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Abstract 

In this paper a degree condition for the codiameter is presented. 

1 Introduction 

In [1], Hikoe Enomoto proved the following theorem. 
Theorem 1. [1] Let G be a 3-connected graph with n vertices such that (J2 2: m. 

Then d* (G) 2: min {n - 1, m - 2}. 
In [2], Nathaniel Dean obtained the following result. 
Theorem 2. [2]Let G be a 2-connected graph with vertex set {Xl,X2,"', xn} and 

edge set E. Suppose G satisfies the following property for a given positive integer 
m: for all positive integers j and k such that j < k, XjXk ~ E; d(xj) ~ j and 
d(Xk) ~ k 1, we have 

(1) d(xj) + d(Xk) 2: m whenever j + k ;::: n, 
(2) d(xj) + d(Xk) ;:::: min{k + 1, m} whenever j + k < n. 

Then c(G) ;::: min{m, n}. 
The main theorem in this paper is as follows: 
Theorem 3. Let G be a 3-connected graph with V(G) {Vl,V2," ·,vn} where 

d(vd ::; d(V2) ::; ... ::; d(vn ). Suppose for every pair of characteristic vertices Va and 
Vb we have 

(1) d(va) + d(Vb) 2: m whenever a + b ;::: n, 
(2) d(va ) + d(Vb) 2: min{b + 3, m} whenever a + b < n. 

Then d*(G) ;::: min{n - 1, m - 2}. 
Clearly, Theorem 1 is an immediate corollary of Theorem 3. 
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2 Notation and Preliminaries 

In this paper we denote the neighbour set of the vertex x by N (x), and put 
r(x) = {x}UN(x). For a path P = (Ul,U2,""Up ), let uj = Uj+l, uj Uj-l and 
\PI p. If C is a cycle in G, then ICI stands for the number of vertices contained in 
C. 

Definition 1. Assume G is a connected graph. For every two vertices x and y 
in G, their co distance is defined by d*(x, y) = max{IPI- 1 I P is a (x, y) path} and 
the co diameter of G is defined by d*(G) = min{d*(x, y) I {x, y} c V(G)}. 

Lemma 1. Assume Q = {Xl'" Xt} is a path in a 2-connected graph G and 
N(xr) c V(Q), N(xt) C V(Q). Then for every two vertices Xa and Xb in Q, there 
must exist a path R in G with Xa and Xb as its ends and IRI ;:::: min{d(xI)+1, d(xt)+1}. 

Proof. Suppose a < b. Let c = max{i I Xi E N(xd} and d = min{i I Xi E 

N(xt)}. We consider three cases. 

(I) a < c ~ b. Let a' = min{i I Xi E N(Xl), i > a}. Then R = (Xa Q XlXa, Q Xb) 

includes Xl and all its neighbours. Therefore IRI ;:::: d(Xl) + 1. 
(II) c ~ a < b. Since G is a 2-connected graph, there exists at least one path 

PI (x ill X1J satisfying that V(Q) n V(Pl ) = {x Jll Xh} (11 < c < It). Choose PI so 
as to maximize it. If it > a, then stop, or else we take a similar path P2 (xh, x/2 ) 

satisfying that h < it < 12 where 12 is maximized. If 12 > a, then stop. Otherwise, 
repeat the above procedure until we obtain paths Pn r = 1,2, .. " q such that Ir < 
lr-l < lr and 11 < c 5 a < lq. 

Let I{ = min{ i I Xi E N(xd, i > fI}. It is easy to show that, if q is an odd num-

( 
+-- +-- +-- +-- -+ -+ 

ber, then the path R = Xa Q Xl q _ 1 P q-l X iq-l ... Xl 2 P2 X h Q x f~ Xl Q X ft PI Xh ... 

X iq Pq xlqQxb) contains Xl, xb and all the neighbours of Xl and hence IRI ;:::: d(Xl)+2. 

( 
+-- +-- +-- +--

If q is an even number, then the path R = Xa Q Xlq_1 Pq-l XJq_l ... Xlt PI Xft Q Xl 

Xi: Q xh P2 XI 2 " ,xJq Pq X/qQXb) has length at least d(Xl) + 2. 

