# A characterization of domination 4-relative-critical graphs of diameter 5

Teresa W. Haynes

Department of Mathematics East Tennessee State University Johnson City, TN 37614-0002 USA

Michael A. Henning<sup>\*</sup>

Department of Mathematics University of Natal Private Bag X01 Pietermaritzburg, 3209 South Africa

#### Abstract

Let G be a spanning subgraph of K(s, s) and let H be the complement of G relative to K(s, s); that is,  $K(s, s) = G \oplus H$  is a factorization of K(s, s). The graph G is  $\gamma$ -relative-critical if  $\gamma(G) = \gamma$  and  $\gamma(G + e) = \gamma - 1$  for all  $e \in E(H)$ , where  $\gamma(G)$  denotes the domination number of G. The 2-relative-critical graphs and 3-relative-critical graphs are characterized in [7]. In [7], it is shown that the diameter of a connected 4-relative-critical graph is at most 5. In this paper, we construct five families of connected 4-relative-critical graph of diameter 5 and show that a graph G is a connected 4-relative-critical graph of diameter 5 if and only if G belongs to one of these five families.

## 1 Introduction

A set *D* of vertices of a graph G = (V, E) is a *dominating set* if every vertex in V - D is adjacent to at least one vertex in *D*. The minimum cardinality among all dominating sets of *G* is the domination number of *G* and is denoted by  $\gamma(G)$ . A graph *G* is said to be  $\gamma$ -domination critical, or just  $\gamma$ -critical, if  $\gamma(G) = \gamma$  and  $\gamma(G + e) = \gamma - 1$  for every edge *e* in the complement  $\overline{G}$  of *G*. This concept of  $\gamma$ -critical graphs has been studied by, among others, Blitch [1], Summer [9], Summer

<sup>\*</sup>Research supported in part by the University of Natal and the South African National Research Foundation

and Blitch [8], and Wojcicka [10]. For a more thorough survey of these concepts, see Chapter 5 of [5] and Chapter 16 of [6]. Terminology and notation not defined here may be found in [2].

If G is a spanning subgraph of a graph F, then the graph F - E(G) is the complement of G relative to F with respect to a fixed embedding of G into F. The idea of a relative complement of a graph was suggested by Cockayne [3] and is studied in [4]. In [7], domination critical graphs with respect to relative complements are investigated.

Let  $G \oplus H = K(s, s)$  be a factorization of the complete bipartite graph K(s, s). (If G and H are graphs on the same vertex set but with disjoint edge sets, then  $G \oplus H$  denotes the graph whose edge set is the union of their edge sets.) Notice that if there is a unique (proper) 2-coloring of the vertices of G with each color coloring s vertices, then the graph H is unique. That is, if G is uniquely embeddable in K(s, s), then H is unique. In particular, if G is a connected spanning subgraph of K(s, s), then G is uniquely embeddable in K(s, s).

We say that G is a  $\gamma$ -critical s-relative graph, or simply a  $\gamma$ -relative-critical graph, if  $\gamma(G) = \gamma$  and  $\gamma(G + e) = \gamma - 1$  for all  $e \in E(H)$ . We denote the relative complement H of G by  $\overline{G}$ . The rest of this paper deals only with relative complements with the exception of  $\overline{K}_2$ , so confusion with complements in the ordinary sense is unlikely. Hence, for notational convenience, we shall also denote a  $\gamma$ -relative-critical graph simply as a  $\gamma$ -critical graph. The 2-critical graphs and 3-critical graphs are characterized in [7], as are disconnected 4-critical graphs. Furthermore it is shown in [7] that the diameter of a connected 4-critical graph is at most 5. That this bound is sharp may be seen by considering, for example, the connected 4-critical 5-relative graph with diameter 5 shown in Figure 1.



Figure 1: A connected 4-critical 5-relative graph with diameter 5.

Our aim in this paper is to characterize the (connected) 4-critical graphs of diameter 5. We construct five families of 4-critical graphs of diameter 5 and show that a graph G is a connected 4-critical *s*-relative graph of diameter 5 if and only if Gbelongs to one of these five families.

For this purpose, we introduce the following notation. Let G be a connected 4critical s-relative graph. If u and v are non-adjacent vertices in different partite sets of G, then  $\gamma(G+uv) = 3$  and so there exists a set W of cardinality 3 that dominates G+uv. Since W does not dominate G, it must be that exactly one of u and v, say v, belongs to W and that W dominates all of G except u. Thus,  $S = W - \{v\}$  is a set of cardinality 2 such that  $S \cup \{v\}$  dominates G - u and we write  $[v, S] \to u$ . In particular, when we write  $[v, S] \to u$  it is understood that u is not dominated by S.

## 2 Five Families of 4-Critical Graphs of Diameter 5

In this section, we construct five families  $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_5$  of connected 4-critical *s*-relative graphs of diameter 5, and we let  $\mathcal{G} = \bigcup_{i=1}^5 \mathcal{G}_i$ . For each  $G \in \mathcal{G}$ , the vertex set of *G* is partitioned into five sets  $V_0, V_1, \ldots, V_5$  where  $|V_0| = 1$ . Let *E* be the set of all edges between  $V_i$  and  $V_{i+1}$  for  $i = 0, 1, \ldots, 4$ . In what follows, we describe each of the five families in turn.

Let  $G \in \mathcal{G}_1$ . Then  $|V_0| = |V_1| = |V_2| = 1$ ,  $|V_4| = 2k$ , and  $|V_5| = 2$ , while  $V_3$  is partitioned into two sets  $V_{3,1}$  and  $V_{3,2}$  with  $|V_{3,1}| = k$  and  $|V_{3,2}| = k - 1$  where  $k \geq 2$ . Let  $E_1$  be a set of edges between  $V_{3,1}$  and  $V_4$  that induces a collection of k (vertex-disjoint) paths on three vertices with each center vertex in  $V_{3,1}$ . Then  $E(G) = E - E_1$ .

