A degree condition for the codiameter

Jia Zhen Sheng
Department of Mathematics and Mechanics, Taiyuan University of Technology
Taiyuan, Shanxi 030024, People's Republic of China

Zhu Yong Jin
Institute of System Science, Academy of Sciences of China
Beijing 100081, People's Republic of China

Abstract

In this paper a degree condition for the codiameter is presented.

1 Introduction

In [1], Hikoe Enomoto proved the following theorem.
Theorem 1. [1] Let G be a 3-connected graph with n vertices such that $\sigma_{2} \geq m$. Then $d^{*}(G) \geq \min \{n-1, m-2\}$.

In [2], Nathaniel Dean obtained the following result.
Theorem 2. [2]Let G be a 2-connected graph with vertex set $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and edge set E. Suppose G satisfies the following property for a given positive integer m : for all positive integers j and k such that $j<k, x_{j} x_{k} \notin E ; d\left(x_{j}\right) \leq j$ and $d\left(x_{k}\right) \leq k-1$, we have
(1) $d\left(x_{j}\right)+d\left(x_{k}\right) \geq m$ whenever $j+k \geq n$,
(2) $d\left(x_{j}\right)+d\left(x_{k}\right) \geq \min \{k+1, m\}$ whenever $j+k<n$.

Then $c(G) \geq \min \{m, n\}$.
The main theorem in this paper is as follows:
Theorem 3. Let G be a 3-connected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ where $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{n}\right)$. Suppose for every pair of characteristic vertices v_{a} and v_{b} we have
(1) $d\left(v_{a}\right)+d\left(v_{b}\right) \geq m$ whenever $a+b \geq n$,
(2) $d\left(v_{a}\right)+d\left(v_{b}\right) \geq \min \{b+3, m\}$ whenever $a+b<n$.

Then $d^{*}(G) \geq \min \{n-1, m-2\}$.
Clearly, Theorem 1 is an immediate corollary of Theorem 3.

2 Notation and Preliminaries

In this paper we denote the neighbour set of the vertex x by $N(x)$, and put $\Gamma(x)=\{x\} \cup N(x)$. For a path $P=\left(u_{1}, u_{2}, \cdots, u_{p}\right)$, let $u_{j}^{+}=u_{j+1}, u_{j}^{-}=u_{j-1}$ and $|P|=p$. If C is a cycle in G, then $|C|$ stands for the number of vertices contained in C.

Definition 1. Assume G is a connected graph. For every two vertices x and y in G, their codistance is defined by $d^{*}(x, y)=\max \{|P|-1 \mid P$ is a (x, y) path $\}$ and the codiameter of G is defined by $d^{*}(G)=\min \left\{d^{*}(x, y) \mid\{x, y\} \subset V(G)\right\}$.

Lemma 1. Assume $Q=\left\{x_{1} \cdots x_{t}\right\}$ is a path in a 2-connected graph G and $N\left(x_{1}\right) \subset V(Q), N\left(x_{t}\right) \subset V(Q)$. Then for every two vertices x_{a} and x_{b} in Q, there must exist a path R in G with x_{a} and x_{b} as its ends and $|R| \geq \min \left\{d\left(x_{1}\right)+1, d\left(x_{t}\right)+1\right\}$.

Proof. Suppose $a<b$. Let $c=\max \left\{i \mid x_{i} \in N\left(x_{1}\right)\right\}$ and $d=\min \left\{i \mid x_{i} \in\right.$ $\left.N\left(x_{t}\right)\right\}$. We consider three cases.
(I) $a<c \leq b$. Let $a^{\prime}=\min \left\{i \mid x_{i} \in N\left(x_{1}\right), i>a\right\}$. Then $R=\left(x_{a} \overleftarrow{Q} x_{1} x_{a^{\prime}} \vec{Q} x_{b}\right)$ includes x_{1} and all its neighbours. Therefore $|R| \geq d\left(x_{1}\right)+1$.
(II) $c \leq a<b$. Since G is a 2-connected graph, there exists at least one path $P_{1}\left(x_{f_{1}}, x_{l_{1}}\right)$ satisfying that $V(Q) \cap V\left(P_{1}\right)=\left\{x_{f_{1}}, x_{l_{1}}\right\}\left(f_{1}<c<l_{1}\right)$. Choose P_{1} so as to maximize l_{1}. If $l_{1}>a$, then stop, or else we take a similar path $P_{2}\left(x_{f_{2}}, x_{l_{2}}\right)$ satisfying that $f_{2}<l_{1}<l_{2}$ where l_{2} is maximized. If $l_{2}>a$, then stop. Otherwise, repeat the above procedure until we obtain paths $P_{r}, r=1,2, \cdots, q$ such that $f_{r}<$ $l_{r-1}<l_{r}$ and $f_{1}<c \leq a<l_{q}$.

Let $f_{1}^{\prime}=\min \left\{i \mid x_{i} \in N\left(x_{1}\right), i>f_{1}\right\}$. It is easy to show that, if q is an odd number, then the path $R=\left(x_{a} \stackrel{\leftarrow}{Q} x_{l_{q-1}} \overleftarrow{\leftarrow}_{q-1} x_{f_{q-1}} \cdots x_{l_{2}} \overleftarrow{P}_{2} x_{f_{2}} \stackrel{\leftarrow}{Q} x_{f_{1}^{\prime}} x_{1} \vec{Q} x_{f_{1}} \vec{P}_{1} x_{l_{1}} \ldots\right.$ $\left.x_{f_{q}} \vec{P}_{q} x_{l_{q}} Q x_{b}\right)$ contains x_{1}, x_{b} and all the neighbours of x_{1} and hence $|R| \geq d\left(x_{1}\right)+2$. If q is an even number, then the path $R=\left(x_{a} \stackrel{\leftarrow}{Q} x_{l_{q-1}} \stackrel{\leftarrow}{P}_{q-1} x_{f_{q-1}} \cdots x_{l_{1}} \stackrel{\leftarrow}{P_{1}} x_{f_{1}} \overleftarrow{Q} x_{1}\right.$ $\left.x_{f_{1}^{\prime}} \vec{Q} x_{f_{2}} \vec{P}_{2} x_{l_{2}} \cdots x_{f_{q}} \vec{P}_{q} x_{l_{q}} Q x_{b}\right)$ has length at least $d\left(x_{1}\right)+2$.
(III) $a<b<c$. If $d \geq a$, from (I) and (II) we can see that there exists a path in G with x_{a} and x_{b} as its ends and length at least $d\left(x_{t}\right)+1$. Therefore we can assume $d<a<b<c$ and $N\left(x_{1}\right) \cap\left\{x_{a+1}, \cdots, x_{b-1}\right\} \neq \emptyset$. Now $N\left(x_{t}\right) \cap\left\{x_{a+1}, \cdots, x_{b-1}\right\} \neq \emptyset$. (Otherwise, $N\left(x_{1}\right) \cap\left\{x_{a+1}, \cdots, x_{b-1}\right\}=\emptyset$. Then the path $\left(x_{a} \overleftarrow{Q} x_{1} x_{c} \overleftarrow{Q} x_{b}\right)$ has length at least $d\left(x_{1}\right)+1$). Let

$$
\begin{aligned}
a^{\prime} & =\min \left\{i \mid x_{i} \in N\left(x_{q}\right), i>a\right\}, b^{\prime}=\max \left\{i \mid x_{i} \in N\left(x_{t}\right), i<b\right\} \\
f & =\max \left\{i \mid x_{i} \in N\left(x_{1}\right), i<b\right\}, h=\min \left\{i \mid x_{i} \in N\left(x_{t}\right), i>a\right\}
\end{aligned}
$$