(III) a < b < c. If d ;:::: a, from (1) and (II) we can see that there exists a path in 
G with Xa and Xb as its ends and length at least d(xt) + 1. Therefore we can assume 
d < a < b < c and N(xd n{Xa+l,"', Xb-l} =I- 0. Now N(xt) n{Xa+l,' . " Xb-r} =1= 0. 
(Otherwise, N(xdn{xa+I,"',Xb-d = 0. Then the path (XaQXIXcQxb) has 

length at least d(xd + 1). Let 

a' = min{i I Xi E N(.'Eq), i > a}, b' max{i I Xi E N(Xt), i < b}, 

1= max{i I Xi E N(xd, i < b}, h = min{i I Xi E N(Xt), i > a}. 

If b' ;:::: I, then the path Xa Q XlXa, Q Xb'Xt Q Xb contains Xl and all its neigh-( 
+-- -+ +--) 

bours. Therefore the length of the path is at least d( Xl) + 1. 

( 
+-- +-- +--) If b' < I, then the path Xa Q XiX i Q XhXt Q Xb has length at least d(xt) + 2. 
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3 Proof of Theorem 1 

Definition 2. Let G be a graph with n vertices V ( G) { Vl, V2, ... , vn }, where 
d(Vl) :::; d(V2) :::; ... :::; d(vn ). We call Va and Vb (a < b) a pair of characteristic 
vertices in G if I) VaVb 1. E and II) d(va) :::; a + 1, d(Vb) :::; b. 

Theorem 1. Let G be a 3-connected graph with vertex set V (G) = {VI, V2, ... , vn } 

such that d( vd :::; d( V2) :::; ... :::; d( vn ). Then passing through every edge of G there 
exists a cycle of length at least d( va) +d( Vb) -1 for some pair Va and Vb of characteristic 
vertices. 

The rest of this section is devoted to the proof of Theorem 1. 
We will prove it by contraposition. Suppose the theorem is false. Throughout 

the proof, let e be an arbitrary edge in G and P = (Vj ... Vk) be one of the longest 
paths passing through e, chosen so as to maximize j + k. In addition, e = VfVh. It 
is easily seen that N( Vj) U N( Vk) ~ V(p) and VjVk 1. E. Suppose j < k without loss 
of generality. 

Proposition 1. If vt Vj E E and i =f f, then i :::; j. 
f- -t 

Proof. If VtVi E E and i =f f, then pI = Vi P Vjvt P Vk is one of the longest 
paths passing through e. So i + k :::; j + k, i.e. i :::; j, which completes our proof. 

Similarly, we can prove that if V;Vk E E and i =f h, then i S; k. 
Proposition 2. d(vj) S; j + 1 and d(Vk) :::; k. 
Proof. d(vj) = IN-(vj)1 S; I{Vi I vtVj E E, i =f f}1 + 1 :::; I{Vi I Vi E V(G), 

i :::; j}1 + 1 = j + 1. 
Similarly, d(Vk) = IN+(Vk)1 :::; I{Vi I V;Vk E E, i =f h}1 + 1 :::; I{Vi I Vi E V(G), 

i =1= h} I k. This completes the proof of Proposition 2. 
From Proposition 1 and Proposition 2, we know that Vj and Vk are a pair of 

characteristic vertices. 
Renumber the vertices of P as P = XIX2 ... Xt so that N(xd U N(xt) ~ P. Put 

p = max{ i I Xi E N(xd}, q = min{ i I Xi E N(xt)} and e Xs-IXs' We consider two 
cases: 1) p S; q and 2) p> q. 

Case 1. p S; q. 
In this case, we distinguish two sub cases depending on the position of the edge 

e: I) 2 :::; 8 :::; p and II) p + 1 :::; s :::; q. 
Subcase 1.1. 2 :::; s :::; p. 
Let io max{i I Xi E N(xr), is; 8 - I}. 
Algorithm 1.1 
Step 0. Set S = {XI,"',Xio-l}U{XS"",Xp-l}, R {Xp+l,"',Xt} and W = 