Let  $G \in \mathcal{G}_2$ . Then  $|V_0| = |V_1| = |V_5| = 1$ ,  $|V_2| \ge 2$ , and  $|V_4| = 2k$ , while  $V_3$  is partitioned into three sets  $V_{3,1}$ ,  $V_{3,2}$  and  $V_{3,3}$  with  $|V_{3,1}| = |V_2|$ ,  $|V_{3,2}| = k$ , and  $|V_{3,3}| = k-1$  where  $k \ge 2$ . Let  $E_{2,1}$  be a set of edges between  $V_2$  and  $V_{3,1}$  that induces a perfect matching between these two sets. Let  $E_{2,2}$  be a set of edges between  $V_{3,2}$  and  $V_4$  that induces a collection of k (vertex-disjoint) paths on three vertices with each center vertex in  $V_{3,2}$ . Then  $E(G) = E - (E_{2,1} \cup E_{2,2})$ .

Let  $G \in \mathcal{G}_3$ . Then  $|V_0| = |V_1| = |V_5| = 1$  and  $|V_2| = \ell$ , where  $\ell \ge 1$ , while  $V_3$  is partitioned into two sets  $V_{3,1}$  and  $V_{3,2}$  with  $|V_{3,1}| = k$  and  $|V_{3,2}| = k + \ell + 1$ , where  $k \ge 2$ . Furthermore,  $V_4$  is partitioned into two sets  $V_{4,1}$  and  $V_{4,2}$  with  $|V_{4,1}| = 2k$  and  $|V_{4,2}| = 2$ . Let  $E_{3,1}$  be a set of edges between  $V_{3,1}$  and  $V_{4,1}$  that induces a collection of k (vertex-disjoint) paths on three vertices with each center vertex in  $V_{3,1}$ . Let  $E_{3,2}$ be the set of edges between  $V_{4,2}$  and  $V_5$ . Then  $E(G) = E - (E_{3,1} \cup E_{3,2})$ .

Let  $G \in \mathcal{G}_4$ . Then  $|V_0| = |V_5| = 1$ ,  $|V_1| = |V_4| = 2$ , and  $|V_2| = |V_3| \ge 2$ . Let  $E_{5,1}$  be the set of edges between  $V_2$  and  $V_3$  that induces a perfect matching between these two sets. Then  $E(G) = E - E_{5,1}$ .

Let  $G \in \mathcal{G}_5$ . Then  $|V_0| = |V_5| = 1$  and  $|V_1| = |V_4| = 2$ , while  $V_2$  is partitioned into two sets  $V_{2,1}$  and  $V_{2,2}$  with  $|V_{2,1}| = k$  and  $|V_{2,2}| = \ell$ , where  $k \ge 2$  and  $\ell \ge 1$ . Furthermore,  $V_3$  is partitioned into two sets  $V_{3,1}$  and  $V_{3,2}$  with  $|V_{3,1}| = k$  and  $|V_{3,2}| = \ell$ . Let  $E_{5,1}$  be the set of edges between a vertex of  $V_1$  and the vertices of  $V_{2,1}$ , and let  $E_{5,2}$  be the set of edges between a vertex of  $V_4$  and the vertices of  $V_{3,1}$ . Let  $E_{5,3}$  be a set of edges between  $V_{2,2}$  and  $V_{3,2}$  that induce a perfect matching between these two sets. Then  $E(G) = E - (E_{5,1} \cup E_{5,2} \cup E_{5,3})$ .

It is straightforward to check that each  $\mathcal{G}_i$ ,  $1 \leq i \leq 5$ , is a family of 4-critical graphs of diameter 5. Note that the graph G in Figure 1 is in  $\mathcal{G}_4$ .

## 3 Main Results

We shall prove:

**Theorem 1** Let G be a connected 4-critical s-relative graph having diameter 5. If there exists a vertex in G with at least two vertices at distance 5 from it, then  $G \in \mathcal{G}_1$ .

**Theorem 2** Let G be a connected 4-critical s-relative graph having diameter 5. If each vertex of eccentricity 5 in G has a unique vertex at distance 5 from it, then  $G \in \mathcal{G} - \{\mathcal{G}_1\}.$ 

As an immediate consequence of Theorems 1 and 2 and the construction of the graphs in  $\mathcal{G}$ , we have the following characterization of connected 4-critical graphs of diameter 5.

**Theorem 3** A graph G is a connected 4-critical s-relative graph of diameter 5 if and only if  $G \in \mathcal{G}$ .

## 4 Proof of Main Results

Let G be a connected 4-critical s-relative graph having diameter 5. Let u and v be vertices of G with diam G = d(u, v) = 5. Let  $u = v_0, v_1, \ldots, v_5 = v$  be a shortest u-v path. For  $i = 0, 1, \ldots, 5$ , let  $V_i = \{x \mid d(u, x) = i\}$ . Necessarily,  $V_0 = \{u\}$  and  $v_i \in V_i$  for  $i = 1, 2, \ldots, 5$ . The partite sets of G are  $V_0 \cup V_2 \cup V_4$  and  $V_1 \cup V_3 \cup V_5$ . Hence

$$|V_0| + |V_2| + |V_4| = s = |V_1| + |V_3| + |V_5|.$$

If all edges between  $V_i$  and  $V_{i+1}$  are present, then we shall say that  $[V_i, V_{i+1}]$  is full. In particular,  $[V_0, V_1]$  is full.

Before proceeding further, we introduce some notation. If s and t are non-adjacent vertices in different partite sets of G, then as pointed out in the introduction, there is a set T of cardinality 2 such that  $[s,T] \to t$  or  $[t,T] \to s$ . For the discussion, it is convenient to consider T to be an ordered set, the first element of which belongs to a set  $V_i$  of smallest index. That is, if  $T = \{s, t\}$  where  $s \in V_i$  and  $t \in V_j$ , then  $i \leq j$ . Furthermore, if T = S, then we let  $S = \{x, y\}$ .