If $b^{\prime} \geq f$, then the path $\left(x_{a} \stackrel{\leftarrow}{Q} x_{1} x_{a^{\prime}} \vec{Q} x_{b^{\prime}} x_{t} \overleftarrow{Q} x_{b}\right)$ contains x_{1} and all its neighbours. Therefore the length of the path is at least $d\left(x_{1}\right)+1$.

If $b^{\prime}<f$, then the path $\left(x_{a} \stackrel{\leftarrow}{Q} x_{1} x_{f} \stackrel{\leftarrow}{Q} x_{h} x_{t} \stackrel{\leftarrow}{Q} x_{b}\right)$ has length at least $d\left(x_{t}\right)+2$

3 Proof of Theorem 1

Definition 2. Let G be a graph with n vertices $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, where $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{n}\right)$. We call v_{a} and $v_{b}(a<b)$ a pair of characteristic vertices in G if I) $v_{a} v_{b} \notin E$ and II) $d\left(v_{a}\right) \leq a+1, d\left(v_{b}\right) \leq b$.

Theorem 1. Let G be a 3 -connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ such that $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{n}\right)$. Then passing through every edge of G there exists a cycle of length at least $d\left(v_{a}\right)+d\left(v_{b}\right)-1$ for some pair v_{a} and v_{b} of characteristic vertices.

The rest of this section is devoted to the proof of Theorem 1.
We will prove it by contraposition. Suppose the theorem is false. Throughout the proof, let e be an arbitrary edge in G and $P=\left(v_{j} \cdots v_{k}\right)$ be one of the longest paths passing through e, chosen so as to maximize $j+k$. In addition, $e=v_{f} v_{h}$. It is easily seen that $N\left(v_{j}\right) \cup N\left(v_{k}\right) \subseteq V(p)$ and $v_{j} v_{k} \notin E$. Suppose $j<k$ without loss of generality.

Proposition 1. If $v_{i}^{+} v_{j} \in E$ and $i \neq f$, then $i \leq j$.
Proof. If $v_{i}^{+} v_{i} \in E$ and $i \neq f$, then $P^{\prime}=v_{i} \stackrel{\leftarrow}{P} v_{j} v_{i}^{+} \vec{P} v_{k}$ is one of the longest paths passing through e. So $i+k \leq j+k$, i.e. $i \leq j$, which completes our proof.

Similarly, we can prove that if $v_{i}^{-} v_{k} \in E$ and $i \neq h$, then $i \leq k$.
Proposition 2. $d\left(v_{j}\right) \leq j+1$ and $d\left(v_{k}\right) \leq k$.
Proof. $d\left(v_{j}\right)=\left|N^{-}\left(v_{j}\right)\right| \leq\left|\left\{v_{i} \mid v_{i}^{+} v_{j} \in E, i \neq f\right\}\right|+1 \leq \mid\left\{v_{i} \mid v_{i} \in V(G)\right.$, $i \leq j\} \mid+1=j+1$.

Similarly, $d\left(v_{k}\right)=\left|N^{+}\left(v_{k}\right)\right| \leq\left|\left\{v_{i} \mid v_{i}^{-} v_{k} \in E, i \neq h\right\}\right|+1 \leq \mid\left\{v_{i} \mid v_{i} \in V(G)\right.$, $i \neq h\} \mid=k$. This completes the proof of Proposition 2.

From Proposition 1 and Proposition 2, we know that v_{j} and v_{k} are a pair of characteristic vertices.

Renumber the vertices of P as $P=x_{1} x_{2} \cdots x_{t}$ so that $N\left(x_{1}\right) \cup N\left(x_{t}\right) \subseteq P$. Put $p=\max \left\{i \mid x_{i} \in N\left(x_{1}\right)\right\}, q=\min \left\{i \mid x_{i} \in N\left(x_{t}\right)\right\}$ and $e=x_{s-1} x_{s}$. We consider two cases: 1) $p \leq q$ and 2) $p>q$.

Case 1. $p \leq q$.
In this case, we distinguish two subcases depending on the position of the edge e : I) $2 \leq s \leq p$ and II) $p+1 \leq s \leq q$.

Subcase 1.1. $2 \leq s \leq p$.
Let $i_{0}=\max \left\{i \mid x_{i} \in N\left(x_{1}\right), i \leq s-1\right\}$.
Algorithm 1.1
Step 0. Set $S=\left\{x_{1}, \cdots, x_{i_{0}-1}\right\} \cup\left\{x_{s}, \cdots, x_{p-1}\right\}, R=\left\{x_{p+1}, \cdots, x_{t}\right\}$ and $W=$ $\left\{x_{i_{0}}, \cdots, x_{s-1}\right\}$.
$r \leftarrow 0, l_{0} \leftarrow p$.
Step 1. Find a path from S to $R, P_{r}\left(x_{f_{r}}, x_{l_{r}}\right)$, such that $P_{r} \cap P=\left\{x_{f_{r}}, x_{l_{r}}\right\}$ with the maximal l_{r}.

Step 2. i) If $l_{r} \leq l_{r-1}$, then stop and set $l_{r-1}=c$.
ii) If $l_{r}>l_{r-1}$ and $l_{r} \leq q$, then $S \leftarrow S \bigcup\left\{x_{l_{r-1}}, \cdots, x_{l_{r-1}}\right\}, R \leftarrow\left\{x_{l_{r}+1}, \cdots, x_{t}\right\}$ and return to step 1 .
iii) If $l_{r}>q$, go to the next step.