{Xio"" ,XS-l}. 
l' t- 0, lo t- p. 
Step 1. Find a path from S to R, Pr(Xfr,Xlr), such that Prnp = {Xfr,Xlr } with 

the maximal lr. 
Step 2. i) If lr S; lr-I, then stop and set lr-l = c. 
ii) Iflr > lr-l and IT:::; q, then S t- SU{Xlr_I'''',Xlr-d, R t- {xlr+l,"',xd 

and return to step 1. 
iii) If IT > q, go to the next step. 
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Step 3. Let f{ = min{i 1 Xi E N(XI), i> fd, l~ = max{i 1 Xi E N(Xt), i < lr}, 
-t 

Co = Xl P XffXl, Gi = P(XJ;,XdPiXfi' i = 1,2,"',r, Gr+1 P(XI~,Xt)XI~ and C = 
r+1 
I:: C/, where 2: stands for symmetric difference. Clearly, the cycle G passes through 
o 

e and contains all the elements in f(xd Ur(Xt). Since N(xd n N(xt) ~ {xp}, we 
have IGI ;:::: d(Xl) + d(xt) + 1, which contradicts the maximality of j + k. Hence, the 
Algorithm 1.1 will not stop at iii) of step 2. 

Algorithm 1.2. 
Step 0. Let r +- 0, Qo = Xc+! ... Xt and Yo +- Xc+!. 
Step 1. If N(Yr)\{Xc} ~ Qn go to Step 3. Otherwise, go to the next step. 
Step 2. If (N(Yr)\{xc})\Qr =J 0, then choose VI in the set (N(Yr)\{xc})\QTl so 

as to maximize l. Let VI Yr+h Yr+IQr = Qr+! and r +- r + 1. Then go to Step 1. 
Step 3. Let Qr = (VI'" Vk). If i ~ l for every Vi E (N(VI) n Qr)-, then r* +- r 

and stop. Otherwise, choose Vi E (N( VI) n Qr)-, so as to maximize i. Set Vi = Yr+!, 
~ r 

Qr+l = Vi Qr Vlvt Qr Vk, r +- r + 1 and Qr +- Qr+!. Return to Step 1. 
It follows from c ~ q and N(xt) ~ V(Qr) U{xc} that V(Qr) ~ {Xc+! , Xc+2,"', Xt} 

for r = 0, 1, ... , r*. 

In the following, we prove V(Qr) n{XI, X2,"', Xc-I} = 0 by recursive reasoning. 
When r = 0, V(Qo) = {xc+!,Xc+2,"',Xt} and the equality clearly holds. Now sup
pose the equality is true for some r (r < r*). That is to say, V( Qr) n{ Xl, X2, ... ,XC-I} 
= 0. We will verify the case r+1. For this purpose, let Qr WIW2'" Wa , i.e. WI = YTl 
Wet Xt, h = max{i I Wi E N(WI)} and h' = min{i 1 Wi E N(w et )}. 

Since G is 3-connected and Xc t/:. V(Qr), there exist two {Xl, X2,"', xc-d- V(Qr) 
chains /-LI(Xil'Xh) and /-L2(Xi2'Xjz) in G\{xc} with empty intersection. Suppose jl < 
h· Choose /-l1 and /-l2 so as to maximize j2' By Algorithm 1.1, {XiI, Xi2} ~ W. 

r ~ 

Without loss of generality, suppose i l < i2 and let RI xi! P XIXp P Xi2' Then Rl 
contains e and all the elements in r(Xl)' Hence IRll 2:: d(Xl) + 1. 

Proposition 3. h' < h < h· 
Proof. Suppose h' 2:: j1' Since G\{xc} is 2-conncected and N(wa) ~ V(Qr)U 

~ 

{xc}, applying the proof of Lemma 1 (i) and (ii) to G\{xc} and Qn we know from 
Algori thm 1.1 and choice of /-Ll and /-L2 that there exists a (w JI , W jz) path R2 such 
that 

i) V(R2) ~ f(wa)\{xc}; 
ii) R2n(R1 U/-LIU/-L2) ~ {Wjpwjz}. 
Let G Rl U R2 U /-Ll U /-L2, then C is a cycle passing through e with length 

d(xd + d(xt) + 1. This contradicts the maximality of j + k. 
Proposition 4. h > jl. 
Proof. Suppose h ~ h. Similar to the proof of Proposition 3 with condition 

N(Wl) ~ V(Qr) U{xc}, we can find a (Wjll wh) path such that 
i) V(R2) ;2 f(wet ) \ {xc}; 
ii) R2 n(Rl U /-Ll U !J2) ~ {Wjp wh}' 
Let G = Rl U R2 U /-Ll U /-L2' Then C is a cycle passing through e with length 

d(xd + d(xt) + 1. This contradicts the maximality of j + k. 
Proposition 5. N(Yr) n{Xl, X2,"', xc-d = 0. 