#### 4.1 Proof of Theorem 1

We may assume that  $v_0$  is the vertex with at least two vertices at distance 5 from it, that is,  $|V_5| \ge 2$ .

Claim 4  $|V_i| = 1$  for some  $i, 1 \le i \le 4$ .

**Proof.** Suppose that  $|V_i| \ge 2$  for all  $i \ne 0$ . Consider  $G + v_2v_5$ . Then,  $[v_2, S] \rightarrow v_5$  or  $[v_5, S] \rightarrow v_2$ . Suppose  $[v_5, S] \rightarrow v_2$ . Since  $v_0$  must be dominated, it follows that  $x \in V_0 \cup V_1$  and since  $|V_5| \ge 2$ , it must be the case that  $y \in V_4 \cup V_5$ . But to dominate  $V_2 - \{v_2\}$ , x must be in  $V_1$ , and hence,  $V_1 - \{x\}$  is not dominated. Thus,  $[v_2, S] \rightarrow v_5$ . Since  $v_0$  and  $V_5 - \{v_5\}$  must be dominated, it follows that  $x \in V_0 \cup V_1$  and  $y \in V_4 \cup V_5$ .

If  $x = v_0$ , then  $V_2 - \{v_2\}$  is not dominated. Thus,  $x \in V_1$ , x dominates  $V_2 - \{v_2\}$ , and  $v_2$  dominates  $V_1 - \{x\}$ . If  $y \in V_4$ , then at least one vertex of  $V_4$  is not dominated. Hence,  $y \in V_5$  implying that  $|V_5| = 2$ . Furthermore, y dominates  $V_4$  and  $v_2$  dominates  $V_3$ .

Now consider  $G + v_0 y$ . Then  $[v_0, T] \to y$  or  $[y, T] \to v_0$ . If  $[v_0, T] \to y$ , then since y dominates  $V_4$ , no vertex of  $V_4$  is in T. Furthermore,  $v_5$  must be dominated by T, and so  $v_5 \in T$ . But then the other vertex in T must dominate  $V_2 \cup V_3$ , which is impossible since  $|V_2| \ge 2$  and  $|V_3| \ge 2$ . On the other hand, if  $[y, T] \to v_0$ , then T must dominate  $v_5$ , and so one vertex of T is in  $V_4 \cup V_5$ . The remaining vertex of T must dominate  $V_1 \cup V_2$ , which is impossible since  $|V_1| \ge 2$  and  $|V_2| \ge 2$ . Hence for at least one  $i \in \{1, 2, 3, 4\}, |V_i| = 1$ .  $\Box$ 

#### Claim 5 $|V_4| \ge 2$ .

**Proof.** Suppose  $|V_4| = 1$  and consider  $G + v_2v_5$ . Then  $[v_2, S] \to v_5$  or  $[v_5, S] \to v_2$ . Suppose  $[v_5, S] \to v_2$ . Then  $x \in V_0 \cup V_1$  in order to dominate  $v_0$ , while  $y \in V_4 \cup V_5$  in order to dominate  $V_5 - \{v_5\}$  since  $|V_5| \ge 2$ . Since  $v_4$  dominates  $V_4 \cup V_5$ , we may assume that  $y = v_4$ . But then x must dominate  $V_0 \cup V_1 \cup (V_2 - \{v_2\})$  and  $v_4$  must dominate  $V_3$ . Hence,  $\{x, v_2, v_4\}$  dominates G, contradicting the fact that  $\gamma(G) = 4$ . Thus,  $[v_2, S] \to v_5$ . Now  $x \in V_0 \cup V_1$  to dominate  $v_0$ . Since  $|V_5| \ge 2$  and  $y \notin N[v_5]$ , it follows that  $y \in V_5$  and  $|V_5| = 2$ . But then  $v_4$  can replace y in S, contradicting the fact that no vertex of S is in  $N[v_5]$ . Thus,  $|V_4| \ge 2$ .  $\Box$ 

Claim 6  $|V_3| \ge 2$ .

**Proof.** Suppose  $|V_3| = 1$ . Consider  $G + v_0v_3$ . Then  $[v_0, S] \to v_3$  or  $[v_3, S] \to v_0$ . Suppose  $[v_0, S] \to v_3$ . Then  $x \in V_1 \cup V_2$  to dominate  $V_2$ . Hence, y must dominate  $V_4 \cup V_5$ , a contradiction since, by assumption,  $|V_5| \ge 2$  and, by Claim 5,  $|V_4| \ge 2$ . Thus,  $[v_3, S] \to v_0$ . Now no vertex of  $V_1$  is in S since  $V_1 = N(v_0)$ . To dominate  $V_1$ ,  $x \in V_2$ . Furthermore, y must be in  $V_4 \cup V_5$  to dominate  $V_5$ . Since  $|V_5| \ge 2$ ,  $y \in V_4$ . If  $x \in N(v_3)$ ,  $\{v_0, v_3, y\}$  dominates G, contradicting the fact that  $\gamma(G) = 4$ . Hence,  $x \notin N(v_3)$  and  $v_3$  dominates  $V_2 - \{x\}$ . Consider now  $G + xv_5$ . Then  $[x, T] \to v_5$  or  $[v_5, T] \to x$ . Let  $T = \{w, z\}$ . If  $[x, T] \to v_5$ , then  $w \in V_0 \cup V_1$  to dominate  $v_0$  and  $z \in V_4 \cup V_5$  to dominate  $V_4 \cup (V_5 - \{v_5\})$ . Since  $|V_4| \ge 2$ , it follows that  $z \in V_5$ . But  $v_3$  is not dominated by  $T \cup \{x\}$ , a contradiction. If  $[v_5, T] \to x$ , then since x dominates  $V_1, w = v_0$  to dominate  $v_0$ . Now z must dominate  $(V_2 - \{x\}) \cup \{v_3\} \cup (V_5 - \{v_5\})$ , which is impossible. Therefore,  $|V_3| \ge 2$ .  $\Box$ 

Claim 7  $|V_1| = 1$ .