Step 3. Let $f_{1}^{\prime}=\min \left\{i \mid x_{i} \in N\left(x_{1}\right), i>f_{1}\right\}, l_{r}^{\prime}=\max \left\{i \mid x_{i} \in N\left(x_{t}\right), i<l_{r}\right\}$, $C_{0}=x_{1} \vec{P} x_{f_{1}^{\prime}} x_{1}, C_{i}=P\left(x_{f_{i}}, x_{l_{i}}\right) P_{i} x_{f_{i}}, i=1,2, \cdots, r, C_{r+1}=P\left(x_{l_{r}^{\prime}}, x_{t}\right) x_{l_{r}^{\prime}}$ and $C=$ $\sum_{0}^{r+1} C_{l}$, where \sum stands for symmetric difference. Clearly, the cycle C passes through e and contains all the elements in $\Gamma\left(x_{1}\right) \cup \Gamma\left(x_{t}\right)$. Since $N\left(x_{1}\right) \cap N\left(x_{t}\right) \subseteq\left\{x_{p}\right\}$, we have $|C| \geq d\left(x_{1}\right)+d\left(x_{t}\right)+1$, which contradicts the maximality of $j+k$. Hence, the Algorithm 1.1 will not stop at iii) of step 2.

Algorithm 1.2.

Step 0. Let $r \leftarrow 0, Q_{0}=x_{c+1} \cdots x_{t}$ and $y_{0} \leftarrow x_{c+1}$.
Step 1. If $N\left(y_{r}\right) \backslash\left\{x_{c}\right\} \subseteq Q_{r}$, go to Step 3. Otherwise, go to the next step.
Step 2. If $\left(N\left(y_{r}\right) \backslash\left\{x_{c}\right\}\right) \backslash Q_{r} \neq \emptyset$, then choose v_{l} in the set $\left(N\left(y_{r}\right) \backslash\left\{x_{c}\right\}\right) \backslash Q_{r}$, so as to maximize l. Let $v_{l}=y_{r+1}, y_{r+1} Q_{r}=Q_{r+1}$ and $r \leftarrow r+1$. Then go to Step 1 .

Step 3. Let $Q_{r}=\left(v_{l} \cdots v_{k}\right)$. If $i \leq l$ for every $v_{i} \in\left(N\left(v_{l}\right) \cap Q^{r}\right)^{-}$, then $r^{*} \leftarrow r$ and stop. Otherwise, choose $v_{i} \in\left(N\left(v_{l}\right) \cap Q_{r}\right)^{-}$, so as to maximize i. Set $v_{i}=y_{r+1}$, $Q_{r+1}=v_{i} \overleftarrow{Q}_{r} v_{l} v_{i}^{+} \overleftarrow{Q}_{r} v_{k}, r \leftarrow r+1$ and $Q_{r} \leftarrow Q_{r+1}$. Return to Step 1.

It follows from $c \leq q$ and $N\left(x_{t}\right) \subseteq V\left(Q_{r}\right) \cup\left\{x_{c}\right\}$ that $V\left(Q_{r}\right) \supseteq\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$ for $r=0,1, \cdots, r^{*}$.

In the following, we prove $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ by recursive reasoning. When $r=0, V\left(Q_{0}\right)=\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$ and the equality clearly holds. Now suppose the equality is true for some $r\left(r<r^{*}\right)$. That is to say, $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}$ $=\emptyset$. We will verify the case $r+1$. For this purpose, let $Q_{r}=w_{1} w_{2} \cdots w_{\alpha}$, i.e. $w_{1}=y_{r}$, $w_{\alpha}=x_{t}, h=\max \left\{i \mid w_{i} \in N\left(w_{1}\right)\right\}$ and $h^{\prime}=\min \left\{i \mid w_{i} \in N\left(w_{\alpha}\right)\right\}$.

Since G is 3-connected and $x_{c} \notin V\left(Q_{r}\right)$, there exist two $\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}-V\left(Q_{r}\right)$ chains $\mu_{1}\left(x_{i_{1}}, x_{j_{1}}\right)$ and $\mu_{2}\left(x_{i_{2}}, x_{j_{2}}\right)$ in $G \backslash\left\{x_{c}\right\}$ with empty intersection. Suppose $j_{1}<$ j_{2}. Choose μ_{1} and μ_{2} so as to maximize j_{2}. By Algorithm 1.1, $\left\{x_{i_{1}}, x_{i_{2}}\right\} \subseteq W$. Without loss of generality, suppose $i_{1}<i_{2}$ and let $R_{1}=x_{i_{1}} \stackrel{\leftarrow}{P} x_{1} x_{p} \stackrel{\leftarrow}{P} x_{i_{2}}$. Then R_{1} contains e and all the elements in $\Gamma\left(x_{1}\right)$. Hence $\left|R_{1}\right| \geq d\left(x_{1}\right)+1$.

Proposition 3. $h^{\prime}<j_{1}<j_{2}$.
Proof. Suppose $h^{\prime} \geq j_{1}$. Since $G \backslash\left\{x_{c}\right\}$ is 2-conncected and $N\left(w_{\alpha}\right) \subseteq V\left(Q_{r}\right) \cup$ $\left\{x_{c}\right\}$, applying the proof of Lemma 1 (i) and (ii) to $G \backslash\left\{x_{c}\right\}$ and $\stackrel{\leftarrow}{Q}_{r}$, we know from Algorithm 1.1 and choice of μ_{1} and μ_{2} that there exists a ($w_{j_{1}}, w_{j_{2}}$) path R_{2} such that
i) $V\left(R_{2}\right) \supseteq \Gamma\left(w_{\alpha}\right) \backslash\left\{x_{c}\right\}$;
ii) $R_{2} \cap\left(R_{1} \cup \mu_{1} \cup \mu_{2}\right) \subseteq\left\{w_{j_{1}}, w_{j_{2}}\right\}$.

Let $C=R_{1} \cup R_{2} \cup \mu_{1} \cup \mu_{2}$, then C is a cycle passing through e with length $d\left(x_{1}\right)+d\left(x_{t}\right)+1$. This contradicts the maximality of $j+k$.

Proposition 4. $h>j_{1}$.
Proof. Suppose $h \leq j_{1}$. Similar to the proof of Proposition 3 with condition $N\left(w_{1}\right) \subseteq V\left(Q_{r}\right) \cup\left\{x_{c}\right\}$, we can find a $\left(w_{j_{1}}, w_{j_{2}}\right)$ path such that
i) $V\left(R_{2}\right) \supseteq \Gamma\left(w_{\alpha}\right) \backslash\left\{x_{c}\right\}$;
ii) $R_{2} \cap\left(R_{1} \cup \mu_{1} \cup \mu_{2}\right) \subseteq\left\{w_{j_{1}}, w_{j_{2}}\right\}$.

Let $C=R_{1} \cup R_{2} \cup \mu_{1} \cup \mu_{2}$. Then C is a cycle passing through e with length $d\left(x_{1}\right)+d\left(x_{t}\right)+1$. This contradicts the maximality of $j+k$.

Proposition 5. $N\left(y_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$.