6 



Proof. V(Qr) n{XI,X2," 0 ,Xc-I} = 0 by assumption. From the connectedness 
and V(Qr) ;2 {xc+l,Xc+2"'"Xt}, it follows that N(Yr)n{XI,X2,"',xc-d ~ W 
by Algorithm 1.1. Next we prove N(Yr) n W = 0. Suppose N(Yr) n w =1= 0. Let 
X lEN (Yr) n W. Since at least one of Xil and Xi2 is not x I, we assume Xil =1= x f with 
f > i l without loss of generality. By Proposition 3, there exists j~ = min{ iii < 
. +- +- --t +- +-

Jl, Wi E N(wn)} such that C = Xil P XIXp P XIWI Qr WjiWn Qr wi! 1-"1 Xii passes 
through e and ICI 2: d(xd + d(X2) + 1. This contradicts the maximality of j + k. 

Similarly, we have the following result. 
Proposition 6. N(Yr) n(fkl U fk2) = 0. 
By Proposition 5 and Algorithm 1.2, V(Qr+l)n{XI,X2," ·,xc-d = 0. Hence, 

V(Qr) n{XI, X2," ., XC-I} = 0 for r = 0,1,2,,'" r* and Propositions 3-6 hold for 
every r E {O, 1,2, .. " r*}. 

Since G is a finite graph, there must exist a path r* = (Vl,"', Vk) with Vk = Xt 
by the use of Algorithm 1.2. Assume j < l (in the case j > l, the proof is similar). 
Then, we have d(Vl) :::; IN(vd \ {xc}1 + 1 = IN-(Vl) n Qrl + 1 = I{Vi I vtvl E E}I + 1 :::; 
I{Vi I Vi E V(G), i :::; l}1 = t. In addition, d(vj) :::; j + 1. So Vj and VI are a pair 
of characteristic vertices. Let r* = ala2' .. an = VI' .. Vk, al = Vl, an = Vk = Xt and 
G' = G \ {xc}. Then there exist two {Xl, X2, ... , xc-d - V(r*) chains fkl (Xill ail) and 
!J2(Xi2' ah) in G' with empty intersection. By Lemma 1 and the choice of !JI and fk2, 
there exists a (ajl' ah) path R2 such that 

i) R2nRI = 0 and R2n(fkIUfk2) ~ {ajllah}; 
ii) V(R2) ;2 r(Vj) \ {xL} or V(R2) ;2 r(Vk) \ {xc}. 
Let C = Rl U R2 U fkl U fk2· Then C is a cycle passing through e with length at 

least d( Vj) + d( Vk) + 1 or d( Vj) + d( VI) + 1. This contradicts the maximality of j + k 
or j + l. 

Subcase 1.2. p + 1 :::; s :::; q. 

Let G' = G \ {xc}. Then G' is a 2-connected graph. There exists a {Xl, X2,"', 
xp_ d - {xP+l' ... , Xt} path PI (x h , Xh) such that it is maximized. If it > s, then stop. 
Otherwise, find a similar path P2(x/2, Xl 2 ) in G' with 12 < h < l2' If l2 > s, then 
stop. Repeat this procedure. Finally, we get a path Pr (x Ir' Xjr) (r = 1, 2, ... , d) with 

--t 
ir < lr-l < lr and h < p < s < ld o Clearly ld :::; q. (Otherwise, let Co = Xl P X liXl 

--t +-
with if = min{i Ii> it, Xi E N(XI)}' Ci = Xli P Xli Pi Xli (i = 1,2,"', d) 
and Cd+! = Xl~PXtXI~ where l~ = max{i I Xi E N(Xt), i < ld}. Then the symmetric 

d+l 
difference C = L Ci is a cycle passing through e with length at least d(xr}+d(xt)+2. 

i=O 
This contradicts the maximality of j + k. 

