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Abstract 
An array of complex fourth roots of unity with a perfect auto-correlation 
property (a PQA) is shown to correspond to an equivalently correlated 
binary array (a GPBA) by a simple explicit formula. Both objects also 
correspond to Hadamard matrices of certain forms. 

1 Introduction 

A Perfect Quaternary Array (PQA) is a perfectly auto-correlated array of the com­
plex fourth roots of unity. Arasu and de Launey [1] have constructed many new 
two dimensional examples. Some of these exist for dimensions where a perfectly 
auto-correlated binary array (a Perfect Binary Array or PBA) is either unknown or 
cannot exist. The concept of PBA was extended by Jedwab [4] and we show PQAs 
correspond precisely to certain of these so called Generalized Perfect Binary Arrays 
(GPBAs). This equivalence can be deduced by considering the relative difference sets 
that both objects define, but is easily stated explicitly. Just as GPBAs correspond 
to Hadamard matrices of a certain form, so then do PQAs by this correspondence. 

2 PQAs and GPBAs 

Let s = (S1,'" ,sm) be a vector of positive integers and let S = ZSI X ... X ZSm' 
where Zk denotes the cyclic group of integers {O, 1, ... ,k - I} under addition mod 
k. Define further groups, W = Z2 X Sand G = Z4 X S. 

Let p : S -+ {±1, ±i} C C and A : W -+ {±1} be set maps taking 0 to l. The 
map p is a PQA if 0 "# u E S implies 

L: p(m)p(m + u) = O. 
mES 

A PBA is a PQA taking only the values ±l. We will not give the general definition 
of GPBA from [4], but rather restrict ourselves to the special case that is important 
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here. We define an expansion A : G -t {± 1} of A as follows. Write g E G as 
g = (r, m) for r E ;£4 and m E 5 and let 

A(r, m) = { A(r, m) ~f l' = 0, 1, 
-A(r - 2, m) If l' = 2,3. 

Further define the auto-correlation function of A to be, for g E G, 

x(g) = I: A(h)A(h + g). 
hEG 

Finally, we say A : W -t {±1} is a GPBA if g =1= 0, (2,0, ... ,0) implies X(g) :::: 0. In 
the general definition (see [4]) A would be called a GPBA(2, s) of type (1,0, ... ,0). 

We now show how to convert a PQA into a GPBA and vice versa. 

Theorem 2.1 Suppose for all m E 5 that p and A are related by 

1 - i 
p(m) = -2-(A(0, m) + iA(I, m)). 

Then p is a PQA if and only if A is a GPBA. 

Proof Let u E 5. We quickly deduce the following identities, 

x(O, u) = -X(2, u) = 2 I::: A(O, m)A(O, u + m) + A(I, m)A(I, u + m), 
mES 

(1) 

X(I, U) = -X(3, U) = 2 L A(O, m)A(I, u + m) - A(I, m)>'(O, u + m). (2) 
mES 

Using (1) and collecting real and imaginary terms we obtain, 

L p(m)p(m + u) = ~(X(O, u) - iX(I, u)). 
mES 

(3) 

If A is a GPBA we have, for u f. 0, X(O, u) = X(I, u) = ° and p is a PQA by (3). 
Conversely, suppose p is a PQA. On equating real and imaginary parts in (3) and 
using (2) we obtain x(r, u) = ° for all (1', u) E G with u f. O. Similarly, for u = 0 
we have X(I, u) = X(3, u) = ° (and X(O, u) = -X(2, u) = 4151). Hence X(g) = ° for 
every g f. 0, (2,0, ... ,0). 0 

The equivalence of the existence of a PQA and a GPBA also follows since both 
objects are equivalent to a relative difference set in G relative to the subgroup 
«2,0, ... ,0)) (see [1, 4]). Indeed, therefore, new results on relative difference sets 
give corresponding results on PQAs. We give as an example a result in [1] which 
includes, as a special case, the well known result that there is a Perfect Quaternary 
Sequence of period 2b if and only if 1 ~ b ~ 4. 