Proof. $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ by assumption. From the connectedness and $V\left(Q_{r}\right) \supseteq\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$, it follows that $N\left(y_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\} \subseteq W$ by Algorithm 1.1. Next we prove $N\left(y_{r}\right) \cap W=\emptyset$. Suppose $N\left(y_{r}\right) \cap W \neq \emptyset$. Let $x_{f} \in N\left(y_{r}\right) \cap W$. Since at least one of $x_{i_{1}}$ and $x_{i_{2}}$ is not x_{f}, we assume $x_{i_{1}} \neq x_{f}$ with $f>i_{1}$ without loss of generality. By Proposition 3, there exists $j_{1}^{\prime}=\min \{i \mid i<$ $\left.j_{1}, w_{i} \in N\left(w_{\alpha}\right)\right\}$ such that $C=x_{i_{1}} \stackrel{\leftarrow}{P} x_{1} x_{p} \stackrel{\overleftarrow{P}}{P} x_{f} w_{1} \vec{Q}_{r} w_{j_{1}^{\prime}} w_{\alpha} \overleftarrow{Q}_{r} w_{j_{1}} \overleftarrow{\mu_{1}} x_{i_{1}}$ passes through e and $|C| \geq d\left(x_{1}\right)+d\left(x_{2}\right)+1$. This contradicts the maximality of $j+k$.

Similarly, we have the following result.
Proposition 6. $N\left(y_{r}\right) \cap\left(\mu_{1} \cup \mu_{2}\right)=\emptyset$.
By Proposition 5 and Algorithm 1.2, $V\left(Q_{r+1}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$. Hence, $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ for $r=0,1,2, \cdots, r^{*}$ and Propositions 3-6 hold for every $r \in\left\{0,1,2, \cdots, r^{*}\right\}$.

Since G is a finite graph, there must exist a path $r^{*}=\left(v_{l}, \cdots, v_{k}\right)$ with $v_{k}=x_{t}$ by the use of Algorithm 1.2. Assume $j<l$ (in the case $j>l$, the proof is similar). Then, we have $d\left(v_{l}\right) \leq\left|N\left(v_{l}\right) \backslash\left\{x_{c}\right\}\right|+1=\left|N^{-}\left(v_{l}\right) \cap Q_{r}\right|+1=\left|\left\{v_{i} \mid v_{i}^{+} v_{l} \in E\right\}\right|+1 \leq$ $\left|\left\{v_{i} \mid v_{i} \in V(G), i \leq l\right\}\right|=l$. In addition, $d\left(v_{j}\right) \leq j+1$. So v_{j} and v_{l} are a pair of characteristic vertices. Let $r^{*}=a_{1} a_{2} \cdots a_{\alpha}=v_{l} \cdots v_{k}, a_{1}=v_{l}, a_{\alpha}=v_{k}=x_{t}$ and $G^{\prime}=G \backslash\left\{x_{c}\right\}$. Then there exist two $\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}-V\left(r^{*}\right)$ chains $\mu_{1}\left(x_{i_{1}}, a_{j_{1}}\right)$ and $\mu_{2}\left(x_{i_{2}}, a_{j_{2}}\right)$ in G^{\prime} with empty intersection. By Lemma 1 and the choice of μ_{1} and μ_{2}, there exists a ($a_{j_{1}}, a_{j_{2}}$) path R_{2} such that
i) $R_{2} \cap R_{1}=\emptyset$ and $R_{2} \cap\left(\mu_{1} \cup \mu_{2}\right) \subseteq\left\{a_{j_{1}}, a_{j_{2}}\right\}$;
ii) $V\left(R_{2}\right) \supseteq \Gamma\left(v_{l}\right) \backslash\left\{x_{l}\right\}$ or $V\left(R_{2}\right) \supseteq \Gamma\left(v_{k}\right) \backslash\left\{x_{c}\right\}$.

Let $C=R_{1} \cup R_{2} \cup \mu_{1} \cup \mu_{2}$. Then C is a cycle passing through e with length at least $d\left(v_{j}\right)+d\left(v_{k}\right)+1$ or $d\left(v_{j}\right)+d\left(v_{l}\right)+1$. This contradicts the maximality of $j+k$ or $j+l$.

Subcase 1.2. $p+1 \leq s \leq q$.
Let $G^{\prime}=G \backslash\left\{x_{c}\right\}$. Then G^{\prime} is a 2 -connected graph. There exists a $\left\{x_{1}, x_{2}, \cdots\right.$, $\left.x_{p-1}\right\}-\left\{x_{p+1}, \cdots, x_{t}\right\}$ path $P_{1}\left(x_{f_{1}}, x_{l_{1}}\right)$ such that l_{1} is maximized. If $l_{1}>s$, then stop. Otherwise, find a similar path $P_{2}\left(x_{f_{2}}, x_{l_{2}}\right)$ in G^{\prime} with $f_{2}<l_{1}<l_{2}$. If $l_{2}>s$, then stop. Repeat this procedure. Finally, we get a path $P_{r}\left(x_{f_{r}}, x_{l_{r}}\right)(r=1,2, \cdots, d)$ with $f_{r}<l_{r-1}<l_{r}$ and $f_{1}<p<s<l_{d}$. Clearly $l_{d} \leq q$. (Otherwise, let $C_{0}=x_{1} \vec{P} x_{f_{i}^{\prime}} x_{1}$ with $f_{1}^{\prime}=\min \left\{i \mid i>f_{1}, x_{i} \in N\left(x_{1}\right)\right\}, C_{i}=x_{f_{i}} \vec{P} x_{l_{i}} \stackrel{\leftarrow}{P}_{i} x_{f_{i}}(i=1,2, \cdots, d)$ and $C_{d+1}=x_{l_{d}^{\prime}} P x_{t} x_{l_{d}^{\prime}}$ where $l_{d}^{\prime}=\max \left\{i \mid x_{i} \in N\left(x_{t}\right), i<l_{d}\right\}$. Then the symmetric difference $C=\sum_{i=0}^{d+1} C_{i}$ is a cycle passing through e with length at least $d\left(x_{1}\right)+d\left(x_{t}\right)+2$. This contradicts the maximality of $j+k$.

Algorithm 1.3

Step 0. Set $S=\left\{x_{s}, \cdots, x_{l_{d}-1}\right\}, R=\left\{x_{l_{d}+1}, \cdots, x_{t}\right\}, W=\left\{x_{l_{d}-1}, \cdots, x_{s-1}\right\}$ and $r \leftarrow d$.

Step 1. Find a path $P_{r}\left(x_{f_{r}}, x_{l_{r}}\right)$ from S to R so as to maximize l_{r}.
Step 2. i) If $l_{r} \leq l_{r-1}$, then stop and set $l_{r-1}=c$.
ii) If $l_{r}>q$, then stop.
iii) If $l_{r}>l_{r-1}$ and $l_{r} \leq q$, then $S \leftarrow S \bigcup\left\{x_{l_{r-1}}, \cdots, x_{l_{r}-1}\right\}, R \leftarrow\left\{x_{l_{r}+1}, \cdots, x_{t}\right\}$ and return to Step 1.