Algorithm 1.3 
Step O. Set S = {xs,"', xlrd, R = {Xld+I,"', xtl, W = {Xld-l,' ", xs-d and 

r +- d. 
Step 1. Find a path Pr (x Ir' Xl,,) from S to R so as to maximize lr. 
Step 2. i) If lr :::; lr-I, then stop and set lr-l = c. 
ii) If lr > q, then stop. 
iii) If ir > lr-l and lr:::; q, then S +- SU{Xlr_ll"',Xlr-d, R +- {Xlr+1:" ',Xt} 

and return to Step 1. 
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This algorithm will not stop at ii) of step 2. Otherwise it is easily proven that 
r+l 

C = 2: Ci is a cycle passing through the edge e with length at least d(xI) + d(xd + 2, 
i=O 

where Ci is identical to Ci in Algorithm 1.1. This contradicts the maximality of 
) +k. 

Algorithm 1.4 
Step O. Set Xc+1 = Yo, Qo +- P(Xc+l' Xt) and i +- O. 
Step 1. If N(Yr) \ {xc} ~ V(Qr), go to Step 3. Otherwise, go to Step 2. 
Step 2. If N(Yr) \ (V(Qr) U{xc}) -10, choose VI so as to maximize the index l. 

Set VI = Yr+b Yr+1 Qr = Qr+1 and r +- r + 1. Then return to Step 1. 
Step 3. Let Qr = (VI" ·Vk). If i < l for every Vi E [N(Yr) nQr]-, then stop. 

Otherwise, choose Vi in [N(Yr)nQr]- so as to maximize the index i. Let Qr+1 = 
Vi Qr VIVi Qr Vk and r +- r + 1. Return to Step 1. ( 

.- + -t ) 

Now it is easily seen that V( Qr) 2 {Xc+l' Xc+2, ... ,Xt} for r = 0,1,2, .. " r*. 
Since c ::; q, we have N(xt) ~ V(Qr) U{xc}. In the following, we prove V(Qr)n{XI, 

X2, ... , xc-d = (/) in a recursive way. 
V(Qo) {Xc+l, Xc+2,"', xt}. So the equality holds when r = 0. 
Assume the equality is true for some r (r < r*). We consider the case r + 1. 
Let Qr WIW2"' Wf3' Then WI = Yn wfJ = XL, h = max{i I Wi E N(wd} and 

h' = min{i I Wi E N(wfJ)}. By assumption, V(Qr)n{XI,X2,"',Xc-l} = 0. Since 
Gis 3-connected and Xc 1:. V(Qr), there exist two {Xl, X2,"', XC-I} - V(Qr) chains 
J.L1(Xip WjJ and J.L2(Xi2' wh) in G \ {xc} without intersection. We assume )1 < )2· 
Choose J.LI and J.L2 so as to maximize j2' Then {Xip Xi2} ~ W. Now suppose i l < i2 
without loss of generality. Let 

and 1{ = min{i Ii> 11, Xi E N(xr}}. Clearly, RI contains the edge e and all the 
elements in r(xd. Thus IRII ?:: d(xd + 1. 

Proposition 7. h' < j1 < h. 
Proof. Suppose h' ;::: j1' Since G\{xc} is 2-connected and N(wf3) ~ V(Qr) U{xc}, 

-t 
applying the proof of Lemma (i) and (ii) to G\ {xc} and Qr, we know from Algorithm 
1.4 and the choice of Itl and 1t2 that there exists a path R2 such that 

(i) V(R2 ) 2 r(w/3) \ {xc} 
(ii) R2 n(Rl U Itl U J.L2) ~ {Wjll WjJ. 
Let C = RI U R2 U Iti U J.L2· Then C is a cycle passing through e with length at 

least d(X1) + d(xt) + 1. This contradicts the maximality of) + k. 
Proposition 8. h > )1' 
Proposition 9. N(Yr)n{Xl,X2," ',Xc-I} = 0. 
Proof. V(Qr)n{XI,X2,"',Xc-r} 0 by assumption. From the connectedness 

and V(Qr) 2 {xc+1' Xc+2,''', Xt}, it follows that N(Yr) n{Xl, X2,' ", xc-tl ~ w 
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by Algorithm 1.3. Next we prove N(Yr) n W = 0. Suppose N(Yr) n w =1= (/J. Let 
x fEN (Yr) n W. Since at least one of Xil and Xi2 is not x f' we assume Xii =1= x f 
with f > i 1· By Proposition 7, there exist )~ max{i I i < )1, Wi E N(w{3)} and 
f{ = min{ iii> it, Xi E N(Xl)} such that 

is a cycle passing through e with length at least d(Xl) + d(xt) + 1. This contradicts 
the maximality of) + k. 