**Proof.** By Claims 5 and 6, we know that  $|V_3| \ge 2$  and  $|V_4| \ge 2$ . By Claim 4 at least one of  $V_1$  and  $V_2$  have cardinality one. Assume  $|V_1| \ge 2$  and hence  $|V_2| = 1$ . Furthermore,  $v_2$  dominates  $V_1$ ; otherwise, diam(G) > 5, a contradiction. Thus,  $[V_1, V_2]$  is full, as is  $[V_2, V_3]$ .

Suppose  $|V_4| \geq 3$ . Let  $u_4 \in V_4$  and consider  $G + v_1u_4$ . Then  $[v_1, S] \rightarrow u_4$  or  $[u_4, S] \rightarrow v_1$ . Suppose  $[v_1, S] \rightarrow u_4$ . Since  $|V_1| \geq 2$ , it follows that  $x \in V_0 \cup V_1 \cup V_2$  to dominate  $V_1 - \{v_1\}$ . Hence, y must dominate  $(V_4 - \{u_4\}) \cup V_5$ . But this is impossible since  $|V_4 - \{u_4\}| \geq 2$  and  $|V_5| \geq 2$ . Hence,  $[u_4, S] \rightarrow v_1$ .

In order to dominate  $v_0, x \in V_1$ . In order to dominate  $V_4 - \{u_4\}, y \in V_3 \cup V_5$  since  $|V_4| \geq 3$ . Furthermore,  $\{u_4, y\}$  must dominate  $V_3 \cup V_4 \cup V_5$ . If  $y \in V_3$ , then  $\{v_0, u_4, y\}$  dominates G, a contradiction. Therefore,  $y \in V_5$  implying that  $u_4$  dominates  $V_3$ . Since  $u_4$  is an arbitrary vertex of  $V_4$ ,  $[V_3, V_4]$  is full. Furthermore,  $|V_1| = 2$ . Now if any vertex  $w_4 \in V_4$  dominates  $V_5$ , then  $\{v_0, v_3, w_4\}$  dominates G, a contradiction. Thus no vertex of  $V_4$  dominates  $V_5$ . In particular,  $u_4$  is not adjacent to y. Also, y dominates  $V_4 - \{u_4\}$  and  $u_4$  dominates  $V_5 - \{y\}$ .

Consider  $G + v_0v_3$ . Then  $[v_0, T] \rightarrow v_3$  or  $[v_3, T] \rightarrow v_0$ . Suppose  $[v_0, T] \rightarrow v_3$ . Let  $T = \{w, z\}$ . In order to dominate  $v_2, w \in V_1 \cup V_3$ . If  $w \in V_1$ , then we can replace w with any vertex in  $V_3 - \{v_3\}$ . Hence we may assume that  $w \in V_3 - \{v_3\}$ . But now z must dominate  $V_5$ , which is impossible since  $|V_5| \geq 2$  and no vertex of  $V_4$  dominates  $V_5$ . Hence,  $[v_3, T] \rightarrow v_0$ . Then  $w = v_2$  to dominate  $V_1$ . Once again, z must dominate  $V_5$ , a contradiction. Therefore, we must have  $|V_4| = 2$ . However,  $2 + |V_4| = |V_0| + |V_2| + |V_4| = |V_1| + |V_3| + |V_5| \geq 6$ , and so  $|V_4| \geq 4$ . Thus we have a contradiction, implying that  $|V_1| = 1$ .  $\Box$ 

#### Claim 8 $|V_2| = 1$ .

**Proof.** Suppose  $|V_2| \geq 2$ . Let  $u_2 \in V_2$  and  $u_5 \in V_5$ , and consider  $G + u_2u_5$ . Then  $[u_5, S] \rightarrow u_2$  or  $[u_2, S] \rightarrow u_5$ . If  $[u_5, S] \rightarrow u_2$ , then we can choose  $v_1$  to be in S (to dominate  $v_0$ ), contradicting the fact that no vertex of S is in  $N[u_2]$ . Hence,  $[u_2, S] \rightarrow u_5$ . Now  $v_0$  must be dominated, so we may assume that  $x = v_1$ . Then y must dominate  $(V_5 - \{u_5\}) \cup V_4$ . Since  $|V_4| \geq 2$ , it follows that  $y \in V_5$  and  $|V_5| = 2$ . Furthermore,  $u_2$  dominates  $V_3$ . Since  $u_2$  is an arbitrary vertex of  $V_2$ , it follows that  $[V_4, V_5]$  is full.

Consider  $G + v_0v_5$ . Then  $[v_0, T] \to v_5$  or  $[v_5, T] \to v_0$ . Let  $T = \{w, z\}$ . Suppose  $[v_5, T] \to v_0$ . Then  $V_1 \cup V_2$  must be dominated and  $v_1 \notin T$ ; hence, it must be the case that  $w \in V_2$  to dominate  $v_1$ . Since  $|V_2| \ge 2$ , z is in  $V_2 \cup V_3$  to dominate  $V_2 - \{x\}$ . But then  $V_5 - \{v_5\}$  is not dominated, a contradiction. Hence,  $[v_0, T] \to v_5$ . Then  $w \in V_1 \cup V_2 \cup V_3$  to dominate  $V_2$  and  $z \in V_4 \cup V_5$  to dominate  $V_5 - \{v_5\}$ . If  $w = v_1$ , then z must dominate  $V_3 \cup V_4 \cup (V_5 - \{v_5\})$ , which is not possible. Hence,  $w \in V_2 \cup V_3$ . If  $w \in V_2$ , then since  $|V_2| \ge 2$ ,  $z \in V_2 \cup V_3$  to dominate  $V_2 - \{w\}$ , contradicting the fact that  $z \in V_4 \cup V_5$ . Therefore,  $w \in V_3$ . Since  $|V_3| \ge 2$ ,  $z \in V_4$ , contradicting the fact that no vertex in  $N[v_5]$  is in T. Thus, we conclude that  $|V_2| = 1$ .  $\Box$ 

Claim 9  $|V_5| = 2$ .