This algorithm will not stop at ii) of step 2 . Otherwise it is easily proven that $C=\sum_{i=0}^{r+1} C_{i}$ is a cycle passing through the edge e with length at least $d\left(x_{l}\right)+d\left(x_{t}\right)+2$, where C_{i} is identical to C_{i} in Algorithm 1.1. This contradicts the maximality of $j+k$.

Algorithm 1.4
Step 0. Set $x_{c+1}=y_{0}, Q_{0} \leftarrow P\left(x_{c+1}, x_{t}\right)$ and $i \leftarrow 0$.
Step 1. If $N\left(y_{r}\right) \backslash\left\{x_{c}\right\} \subseteq V\left(Q_{r}\right)$, go to Step 3. Otherwise, go to Step 2.
Step 2. If $N\left(y_{r}\right) \backslash\left(V\left(Q_{r}\right) \cup\left\{x_{c}\right\}\right) \neq \emptyset$, choose v_{l} so as to maximize the index l. Set $v_{l}=y_{r+1}, y_{r+1} Q_{r}=Q_{r+1}$ and $r \leftarrow r+1$. Then return to Step 1.

Step 3. Let $Q_{r}=\left(v_{l} \cdots v_{k}\right)$. If $i<l$ for every $v_{i} \in\left[N\left(y_{r}\right) \cap Q_{r}\right]^{-}$, then stop. Otherwise, choose v_{i} in $\left[N\left(y_{r}\right) \cap Q_{r}\right]^{-}$so as to maximize the index i. Let $Q_{r+1}=$ $\left(v_{i} \stackrel{\leftarrow}{Q_{r}} v_{l} v_{i}^{+} \vec{Q}_{r} v_{k}\right)$ and $r \leftarrow r+1$. Return to Step 1.

Now it is easily seen that $V\left(Q_{r}\right) \supseteq\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$ for $r=0,1,2, \cdots, r^{*}$.
Since $c \leq q$, we have $N\left(x_{t}\right) \subseteq V\left(Q_{r}\right) \cup\left\{x_{c}\right\}$. In the following, we prove $V\left(Q_{r}\right) \cap\left\{x_{1}\right.$, $\left.x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ in a recursive way.
$V\left(Q_{0}\right)=\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$. So the equality holds when $r=0$.
Assume the equality is true for some $r\left(r<r^{*}\right)$. We consider the case $r+1$.
Let $Q_{r}=w_{1} w_{2} \cdots w_{\beta}$. Then $w_{1}=y_{r}, w_{\beta}=x_{t}, h=\max \left\{i \mid w_{i} \in N\left(w_{1}\right)\right\}$ and $h^{\prime}=\min \left\{i \mid w_{i} \in N\left(w_{\beta}\right)\right\}$. By assumption, $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$. Since G is 3 -connected and $x_{c} \notin V\left(Q_{r}\right)$, there exist two $\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}-V\left(Q_{r}\right)$ chains $\mu_{1}\left(x_{i_{1}}, w_{j_{1}}\right)$ and $\mu_{2}\left(x_{i_{2}}, w_{j_{2}}\right)$ in $G \backslash\left\{x_{c}\right\}$ without intersection. We assume $j_{1}<j_{2}$. Choose μ_{1} and μ_{2} so as to maximize j_{2}. Then $\left\{x_{i_{1}}, x_{i_{2}}\right\} \subseteq W$. Now suppose $i_{1}<i_{2}$ without loss of generality. Let
$R_{1}=\left\{\begin{array}{c}x_{i_{1}} \stackrel{\leftarrow}{P} x_{l_{d-1}} \stackrel{\leftarrow}{P}_{d-1} x_{f_{d-1}} \cdots x_{l_{2}} \stackrel{\leftarrow}{P}_{2} x_{f_{2}} \vec{P} x_{f_{2}} \vec{P} x_{f_{1}^{\prime}} x_{1} P x_{f_{1}} \vec{P}_{1} x_{l_{1}} \cdots x_{f_{d}} \stackrel{\leftarrow}{P}_{d} x_{l_{d}} P x_{i_{2}} \\ \text { if }_{d} \stackrel{\leftarrow}{\stackrel{~ i s ~ o d d ~}{P}} x_{l_{d-1}} \stackrel{\leftarrow}{P}_{d-1} x_{f_{d-1}} \cdots x_{l_{1}} \stackrel{\leftarrow}{P}_{1} x_{f_{1}} \stackrel{\leftarrow}{P} x_{1} x_{f_{1}^{\prime}}^{\vec{P}} x_{f_{2}} \vec{P}_{2} x_{l_{2}} \cdots x_{f_{d}} \vec{P}_{d} x_{l_{d}} P x_{i_{2}} \\ \text { if } d \text { is even }\end{array}\right.$
and $f_{1}^{\prime}=\min \left\{i \mid i>f_{1}, x_{i} \in N\left(x_{1}\right)\right\}$. Clearly, R_{1} contains the edge e and all the elements in $\Gamma\left(x_{1}\right)$. Thus $\left|R_{1}\right| \geq d\left(x_{1}\right)+1$.

Proposition 7. $h^{\prime}<j_{1}<j_{2}$.
Proof. Suppose $h^{\prime} \geq j_{1}$. Since $G \backslash\left\{x_{c}\right\}$ is 2-connected and $N\left(w_{\beta}\right) \subseteq V\left(Q_{r}\right) \cup\left\{x_{c}\right\}$, applying the proof of Lemma (i) and (ii) to $G \backslash\left\{x_{c}\right\}$ and \vec{Q}_{r}, we know from Algorithm 1.4 and the choice of μ_{1} and μ_{2} that there exists a path R_{2} such that
(i) $V\left(R_{2}\right) \supseteq \Gamma\left(w_{\beta}\right) \backslash\left\{x_{c}\right\}$
(ii) $R_{2} \cap\left(R_{1} \cup \mu_{1} \cup \mu_{2}\right) \subseteq\left\{w_{j_{1}}, w_{j_{2}}\right\}$.

Let $C=R_{1} \cup R_{2} \cup \mu_{1} \cup \mu_{2}$. Then C is a cycle passing through e with length at least $d\left(x_{1}\right)+d\left(x_{t}\right)+1$. This contradicts the maximality of $j+k$.