Similarly, we have 
Proposition 10. N(Yr) n(J-tl U J-t2) = (/J. 
From Proposition 9 and Algorithm 1.4, we know that 

Therefore V(Qr)n{Xl,XZ"",Xc-l} = (/J for r = 0,1,2,···,r* and hence Proposi
tions 7-10 hold for every r. 

Let r* blbz ·· ·bfJ = Vt·· 'Vk and) < l. Then d(vj):S:) + 1 and d(vt):S: l, i.e. Vj 
and Vt are a pair of characteristic points. Let G' = G \ {xc}. Then there exist two 
{Xl, X2,"', xc-d - V(r*) chains J-tl(Xil' bj)) and /12(Xi2' bh ) with empty intersection. 

By Lemma 1 and the choice of J-tl and J-tz, there exists a (bjp bJ2) path Rz such 
that 

i) RznRl = (/J and RZn(J-tlUJ-t2) ~ {bjpbh }; 
ii) V(R2) ;2 r(Vt) \ {xc} or V(R2) ;2 r(Vk) \ {xc}. 
Let C = Rl U Rz U /11 U Jl2. Then C is a cycle passing through e with length at 

least d(vj) + d(Vk) + 1 or d(vj) + d(VI) + 1. This contradicts the maximality of j + k 
or) + l. 

Case 2. p> q. 
In this case, we may suppose that there exists a pair of positive integers p' and 

q' such that Xpl E N(xd, Xql E N(xt), p' > q' and p' - q' is minimized. 
Lemma 2. q' + 1 :s: s :s: p'. 
Proof. Firstly, N(xt) n N+(xt) ~ {xs} (If there exist some i =1= s such that 

Xi E N(Xl)nN+(xt), then the cycle (Xl PXi-IXt PXiXl) is a hamiltonian cycle 

passing through e, which leads to a contradiction). If s :s: p' or s 2: q' + 1, the cycle 

G (Xl P XqlXt P XpIXI) contains e and all the elements in {Xl} U N(xd U(N+(xt)\ 

{xql+d). Therefore IGI 2: d(xt) + d(xt) - 1. This contradicts the maximality 
of ) + k. Now it is easy to see that N(xd n N(xt) ~ {xp, xq}. When q =1= q', 
N(xd n{xq+l,' .. , Xq/} = (/J. When p =1= p', N(xt) n{Xpl, .. ', xp-d (/J. 

Algorithm 2.1 
Let io max{i I Xi E N(xd, i :s: s - 1} and)o = min{i I Xi E N(Xt), i > pl. 
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Step O. Set S = {Xl," ., xio-d U{Xs,"" Xp-l}, R = {Xp+I,' .. , xd, r t- 1 and 
l1l {xio,···,xs-d. 

Step 1. Find a path Pr (x I,., XlJ from S to R such that the intersection of 
Pr (x 11" Xl 1' ) and P is {x 11" Xl 1' } and lr is maximized. 

Step 2. i) If lr ::; lr-I, then stop and set c = lr-I' 
ii) If lr > )0, then stop. 
iii) If lr :S )0, let S t- SU{Xr-l"",Xl1'-r}, R t- {Xl1'+I"",Xt} and return to 

Step 1. 
Similar to Algorithm 1.1, the above algorithm will not stop at ii) of Step 2. 
Algorithm 2.2 

-+ 
Step O. Set r t- 0, Qo Xc+1 P Xt, Yo t- Xc+I' 
Step 1. If [N(Yr) \ {xc}] ~ V(Qr), go to Step 3. Otherwise, go to Step 2. 
Step 2. Choose Vl in N(Yr) \ [V(Qr) U{xc }] such that the index l is maximized. 