**Proof.** Suppose  $|V_5| \geq 3$  and consider  $G + v_2v_5$ . Then  $[v_2, S] \rightarrow v_5$  or  $[v_5, S] \rightarrow v_2$ . If  $[v_5, S] \rightarrow v_2$ , we can choose  $v_1 \in S$ , a contradiction. Thus,  $[v_2, S] \rightarrow v_5$ . Now S must dominate  $v_0$ , and so either  $v_0$  or  $v_1$  is in S. The other vertex in S must dominate  $V_4 \cup (V_5 - \{v_5\})$ . But since  $|V_4| \geq 2$  and  $|V_5 - \{v_5\}| \geq 2$ , no single vertex can dominate  $V_4 \cup (V_5 - \{v_5\})$ . Hence,  $|V_5| = 2$ .  $\Box$ 

#### Claim 10 $[V_4, V_5]$ is full.

**Proof.** Let  $V_5 = \{u_5, w_5\}$  and consider  $G + v_2u_5$ . As before,  $[u_5, S] \rightarrow v_2$  cannot occur. Thus,  $[v_2, S] \rightarrow u_5$ . In order to dominate  $v_0$ , we may assume  $x = v_1$ . The remaining vertex y of S must dominate  $V_4 \cup \{w_5\}$ . Since  $|V_4| \ge 2$ ,  $y = w_5$  and  $w_5$  dominates  $V_4$ . Similarly, by considering  $G + v_2w_5$ ,  $u_5$  dominates  $V_4$ . Hence,  $[V_4, V_5]$  is full.  $\Box$ 

By the above claims,  $|V_0| = |V_1| = |V_2| = 1$ ,  $|V_5| = 2$ ,  $|V_3| \ge 2$  and  $|V_4| \ge 2$ . Furthermore,  $[V_2, V_3]$  and  $[V_4, V_5]$  are full. Since  $|V_0| + |V_2| + |V_4| = s = |V_1| + |V_3| + |V_5|$ , we note that  $|V_4| = |V_3| + 1$ .

Suppose  $|V_4| = 3$  (and so  $|V_3| = 2$ ). Then a vertex of  $V_3$  must be adjacent to at least two vertices of  $V_4$ . Let  $V_3 = \{u_3, v_3\}$ . If  $u_3$  is adjacent to  $v_2$  only, then  $v_3$  dominates  $V_4$  and the graph G would not be 4-critical since  $\gamma(G + v_1v_4) = 4$ , a contradiction. Hence,  $u_3$  is adjacent to at least one vertex of  $V_4$ . However, we can now find a vertex of  $V_3$  and a vertex of  $V_4$  that together dominate  $V_3 \cup V_4$ . But then we can dominate G with three vertices, a contradiction. Hence,  $|V_4| \ge 4$ .

Let  $u_4 \in V_4$  and consider  $G + v_1 u_4$ . Since  $v_0$  must be dominated, the case  $[u_4, S] \rightarrow v_1$  cannot occur. Hence,  $[v_1, S] \rightarrow u_4$ . Let  $S = \{x, y\}$ . Now y must dominate  $V_5$  and  $y \notin V_5$ , and so  $y \in V_4 - \{u_4\}$ . Since x dominates  $V_4 - \{u_4, y\}$ , and  $|V_4| \ge 4$ ,  $x \in V_3$ . Hence, y dominates  $V_3 - \{x\}$  and x dominates  $V_4 - \{u_4, y\}$ . However, if we now consider  $G + v_1 y$ , then we must have  $[v_1, T] \rightarrow y$  and  $T = \{x, u_4\}$ . In particular, x is adjacent to every vertex of  $V_4$  except for  $u_4$  and y, and each of  $u_4$  and y dominates  $V_3 - \{x\}$ . Since  $u_4$  is an arbitrary vertex in  $V_4$ , it follows that the edges of G that are missing between  $V_3$  and  $V_4$  induce a collection of  $|V_4|/2 \ge 2$  (vertex-disjoint) paths on three vertices with each center vertex in  $V_3$ . The  $|V_4|/2 - 1$  vertices in  $V_3$  that are not center vertices each dominate  $V_4$  in G. Hence,  $G \in \mathcal{G}_1$ . This completes the proof of Theorem 1.

#### 4.2 Proof of Theorem 2

In this case,  $V_5$  consists only of the vertex  $v_5$ . Furthermore, each vertex of  $V_1$  is adjacent to some vertex of  $V_2$  and each vertex of  $V_2$  is adjacent to some vertex of  $V_3$  (for otherwise  $v_5$  would have at least two vertices at distance 5 from it).

Claim 11  $|V_3| \ge 2$ .

**Proof.** If  $|V_3| = 1$ , then  $v_3$  dominates  $V_2 \cup V_4$ , whence  $\{v_0, v_3, v_5\}$  would be a dominating set of G, a contradiction. Hence,  $|V_3| \ge 2$ .  $\Box$ 

Claim 12 If  $|V_1| = 1$ , then  $G \in \mathcal{G}_2 \cup \mathcal{G}_3$ .