Proposition 8. $h>j_{1}$.
Proposition 9. $N\left(y_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$.
Proof. $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ by assumption. From the connectedness and $V\left(Q_{r}\right) \supseteq\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$, it follows that $N\left(y_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\} \subseteq W$
by Algorithm 1.3. Next we prove $N\left(y_{r}\right) \cap W=\emptyset$. Suppose $N\left(y_{r}\right) \cap W \neq \emptyset$. Let $x_{f} \in N\left(y_{r}\right) \cap W$. Since at least one of $x_{i_{1}}$ and $x_{i_{2}}$ is not x_{f}, we assume $x_{i_{1}} \neq x_{f}$ with $f>i_{1}$. By Proposition 7, there exist $j_{1}^{\prime}=\max \left\{i \mid i<j_{1}, w_{i} \in N\left(w_{\beta}\right)\right\}$ and $f_{1}^{\prime}=\min \left\{i \mid i>f_{1}, x_{i} \in N\left(x_{1}\right)\right\}$ such that

is a cycle passing through e with length at least $d\left(x_{1}\right)+d\left(x_{t}\right)+1$. This contradicts the maximality of $j+k$.

Similarly, we have
Proposition 10. $N\left(y_{r}\right) \cap\left(\mu_{1} \cup \mu_{2}\right)=\emptyset$.
From Proposition 9 and Algorithm 1.4, we know that

$$
V\left(Q_{r+1}\right) \bigcap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset .
$$

Therefore $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ for $r=0,1,2, \cdots, r^{*}$ and hence Propositions 7-10 hold for every r.

Let $r^{*}=b_{1} b_{2} \cdots b_{\beta}=v_{l} \cdots v_{k}$ and $j<l$. Then $d\left(v_{j}\right) \leq j+1$ and $d\left(v_{l}\right) \leq l$, i.e. v_{j} and v_{l} are a pair of characteristic points. Let $G^{\prime}=G \backslash\left\{x_{c}\right\}$. Then there exist two $\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}-V\left(r^{*}\right)$ chains $\mu_{1}\left(x_{i_{1}}, b_{j_{1}}\right)$ and $\mu_{2}\left(x_{i_{2}}, b_{j_{2}}\right)$ with empty intersection.

By Lemma 1 and the choice of μ_{1} and μ_{2}, there exists a ($b_{j_{1}}, b_{j_{2}}$) path R_{2} such that
i) $R_{2} \cap R_{1}=\emptyset$ and $R_{2} \cap\left(\mu_{1} \cup \mu_{2}\right) \subseteq\left\{b_{j_{1}}, b_{j_{2}}\right\}$;
ii) $V\left(R_{2}\right) \supseteq \Gamma\left(v_{l}\right) \backslash\left\{x_{c}\right\}$ or $V\left(R_{2}\right) \supseteq \Gamma\left(v_{k}\right) \backslash\left\{x_{c}\right\}$.

Let $C=R_{1} \cup R_{2} \cup \mu_{1} \cup \mu_{2}$. Then C is a cycle passing through e with length at least $d\left(v_{j}\right)+d\left(v_{k}\right)+1$ or $d\left(v_{j}\right)+d\left(v_{l}\right)+1$. This contradicts the maximality of $j+k$ or $j+l$.

Case 2. $p>q$.
In this case, we may suppose that there exists a pair of positive integers p^{\prime} and q^{\prime} such that $x_{p^{\prime}} \in N\left(x_{1}\right), x_{q^{\prime}} \in N\left(x_{t}\right), p^{\prime}>q^{\prime}$ and $p^{\prime}-q^{\prime}$ is minimized.

Lemma 2. $q^{\prime}+1 \leq s \leq p^{\prime}$.
Proof. Firstly, $N\left(x_{1}\right) \cap N^{+}\left(x_{t}\right) \subseteq\left\{x_{s}\right\}$ (If there exist some $i \neq s$ such that $x_{i} \in N\left(x_{1}\right) \cap N^{+}\left(x_{t}\right)$, then the cycle $\left(x_{1} \vec{P} x_{i-1} x_{t} \stackrel{\leftarrow}{P} x_{i} x_{1}\right)$ is a hamiltonian cycle passing through e, which leads to a contradiction). If $s \leq p^{\prime}$ or $s \geq q^{\prime}+1$, the cycle $C=\left(x_{1} \vec{P} x_{q^{\prime}} x_{t} \stackrel{\leftarrow}{P} x_{p^{\prime}} x_{1}\right)$ contains e and all the elements in $\left\{x_{1}\right\} \cup N\left(x_{1}\right) \cup\left(N^{+}\left(x_{t}\right) \backslash\right.$ $\left.\left\{x_{q^{\prime}+1}\right\}\right)$. Therefore $|C| \geq d\left(x_{l}\right)+d\left(x_{t}\right)-1$. This contradicts the maximality of $j+k$. Now it is easy to see that $N\left(x_{1}\right) \cap N\left(x_{t}\right) \subseteq\left\{x_{p}, x_{q}\right\}$. When $q \neq q^{\prime}$, $N\left(x_{1}\right) \cap\left\{x_{q+1}, \cdots, x_{q^{\prime}}\right\}=\emptyset$. When $p \neq p^{\prime}, N\left(x_{t}\right) \cap\left\{x_{p^{\prime}}, \cdots, x_{p-1}\right\}=\emptyset$.

Algorithm 2.1

Let $i_{0}=\max \left\{i \mid x_{i} \in N\left(x_{1}\right), i \leq s-1\right\}$ and $j_{0}=\min \left\{i \mid x_{i} \in N\left(x_{t}\right), i>p\right\}$.

Step 0. Set $S=\left\{x_{1}, \cdots, x_{i_{0}-1}\right\} \bigcup\left\{x_{s}, \cdots, x_{p-1}\right\}, R=\left\{x_{p+1}, \cdots, x_{t}\right\}, r \leftarrow 1$ and $W=\left\{x_{i_{0}}, \cdots, x_{s-1}\right\}$.

Step 1. Find a path $P_{r}\left(x_{f_{r}}, x_{l_{r}}\right)$ from S to R such that the intersection of $P_{r}\left(x_{f_{r}}, x_{l_{r}}\right)$ and P is $\left\{x_{f_{r}}, x_{l_{r}}\right\}$ and l_{r} is maximized.

Step 2. i) If $l_{r} \leq l_{r-1}$, then stop and set $c=l_{r-1}$.
ii) If $l_{r}>j_{0}$, then stop.
iii) If $l_{r} \leq j_{0}$, let $S \leftarrow S \cup\left\{x_{r-1}, \cdots, x_{l_{r}-1}\right\}, R \leftarrow\left\{x_{l_{r}+1}, \cdots, x_{t}\right\}$ and return to Step 1.

Similar to Algorithm 1.1, the above algorithm will not stop at ii) of Step 2.
Algorithm 2.2
Step 0. Set $r \leftarrow 0, Q_{0}=x_{c+1} \vec{P} x_{t}, y_{0} \leftarrow x_{c+1}$.
Step 1. If $\left[N\left(y_{r}\right) \backslash\left\{x_{c}\right\}\right] \subseteq V\left(Q_{r}\right)$, go to Step 3. Otherwise, go to Step 2.
Step 2. Choose v_{l} in $N\left(y_{r}\right) \backslash\left[V\left(Q_{r}\right) \cup\left\{x_{c}\right\}\right]$ such that the index l is maximized. Let $y_{r+1}=v_{l}, y_{r+1} Q_{r}=Q_{r+1}$ and $r \leftarrow r+1$. Return to Step 1.