Let Yr+1 = Vi, Yr+IQr Qr+! and r t- r + 1. Return to Step l. 
Step 3. Let Qr = (Vl"·Vk). If i ::.:; l is true for every Vi E [N(Vl)nQr]-, 

then stop. Otherwise, choose Vi in [N(Vl) nQr]- such that i is maximized. Let 
f- -+ 

Qr+l = Vi Qr Vlvt Qr Vk and r t- r + 1. Return to Step 1. 
For r = 0,1,2,"" r*, V(Qr) = WI'" Wn WI Yr and Wr = Xt. It is easily seen 

that V(Qr) "2 {Xc+I,Xc+2,'" ,Xt}. In addition, N(WI) ~ V(Qr)U{xc} due to c::; jo· 
We will prove V(Qr) n{XI, X2,"', xc-d = 0 recursively. When r = 0, V(Qo) = 

{XC+l, Xc+2, ... , xd. The equality holds trivially. Suppose the equality is true for 
some r < r*. We consider the case r + 1. Let h = max {il Wi E N (WI)}' By 
assumption, V(Qr) n{Xl, X2,"', xc-d = 0. Since G is 3-connected and Xc ¢ V(Qr), 
there exist two {Xl, X2, ... , Xc-I} - V( Qr) chains PI (Xi!' Wj!) and P2(Xi2' w32 ) in G -
{xc}. Assume i l < i2 and choose ttl and tt2 to maximize h· We have Wr = Xt· 
By Algorithm 2.2, {Xip Xi2} ~ W. Assume i l < i2 without loss of generality. Let 

f- +--
RI = Xil P XlXp P Xi2' Then RI contains e and all the elements in r(xd. Thus 
IRd 2: d(xt} + 1. 

Proposition 11. h > )1. 
Proof. Suppose h ::; .it. Note that N(wd ~ V(Qr)U{x c } and G - {xc} is 

+--
2-connected. Applying the proof of i) and ii) of Lemma 1 to G - {xc} and Qn we 
know from Algorithm 2.1 and the choice of ttl and P2 that there exists a (Wjl' WjJ 
path R2 such that 

i) V(R2 ) "2 r(wd \ {xc}; 
ii) R2n(Rl UttlUP2) ~ {Wj p Wj2}' 
Let C = RI U R2 U ttl U P2· Then C is a cycle passing through e with length at 

least d( Xl) + d( wd + 1. This contradicts the maximality of ) + l. 
Proposition 12. N(Yr)n{Xl,X2,''',xc-d =0. 
Proof. V(Qr) n{Xl, X2,"', Xc-I} = 0 by assumption. Since Qr is connected and 

V(Qr) "2 {Xc+l, Xc+2,"', Xt}, we have N(Yr) n{Xl, X2,' ", Xc-I} ~ W by applying 
Algorithm 2.2. We will prove N(Yr)nW = 0. Suppose N(Yr)nW =1= 0. Then we 
take XI E N(rr) n W. 

i) q =1= qt. In this case, we assume f ::; q without loss of generality. Let l' = 
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-7 -7 -7 

min{i I Xi E N(w,6}. Then C = Xl p. ··ffwi Qr" ,w,6xfl P XpXI contains e and all 
the elements in f(XI) ur(WI) - {xc}. Hence lei ~ d(xd + d(wd - 1. 

ii) q = q'. If f = q, the proof is similar to i). If f =f. q,then Gil = G - {xc, Xq} is a 
connected graph. Hence there exists a {XI,'",Xq-I,Xq+b" ·,xc-d - V(Qr) chain 
{t3(Xi3,XjJ. Therefore, the cycle 

-7 ~ -7 -7 

C = Xl P Xi3{t3Wjs Qr WIWj~ Qr ... W{3Xq P XpXI 

contains e and has length d(XI) +d(WI) -1. This contradicts the maximality of j +1. 
Similarly, the following proposition can be proven. 
Proposition 13. N(Yr) n(J-l1 UJ-l2) = 0. 
We can infer that V(Qr+dn{XI,X2,"',xc-d = 0 from Proposition 11 and Al

gorithm 2.2. Hence V(Qr) n{XI, X2,"', xc-d = 0 for r = 0,1,2,"', r*. Meanwhile 
Propositions 11-13 are true for all r. 