**Proof.** Let  $A = N(v_5)$ . Then  $A \subseteq V_4$ . If A consists only of the vertex  $v_4$ , then G is not 4-critical as may be seen by adding the edge  $v_1v_4$ . Hence,  $|A| \ge 2$ . Let  $B = V_4 - A$  (possibly,  $B = \emptyset$ ). Let C be the set of vertices in  $V_3$  each of which dominates  $V_4$  (possibly,  $C = \emptyset$ ), and let  $D = V_3 - C$ . Then  $[V_4, C]$  is full.

Let  $u_2 \in V_2$  and consider  $G + u_2v_5$ . Then  $[u_2, S] \to v_5$  or  $[v_5, S] \to u_2$ . If  $[v_5, S] \to u_2$ , then we can choose  $v_1 \in S$ , a contradiction. Hence,  $[u_2, S] \to v_5$ . Then  $x = v_1$  to dominate  $v_0$  and  $y \in V_3$  to dominate  $V_4$  (since  $|A| \ge 2$ ). Note that,  $y \in C$ . Furthermore,  $u_2$  dominates  $V_3 - \{y\}$ . Since  $u_2$  is an arbitrary vertex of  $V_2$ , every vertex of  $V_2$  dominates at least  $|V_3| - 1$  vertices of  $V_3$ . Moreover,  $[V_2, D]$  is full.

Case 1:  $[V_2, V_3]$  is not full.

We show then that  $G \in \mathcal{G}_2$ . Now,  $|V_2| \geq 2$  and there is a vertex  $u_2$  in  $V_2$  that is not adjacent to a vertex  $u_3 \in V_3$ . Since  $[V_2, D]$  is full,  $u_3 \in C$ . Consider  $G + u_2u_3$ . Then  $[u_2, T] \to u_3$  or  $[u_3, T] \to u_2$ . If  $[u_3, T] \to u_2$ , then we can choose  $v_1 \in T$ , contradicting the fact that there is no vertex of T in  $N(u_2)$ . Hence,  $[u_2, T] \to u_3$ . Then  $v_1 \in T$  to dominate  $v_0$  and  $v_5 \in T$  to dominate  $v_5$  (since no vertex of  $V_4$  can be in T). Hence,  $V_4 = A$  (and so,  $B = \emptyset$ ). Thus, if  $V_2$  contains a vertex  $w_2$  that dominates  $V_3$ , then  $\{v_1, w_2, v_5\}$  dominates G, a contradiction. It follows that each vertex of  $V_2$  is not adjacent to exactly one vertex of  $V_3$  and this vertex belongs to C.

If there is a vertex of A, say a, that dominates  $V_3$ , then  $\{v_1, a, c\}$  would dominate G, where  $c \in C$ , a contradiction. Hence no vertex of A dominates  $V_3$ . In particular,  $|D| \ge 1$ .

Now,  $|V_3| = |V_2| + |V_4| - 1 \ge 3$ . Let  $u_3$  be a vertex in C that does not dominate  $V_2$ . Consider  $G + v_0u_3$ . If  $[v_0, R] \to u_3$ , then  $v_5 \in R$  to dominate  $v_5$  (since no vertex of A can be in R). The remaining vertex of R must dominate  $(V_3 - \{u_3\}) \cup V_2$ , which is impossible since  $|V_2| \ge 2$  and  $|V_3| \ge 3$ . Hence,  $[u_3, R] \to v_0$ . Thus, R contains a vertex x in  $V_2$  to dominate  $v_1$ . The remaining vertex of R is in  $A \cup \{v_5\}$  to dominate  $v_5$ . Hence,  $\{x, u_3\}$  dominates  $V_2$ , and so x must be the only vertex of  $V_2$  that is not adjacent to  $u_3$ . Since  $u_3$  is an arbitrary vertex of C that does not dominate  $v_2$ , each vertex of C is not adjacent to at most one vertex of  $V_2$ . Thus, the edges of G that are missing between  $V_2$  and C induce a matching from  $V_2$  to a subset of C. In particular,  $|C| \ge |V_2|$ .

We show next that each vertex of D is adjacent to some vertex of A. Suppose  $d \in D$  is adjacent to no vertex of A. Then the neighborhood of d is  $V_2$ . Consider  $G + v_1v_4$ . Then  $[v_1, K] \to v_4$ . Thus, K contains a vertex  $u_2$  of  $V_2$  to dominate d. The remaining vertex of K must dominate  $v_5$  and the vertex of C that is not adjacent to  $u_2$ . Hence, |A| = 2. However,  $|V_2| + 2 = |V_2| + |A| = |C| + |D| + 1 \ge |V_2| + |D| + 1 \ge |V_2| + 2$ . Thus we must have equality throughout, and so  $|V_2| = |C|$  and |D| = 1. This implies that each vertex of C is not adjacent to a (unique) vertex of  $V_2$ . We now consider  $G + v_0 d$ . Then  $[v_0, W] \to d$  or  $[d, W] \to v_0$ . Let  $W = \{w, z\}$ . If  $[d, W] \to v_0$ , then w belongs to  $V_2$  to dominate  $v_1$ . Hence,  $v_5 \in W$  to dominate  $A \cup \{v_5\}$ . But then the vertex of C that is not adjacent to w is not dominated, a contradiction. Hence,  $[v_0, W] \to d$ . Now z belongs to  $A \cup \{v_5\}$  to dominate  $v_5$ . If  $z = v_5$ , then w must dominate  $V_2 \cup C$ , which is impossible. On the other hand, if  $z \in A$ , then w must have been adjacent to some vertex of A. In particular,  $\{v_1\} \cup A$  dominates G, and so  $|A| \ge 3$ .

Let  $A_1$  be the set of vertices in A that are not adjacent to exactly one vertex of D, and let  $A_2 = A - A_1$ . If  $A_2 \neq \emptyset$ , then each vertex of  $A_2$  is not adjacent to at least

two vertices of D.