Step 3. Let $Q_{r}=\left(v_{l} \cdots v_{k}\right)$. If $i \leq l$ is true for every $v_{i} \in\left[N\left(v_{l}\right) \cap Q_{r}\right]^{-}$, then stop. Otherwise, choose v_{i} in $\left[N\left(v_{l}\right) \cap Q_{r}\right]^{-}$such that i is maximized. Let $Q_{r+1}=v_{i} \overleftarrow{Q}_{r} v_{l} v_{i}^{+} \vec{Q}_{r} v_{k}$ and $r \leftarrow r+1$. Return to Step 1.

For $r=0,1,2, \cdots, r^{*}, V\left(Q_{r}\right)=w_{1} \cdots w_{r}, w_{1}=y_{r}$ and $w_{r}=x_{t}$. It is easily seen that $V\left(Q_{r}\right) \supseteq\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$. In addition, $N\left(w_{1}\right) \subseteq V\left(Q_{r}\right) \cup\left\{x_{c}\right\}$ due to $c \leq j_{0}$.

We will prove $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ recursively. When $r=0, V\left(Q_{0}\right)=$ $\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$. The equality holds trivially. Suppose the equality is true for some $r<r^{*}$. We consider the case $r+1$. Let $h=\max \left\{i \mid w_{i} \in N\left(w_{1}\right)\right\}$. By assumption, $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$. Since G is 3-connected and $x_{c} \notin V\left(Q_{r}\right)$, there exist two $\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}-V\left(Q_{r}\right)$ chains $\mu_{1}\left(x_{i_{1}}, w_{j_{1}}\right)$ and $\mu_{2}\left(x_{i_{2}}, w_{j_{2}}\right)$ in $G-$ $\left\{x_{c}\right\}$. Assume $i_{1}<i_{2}$ and choose μ_{1} and μ_{2} to maximize j_{2}. We have $w_{r}=x_{t}$. By Algorithm 2.2, $\left\{x_{i_{1}}, x_{i_{2}}\right\} \subseteq W$. Assume $i_{1}<i_{2}$ without loss of generality. Let $R_{1}=x_{i_{1}} \stackrel{\leftarrow}{P} x_{1} x_{p} \stackrel{\leftarrow}{P} x_{i_{2}}$. Then R_{1} contains e and all the elements in $\Gamma\left(x_{1}\right)$. Thus $\left|R_{1}\right| \geq d\left(x_{1}\right)+1$.

Proposition 11. $h>j_{1}$.
Proof. Suppose $h \leq j_{1}$. Note that $N\left(w_{1}\right) \subseteq V\left(Q_{r}\right) \cup\left\{x_{c}\right\}$ and $G-\left\{x_{c}\right\}$ is 2-connected. Applying the proof of i) and ii) of Lemma 1 to $G-\left\{x_{c}\right\}$ and \overleftarrow{Q}_{r}, we know from Algorithm 2.1 and the choice of μ_{1} and μ_{2} that there exists a ($w_{j_{1}}, w_{j_{2}}$) path R_{2} such that
i) $V\left(R_{2}\right) \supseteq \Gamma\left(w_{1}\right) \backslash\left\{x_{c}\right\}$;
ii) $R_{2} \cap\left(R_{1} \cup \mu_{1} \cup \mu_{2}\right) \subseteq\left\{w_{j_{1}}, w_{j_{2}}\right\}$.

Let $C=R_{1} \cup R_{2} \cup \mu_{1} \cup \mu_{2}$. Then C is a cycle passing through e with length at least $d\left(x_{1}\right)+d\left(w_{1}\right)+1$. This contradicts the maximality of $j+l$.

Proposition 12. $N\left(y_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$.
Proof. $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ by assumption. Since Q_{r} is connected and $V\left(Q_{r}\right) \supseteq\left\{x_{c+1}, x_{c+2}, \cdots, x_{t}\right\}$, we have $N\left(y_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\} \subseteq W$ by applying Algorithm 2.2. We will prove $N\left(y_{r}\right) \cap W=\emptyset$. Suppose $N\left(y_{r}\right) \cap W \neq \emptyset$. Then we take $x_{f} \in N\left(r_{r}\right) \cap W$.
i) $q \neq q^{\prime}$. In this case, we assume $f \leq q$ without loss of generality. Let $f^{\prime}=$
$\min \left\{i \mid x_{i} \in N\left(w_{\beta}\right\}\right.$. Then $C=x_{1} \vec{P} \cdots f_{f} w_{1} \vec{Q}_{r} \cdots w_{\beta} x_{f^{\prime}} \vec{P} x_{p} x_{1}$ contains e and all the elements in $\Gamma\left(x_{1}\right) \cup \Gamma\left(w_{1}\right)-\left\{x_{c}\right\}$. Hence $|C| \geq d\left(x_{1}\right)+d\left(w_{1}\right)-1$.
ii) $q=q^{\prime}$. If $f=q$, the proof is similar to i). If $f \neq q$, then $G^{\prime \prime}=G-\left\{x_{c}, x_{q}\right\}$ is a connected graph. Hence there exists a $\left\{x_{1}, \cdots, x_{q-1}, x_{q+1}, \cdots, x_{c-1}\right\}-V\left(Q_{r}\right)$ chain $\mu_{3}\left(x_{i_{3}}, x_{j_{3}}\right)$. Therefore, the cycle

$$
C=x_{1} \vec{P} x_{i_{3}} \mu_{3} w_{j_{3}} \overleftarrow{Q}_{r} w_{1} w_{j_{3}^{\prime}} \vec{Q}_{r} \cdots w_{\beta} x_{q} \vec{P} x_{p} x_{1}
$$

contains e and has length $d\left(x_{1}\right)+d\left(w_{1}\right)-1$. This contradicts the maximality of $j+l$.
Similarly, the following proposition can be proven.
Proposition 13. $N\left(y_{r}\right) \cap\left(\mu_{1} \cup \mu_{2}\right)=\emptyset$.
We can infer that $V\left(Q_{r+1}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ from Proposition 11 and Algorithm 2.2. Hence $V\left(Q_{r}\right) \cap\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}=\emptyset$ for $r=0,1,2, \cdots, r^{*}$. Meanwhile Propositions 11-13 are true for all r.