According to Algorithm 2.2, r* = CIC2' .. Cr = VI' .. Vr since G is a finite graph. 
Assume j < l. Then d(vj) ~ j + 1, d(vI) ~ I, i.e. Vj and VI are a pair of charac
teristic points. Let G' = G\ {xc}. Then there exist two {Xl,X2,"',Xc-l} - V(r*) 
chains {t1(XillCh) and {t2(Xi2,C12) with empty intersection, and we have ch = Xt. By 
Lemma 1 and the choice of J-li and J-l2, there exists a (Cjl' ch) path R2 such that 

i) Rl nR2 0, R2n(J-l1 UJ-l2) ~ {Cjllch}, 
ii) V(R2 ) 2 f(vI) \ {xc}. 
Let C = RI U R2 U {ti U {t2. Then C is a cycle passing through e with length at 

least d( Vj) + d( VI) - 1. This contradicts the maximality of j + l. 

4 Proof of Theorem 2 and Theorem 3 

Theorem 2 Let G be a 3-connected graph with vertex set V = {VI, V2,"', vn } and 
d( vd ~ d( V2) ~ ... ~ d( vn ). If the following hold for every pair of characteristic 
vertices Va and Vb (a < b): 

i) d(va ) + d(Vb) 2: m for a + b ~ n; 
ii) d(va ) + d(Vb) 2: min{b + 3, m} for a + b < n, 

then, for every e E G, there exists a cycle passing through e with length at least m - 1. 
Proof. Based on the proof of Theorem 1, we can obtain, by applying Algorithm 

1.2 and 1.4 or 2.2, two pairs of characteristic points Vj, Vk and Vj, VI either for p > q 
or p ~ q and 2 ~ s ~ q. 

For such Vj and VI (j < l), we have that 

d(vj) + d(Vl) :::; I{vi I Vjvt E E, i =I- f}1 + 1 + 1[(N(Vl) - {xc}) nQ]-ll + 1 
~ I{ Vi I Vi E V(G), i ~ l}1 + 2 = l + 2. 

We consider two possible cases. If j + I ~ n, then d( Vj) + d( vI) ~ m. If j + l < n, 
then l + 22: d(vj) + d(Vl) 2: min{l + 3, m}. Hence d(vj) + d(vI) ~ m for both cases. 

Ifp:::; q and 2 ~ s ~ p, it is clear that N-(vj)nN+(Vk) 0. In this case, 

d(vj) + d(Vk) = IN-(vj)1 + IN+(vk)1 
~ I{Vi I Vjvt E E, i =f. f}1 + 1 + I{Vi I vkvi E E}I 
~ I{Vi I Vi E V(G), i ~ k}1 + 1 = k + 1. 
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If p > q, then IN-(vj) nN+(Vk)1 ::::; 1 by Lemma 2. 
When !N-(vj) n N+(Vk)! = 1, let Vi E N-(Vj) n N+(Vk}. Then vi = Xql, = Xpl 

and e = vivi or ViVt. Hence it is impossible that vI E N-(Vj) nN+(Vk). 

d(Vj) + d(vk) = IN-(Vj)1 + IN+(Vk)1 
IN-(Vj) U N+(Vk)1 + IN-(Vj) n N+(Vk)1 

::::; I {Vi I Vi E V ( G), i::::; k} I + 1 + 1 = k + 2. 

When N-(vj) nN+(Vk) = 0, 

d(vj) + d(Vk) = IN-(vj)l + IN+(Vk)1 
::::; I{Vi I Vjvt E E, i =1= f}1 + 1 + I{Vi I vkvi E E, i =f. h}1 + 1 
::::; I {Vi I Vi E 11 (G), i :::; k} I + 2 = k + 2. 

Thus d( Vj) + d( Vk) ~ m due to the condition in this theorem. Theorem 1 shows 
that there is a cycle of length at least m - 1 passing through any arbitrary edge of 
G, if the related condition is satisfied. 

Theorem 3. d*(G) 2 m - 1 under the condition of Theorem 2. 
Proof. Given two vertices x and y, let G' = G + xy. Then G' satisfies the 

requirements in Thereom 2. Therefore, the edge xy is contained in a cycle of length 
at least m 1. This means that x and yare connected by a path in G with length 
at least m 2. 
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