Let  $a_1 \in A_1$ , and let  $d_1$  be the vertex of D not adjacent to  $a_1$ . If  $d_1$  dominates  $A - \{a_1\}$ , then  $\{a_1, d_1, v_1\}$  dominates G, a contradiction. Thus there is a vertex  $a_2$  in A, different from  $a_1$ , that is not adjacent to  $d_1$ . Consider  $G + v_1 a_1$ . Then  $[v_1, L] \rightarrow a_1$ . Thus, L contains a vertex  $\ell_1$  of A to dominate  $v_5$ . The remaining vertex of L, say  $\ell_2$ , must dominate  $(A \cup D) - (N[\ell_1] \cup \{a_1\})$ . If  $\ell_2 \in A$ , then |A| = 3 and  $|D| \leq 2$ . Since each vertex of A is not adjacent to at least one vertex of D, |D| = 2. Let  $d_2$  be the vertex of D different from  $d_1$ , and let  $a_3$  be the vertex of A different from  $a_1$  and  $a_2$ . Then,  $a_1d_2, a_2d_2$ , and  $a_3d_1$  are edges in G. But then  $\{v_1, d_2, a_3\}$  dominates G, a contradiction. Hence,  $\ell_2 \notin A$ . Thus, we must have  $\ell_2 = d_1$ , implying that  $\ell_1 = a_2$ . Now,  $a_2$  dominates  $V_3 - \{d_1\}$ , and  $d_1$  dominates  $A - \{a_1, a_2\}$ . It follows that  $D - N[a_1] = D - N[a_2] = \{d_1\}$  and  $A - N[d_1] = \{a_1, a_2\}$ .

We show next that  $A_2 = \emptyset$ . Suppose  $u_4 \in A_2$ . Then there are at least two vertices, say  $d_1$  and  $d_2$ , in D that are not adjacent to  $u_4$ . Thus,  $|D| \ge 2$ , and so  $|A| \ge 3$ . We consider  $G + v_1 u_4$ . Then  $[v_1, M] \rightarrow u_4$ . Thus, M contains a vertex  $w_4$  of A to dominate  $v_5$ . Suppose  $w_4 \in A_1$ . Then the vertex,  $d_3$  say, of D that is not adjacent to  $w_4$  must be adjacent to  $u_4$ , since each vertex of  $A_1$  is an endvertex of a path component on three vertices in the relative complement of G. Thus,  $|D| \geq 3$ , and so  $|A| \geq 4$ . Hence the vertex m of M, different from  $w_4$ , must belong to  $V_3$  to dominate  $(A - \{u_4, w_4\})$ . Since  $d_3 \notin M$ ,  $d_3$  is then not dominated by M, a contradiction. Hence,  $w \in A_2$ . If  $|A| \ge 4$ , then the vertex m of M, different from  $w_4$ , must belong to  $V_3$  to dominate  $(A - \{u_4, w_4\})$ . But at least one vertex of  $D - N(w_4)$  is not dominated. Hence, |A| = 3, and so |D| = 2. Since  $u_4$  and  $w_4$  both belong to  $A_2$ , the two vertices of D are not adjacent to  $u_4$  and  $w_4$  and must therefore be adjacent to the vertex of A different from  $u_4$  and  $w_4$ . But then this vertex of A dominates  $V_3$ , a contradiction. We deduce, therefore, that  $A_2 = \emptyset$ , that is,  $A = A_1$ . Thus the edges of G missing between A and D induce a collection of  $|D| \geq 2$  (vertex-disjoint) paths on three vertices with each center vertex in D, and hence,  $G \in \mathcal{G}_2$ .

Case 2:  $[V_2, V_3]$  is full.

Then  $B \neq \emptyset$ , for otherwise,  $\{v_1, v_2, v_5\}$  dominates G, a contradiction. Each vertex of A is not adjacent to at least one vertex of D, for otherwise if  $a \in A$  dominates D, then  $\{a, c, v_1\}$  dominates G for any vertex c of C. Let  $u_4 \in A$  and consider  $G + v_1u_4$ . If  $[u_4, W] \rightarrow v_1$ , then we can choose  $v_1 \in W$ , a contradiction. Hence,  $[v_1, W] \rightarrow u_4$ . In order to dominate  $v_5$ , W contains a vertex,  $w_4$  say, in  $A - \{u_4\}$ . The remaining vertex, w say, of W must therefore dominate B and the vertices in D that are not adjacent to  $w_4$ . In particular, this implies that each vertex of D is adjacent to some vertex of  $V_4$ , for otherwise such a vertex w would not exist.

Suppose  $w \in B$ . Then |B| = 1 and |A| = 2. If w dominates D, then  $\{v_1, w, v_5\}$  is a dominating set of G, a contradiction. Hence, there is a vertex  $d \in D$  not adjacent to w. Since  $\{w, w_4\}$  dominates D, every vertex in D that is not adjacent to  $w_4$ (respectively, w) is adjacent to w (respectively,  $w_4$ ). In particular, d is adjacent to  $w_4$ . We now consider G + dw. If  $[d, Y] \to w$ , then  $v_1$  is in Y. The remaining vertex of Y dominates  $(V_3 - \{d\}) \cup \{v_5\}$ . Hence,  $u_4 \in Y$  and  $u_4$  dominates  $V_3 - \{d\}$ . Since  $u_4$  is not adjacent to at least one vertex of D, d is therefore the only vertex of D not adjacent to  $u_4$ . Consider now  $G + v_1w_4$ . Then  $[v_1, X] \to w_4$  and  $u_4$  must belong to X to dominate  $v_5$ . But then the remaining vertex of X must dominate both d and w, which is impossible. Hence,  $[w, Y] \to d$ . Then  $v_1 \in Y$  to dominate  $v_0$  and therefore  $v_5 \in Y$  to dominate  $A \cup \{v_5\}$ . Thus, d is the only vertex of D that is not adjacent to w. Consider now  $G + v_1w_4$ . Then  $[v_1, X] \to w_4$  and  $u_4$  must belong to X to dominate  $v_5$ . The remaining vertex of X must dominate w. Consequently,  $u_4$ must be adjacent to d. Thus, d dominates A. Consider now  $G + v_0 d$ . If  $[d, R] \to v_0$ , then R contains a vertex of  $V_2$  to dominate  $v_1$ . The remaining vertex of R must dominate  $B \cup V_5$ , which is impossible. Hence,  $[v_0, R] \to d$ . Thus, R must contain  $v_5$ . The remaining vertex of R must therefore dominate  $V_2 \cup (V_3 - \{d\}) \cup \{w\}$  which is impossible unless |C| = 1 and  $D = \{d\}$ . But then each of  $u_4$  and  $w_4$  dominates D, a contradiction. Hence,  $w \notin B$ .

