcase (b): N = {Ub U4}. Note that there is a path of order eight joining V2 and 
Ui for i 1,4,5,7. Hence we may assume that V2 is adjacent to U2 and U6. However, 
this violates part (c) of Lemma 5. 

Since a contradiction arises in each subcase, the lemma is proved. 0 

Lemma 8. r(C9 , K5 ) = 33. 

Proof. Assume the standard configuration. The edge count 8 = ICI ::; IE(C, 1)1 ::; 8 
requires each vertex in C to be adjacent to exactly one vertex of I and each vertex in 
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I to be adjacent to exactly two vertices in C. We may assume that there is a vertex 
w E W that is adjacent to both VI and V2' Let N = {Ui,Uj} denote the neighbors 
of VI on the cycle. Since there is no five-element independent set, UiUj E E( G). By 
symmetry, there are three cases. 

Case {i}: N = {Ul, U3}. It is easily checked that for 4 :s; i :s; 8 there is 
a path of order seven joining VI and Ui. The paths (Vl,Ui,US,U7,U6,U5,U4) and 
(VI,U3,Ul,US,U7,U6,U5) serve for i = 4 and i = 5, respectively, and their counter
parts by symmetry take care of i = 8 and i = 7. The required path for i = 6 may 
be taken to be (VI, UI, U2, U3, U4, U5, U6)' Hence there do not exist two vertices on the 
cycle that can serve as neighbors of V2. 

Case {ii}: N = {Ul, U4}' In this case for 5 :S i :S 8 there is a path of order seven 
joining VI and Ui' The paths (VI, U4, UI, Us, U7, U6, U5) and (VI, UI, U2, U3, U4, U5, U6) 

serve for i = 5 and i = 6, respectively, and symmetric counterparts take care of i = 8 
and i = 7. Therefore V2 cannot be adjacent to any of the vertices U5, U6, U7, U8. By 
part (a) of Lemma 5, V2 cannot be adjacent to U2 and U3. Hence there do not exist 
two vertices on the cycle that can serve as the neighbors of V2. 

Case {iii}: N = {UI, U5}. In this case, there is a path of order seven joining 
VI to Ui for i 2,4,6,8, so the neighbors of V2 on the cycle must be U3 and U7. 

Without loss of generality, U2 is adjacent to V3, and by symmetry the neighbors of 
V3 on the cycle are either U2 and U4 or U2 and U6. In the first instance, U2U4 E E( G) 
and (VI, Ul? Us, U7, V2, U3, U2, U4, U5, VI) is a C9 in G. In the second, U2U6 E E(G) and 
(Vi, Ul? Us, U7, U6, U2, U3, U4, U5, Vi) is a C9 in G. 

Since a contradiction arises in each case, the proof is complete. 0 

Completion of the proof of Theorem 1. For n 2: 10, the edge count n - 1 = ICI < 
IE(C, 1)1 :S 8 gives an immediate contradiction. 0 

3 Appendix - Possible Induced Subgraphs (W) for 
Case (i) in Lemma 3 

Here we give the promised collection of graphs of order 12 that contain no C5 and 
have independence number 3. 

Proposition. If G is a graph of order twelve such that C5 ct G and a( G) = 3 then 
G is isomorphic to 3K4 or to one of the five graphs shown below, obtained by adding 
appropriate edges to 3K4• 
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FIGURE 1. Graphs of order twelve with C5 r:t. G and a(G) = 3. 
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