According to Algorithm 2.2, $r^{*}=c_{1} c_{2} \cdots c_{r}=v_{l} \cdots v_{r}$ since G is a finite graph. Assume $j<l$. Then $d\left(v_{j}\right) \leq j+1, d\left(v_{l}\right) \leq l$, i.e. v_{j} and v_{l} are a pair of characteristic points. Let $G^{\prime}=G \backslash\left\{x_{c}\right\}$. Then there exist two $\left\{x_{1}, x_{2}, \cdots, x_{c-1}\right\}-V\left(r^{*}\right)$ chains $\mu_{1}\left(x_{i_{1}}, c_{j_{1}}\right)$ and $\mu_{2}\left(x_{i_{2}}, c_{j_{2}}\right)$ with empty intersection, and we have $c_{j_{2}}=x_{t}$. By Lemma 1 and the choice of μ_{1} and μ_{2}, there exists a ($c_{j_{1}}, c_{j_{2}}$) path R_{2} such that
i) $R_{1} \cap R_{2}=\emptyset, R_{2} \cap\left(\mu_{1} \cup \mu_{2}\right) \subseteq\left\{c_{j_{1}}, c_{j_{2}}\right\}$,
ii) $V\left(R_{2}\right) \supseteq \Gamma\left(v_{l}\right) \backslash\left\{x_{c}\right\}$.

Let $C=R_{1} \cup R_{2} \cup \mu_{1} \cup \mu_{2}$. Then C is a cycle passing through e with length at least $d\left(v_{j}\right)+d\left(v_{l}\right)-1$. This contradicts the maximality of $j+l$.

4 Proof of Theorem 2 and Theorem 3

Theorem 2 Let G be a 3 -connected graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{n}\right)$. If the following hold for every pair of characteristic vertices v_{a} and $v_{b}(a<b)$:
i) $d\left(v_{a}\right)+d\left(v_{b}\right) \geq m$ for $a+b \geq n$;
ii) $d\left(v_{a}\right)+d\left(v_{b}\right) \geq \min \{b+3, m\}$ for $a+b<n$, then, for every $e \in G$, there exists a cycle passing through e with length at least $m-1$.

Proof. Based on the proof of Theorem 1, we can obtain, by applying Algorithm 1.2 and 1.4 or 2.2 , two pairs of characteristic points v_{j}, v_{k} and v_{j}, v_{l} either for $p>q$ or $p \leq q$ and $2 \leq s \leq q$.

For such v_{j} and $v_{l}(j<l)$, we have that

$$
\begin{aligned}
d\left(v_{j}\right)+d\left(v_{l}\right) & \leq\left|\left\{v_{i} \mid v_{j} v_{i}^{+} \in E, i \neq f\right\}\right|+1+\left|\left[\left(N\left(v_{l}\right)-\left\{x_{c}\right\}\right) \cap Q\right]^{-1}\right|+1 \\
& \leq\left|\left\{v_{i} \mid v_{i} \in V(G), i \leq l\right\}\right|+2=l+2 .
\end{aligned}
$$

We consider two possible cases. If $j+l \geq n$, then $d\left(v_{j}\right)+d\left(v_{l}\right) \geq m$. If $j+l<n$, then $l+2 \geq d\left(v_{j}\right)+d\left(v_{l}\right) \geq \min \{l+3, m\}$. Hence $d\left(v_{j}\right)+d\left(v_{l}\right) \geq m$ for both cases.

If $p \leq q$ and $2 \leq s \leq p$, it is clear that $N^{-}\left(v_{j}\right) \cap N^{+}\left(v_{k}\right)=\emptyset$. In this case,

$$
\begin{aligned}
d\left(v_{j}\right)+d\left(v_{k}\right) & =\left|N^{-}\left(v_{j}\right)\right|+\left|N^{+}\left(v_{k}\right)\right| \\
& \leq\left|\left\{v_{i} \mid v_{j} v_{i}^{+} \in E, i \neq f\right\}\right|+1+\left|\left\{v_{i} \mid v_{k} v_{i}^{-} \in E\right\}\right| \\
& \leq\left|\left\{v_{i} \mid v_{i} \in V(G), i \leq k\right\}\right|+1=k+1 .
\end{aligned}
$$

If $p>q$, then $\left|N^{-}\left(v_{j}\right) \cap N^{+}\left(v_{k}\right)\right| \leq 1$ by Lemma 2 .
When $\left|N^{-}\left(v_{j}\right) \cap N^{+}\left(v_{k}\right)\right|=1$, let $v_{i} \in N^{-}\left(v_{j}\right) \cap N^{+}\left(v_{k}\right)$. Then $v_{i}^{-}=x_{q^{\prime}}, v_{i}^{+}=x_{p^{2}}$ and $e=v_{i}^{-} v_{i}$ or $v_{i} v_{i}^{+}$. Hence it is impossible that $v_{f} \in N^{-}\left(v_{j}\right) \cap N^{+}\left(v_{k}\right)$.

$$
\begin{aligned}
d\left(v_{j}\right)+d\left(v_{k}\right) & =\left|N^{-}\left(v_{j}\right)\right|+\left|N^{+}\left(v_{k}\right)\right| \\
& =\left|N^{-}\left(v_{j}\right) \cup N^{+}\left(v_{k}\right)\right|+\left|N^{-}\left(v_{j}\right) \cap N^{+}\left(v_{k}\right)\right| \\
& \leq\left|\left\{v_{i} \mid v_{i} \in V(G), \quad i \leq k\right\}\right|+1+1=k+2 .
\end{aligned}
$$

When $N^{-}\left(v_{j}\right) \cap N^{+}\left(v_{k}\right)=\emptyset$,

$$
\begin{aligned}
d\left(v_{j}\right)+d\left(v_{k}\right) & =\left|N^{-}\left(v_{j}\right)\right|+\left|N^{+}\left(v_{k}\right)\right| \\
& \leq\left|\left\{v_{i} \mid v_{j} v_{i}^{+} \in E, \quad i \neq f\right\}\right|+1+\left|\left\{v_{i} \mid v_{k} v_{i}^{-} \in E, \quad i \neq h\right\}\right|+1 \\
& \leq\left|\left\{v_{i} \mid v_{i} \in V(G), \quad i \leq k\right\}\right|+2=k+2
\end{aligned}
$$

Thus $d\left(v_{j}\right)+d\left(v_{k}\right) \geq m$ due to the condition in this theorem. Theorem 1 shows that there is a cycle of length at least $m-1$ passing through any arbitrary edge of G, if the related condition is satisfied.

Theorem 3. $d^{*}(G) \geq m-1$ under the condition of Theorem 2.
Proof. Given two vertices x and y, let $G^{\prime}=G+x y$. Then G^{\prime} satisfies the requirements in Thereom 2. Therefore, the edge $x y$ is contained in a cycle of length at least $m-1$. This means that x and y are connected by a path in G with length at least $m-2$.

References

[1] H. Enomoto, Long paths and large cycles in finite graphs. J. Graph Theory, 8(1984), 287-301.
[2] N. Dean and P. Fraisse, A degree condition for the circumference of a graph, J. Graph Theory, 13(1989), 331-334.