Corollary 2.2 [Arasu and De Launey1 Let k, bi ~ b2 f. ° be non-negative integers. 
There is a two-dimensional PQA for s = (2b1 3k , 2b2 3k ) if and only if b2 - bl ~ 4. 
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Proof When b2 bl:S 4, [2, Corollary 8.1] gives, after an obvious isomorphism, 
a (v, 2, v, v/2) relative difference set, D say, in Z4 x Z2b13k X Z2b23k relative to the 
subgroup ((2,0, ... ,0)), where v = 21+bl+b232k . In fact, by the remarks after [2, 
Corollary 8.1], this exponent bound, b2 - bl :S 4, is also necessary for the existence 
of such a D. Finally, by [4, Theorem 3.2], D is equivalent to a GPBA. 0 

3 PQAs and Hadamard Matrices 

It is easily shown that a PQA, p, corresponds to a complex Hadamard matrix 
[p(m U)]m,uES (see [1]). A PQA also corresponds to a (standard) Hadamard ma­
trix as we now indicate. We define two functions from W x W to {±1} as follows: 
,(u, v) = -1 if and only if UI = VI = 1; and o'\(u, v) A(U)'\(V)'\(u + v). The 
result below may be easily proved using Theorem 2.1 and general results connecting 
GPBAs and orthogonal co cycles (see [3, Theorem 5.3]). However, we prefer to give 
a direct proof because it indicates the relationship between Theorem 2.1 and the 
result of Miyamoto [5, Lemma 4J connecting block Hadamard matrices and complex 
Hadamard matrices. 

Theorem 3.1 IJ p and ,\ are related by (1), p is a PQA iJ and only iJ "/0'\ is a 
Hadamard matrix indexed by the elements oj W. 

Proof ,0'\ is Hadamard equivalent to the block matrix M = [_AB ~] where 

A = ['\(0, m + U)]m,uES and B = [,\(1, m + U)]m,uES are matrices group developed 
over S. By [5, Lemma 4], any block matrix such as M is a Hadamard matrix if and 
only if N l~i(A+iB) is a complex Hadamard matrix. Here N = [P(m+U)]m,uES, 
which is group developed over S and so is Hadamard equivalent to [P(m-U)]m,uES. 0 

In view of the above we see that the equivalence between PQAs and GPBAs in 
Theorem 2.1 arises from imposing a condition of group development on a complex 
Hadamard matrix. 

Among PQAs those that are fiat are of particular interest because they correspond 
to certain generalised Hadamard matrices indexed by S with elements in {±1, ±i}. 
They also correspond to PBAs of a certain form as we will see. We call a PQA fiat if 
for each 0 i= U E S, the list p(m)p(m + u), mE S contains each of the four elements 
{±l, ±i} an equal number of times. 

Theorem 3.2 Given a PQA, p, or equivalently a GPBA, A, related by (1J, then p 
is fiat iJ and only if p2(m) = '\(0, m)'\(l, m) is a PBA. 

Proof Let 0 i= U E S. Because p is a PQA, we can say that S is a union of 
four disjoint subsets Bk such that IBol = IB21,IBd = IB31, IBol + IBII = ISI/2 and 
p(m + u) ikp(m) if mE Bk (k = 0, ... ,3). Squaring we have, 

2 
{ 

P2 (m) if m E Bo U B2 • 
p (m + u) = _p2(m) if m E BI U B3. 
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Assuming that p is fiat we have IBkl = ISI/4 (k = 0, ... ,3) and consequently 
IBo U B21 IBI u B31 = ISI/2. SO, the list p2(m)p2(m + u), m E S contains ±1 an 
equal number of times. 

Conversely, assuming p2 is a PBA, there are two disjoint subsets Ao, Al of S such 
that IAol = lAd ISI/2 and p2(m + u) = (-I)jp2(m) if mE Aj (j = 0,1). Hence 
Ao = BoUB2 and Al = B I UB3, and therefore IBkl = IAol/2 = ISI/4 (k = 0, ... ,3). 
This makes p fiat. 0 
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