Since  $w \notin B$ ,  $w \in D$  and w dominates  $B \cup (A - \{u_4, w_4\})$ . Furthermore, w is the only vertex of D not adjacent to  $w_4$ . We now consider  $G + v_1w_4$ . Then  $[v_1, X] \to w_4$ . Let  $X = \{x_1, x_2\}$ . In order to dominate  $v_5, x_2 \in A - \{w_4\}$ . Thus,  $x_1$  dominates B and the vertices in D that are not adjacent to  $x_2$ . As shown above,  $x_1$  must belong to D. But  $x_1$  is therefore not adjacent to  $w_4$ , and so  $x_1 = w$ . Hence, w is the only vertex of D not adjacent to  $x_2$ . Consequently,  $x_2 = u_4$ . Thus, w is the only vertex of D not adjacent to each of  $u_4$  and  $w_4$ , while  $u_4$  and  $w_4$  are the only vertices of A that are not adjacent to w. Hence we have established that the edges of G that are missing between A and D induce a collection of |A|/2 (vertex-disjoint) paths on three vertices with each center vertex in D. Moreover, each center vertex dominates B.

Suppose |B| = 1. Let  $B = \{b\}$ . If b dominates D, then  $\{v_1, b, v_5\}$  dominates G, a contradiction. Hence, there is a vertex  $d \in D$  that is not adjacent to b. As shown above, d dominates A. Consider G + bd. If  $[d, Q] \to b$ , then  $v_1 \in Q$ . The remaining vertex of Q belongs to  $A \cup \{v_5\}$  to dominate  $v_5$ . But then a vertex of D that is not adjacent to two vertices of A will not be dominated. Hence,  $[b, Q] \to d$ . Since d dominates A, we must have  $v_5 \in Q$ . Once again,  $v_1 \in Q$ . Thus, b dominates  $V_3 - \{d\}$ . Consider now  $G + v_0d$ . If  $[d, R] \to v_0$ , then R contains a vertex of  $V_2$  to dominate  $v_1$ . The remaining vertex of R must dominate  $\{b, v_5\}$  which is impossible. Hence,  $[v_0, R] \to d$ . Thus, R must contain  $v_5$  since d dominates A. The remaining vertex of R must therefore dominate  $V_2 \cup (V_3 - \{d\}) \cup \{b\}$  which is impossible. Hence,  $|B| \ge 2$ .

Consider  $G + v_1 b$ , where  $b \in B$ . Then  $[v_1, P] \to b$ . If P contains a vertex of A, then the remaining vertex of P must dominate a vertex of D and a vertex of A that is not adjacent with this vertex of D, which is impossible. Hence,  $v_5 \in P$ . The remaining vertex must dominate  $V_3 \cup (B - \{b\})$ . This is possible only if |B| = 2 and the vertex of B, different from b, dominates  $V_3$ . Similarly, b dominate  $V_3$ . Hence,  $G \in \mathcal{G}_3$ .  $\Box$ 

In what follows, we may assume that each vertex of eccentricity 5 has degree at least 2, for otherwise, by Claim 12,  $G \in \mathcal{G}_2 \cup \mathcal{G}_3$ . In particular,

$$|V_1| \ge 2 \qquad \text{and} \qquad |V_4| \ge 2.$$

Thus,  $s = |V_1| + |V_3| + |V_5| \ge 5$ .

Claim 13  $|V_2| \ge 2$ .

**Proof.** Suppose  $|V_2| = 1$ . Then  $[V_1, V_2]$  and  $[V_2, V_3]$  are full. Let A denote the set of vertices in  $V_4$  that are adjacent to  $v_5$ , and let  $B = V_4 - A$ . If  $B = \emptyset$ , then  $\{v_0, v_2, v_5\}$  dominates G, a contradiction. Hence,  $|B| \ge 1$  and  $|V_4| \ge 3$ . Let  $a \in A$  and let  $b \in B$ . We consider  $G + v_1 a$ . Now  $[v_1, W] \rightarrow a$  or  $[a, W] \rightarrow v_1$ . Suppose  $[v_1, W] \rightarrow a$ . We may assume  $v_2 \in W$  (to dominate  $V_1 - \{v_1\}$ ). But then the remaining vertex of W must dominate both b and  $v_5$ , which is impossible. Hence,  $[a, W] \rightarrow v_1$ . Then W must contain a vertex of  $V_1$  to dominate  $v_0$ . Thus, the remaining vertex, w say, of W belongs to  $V_3$  to dominate  $V_4 - \{a\}$ . But then  $\{a, v_0, w\}$  dominates G, a contradiction. Hence,  $|V_2| \ge 2$ .  $\Box$ 

Claim 14  $|V_1| = 2$ .

**Proof.** Suppose  $|V_1| \geq 3$ . Let  $u_1 \in V_1$  and let  $u_4 \in V_4$ . We now consider adding the edge  $u_1u_4$ . Suppose  $[u_4, S] \to u_1$ . Then, S must contain a vertex x (say) of  $V_1 - \{u_1\}$  (to dominate  $v_0$ ). But then the remaining vertex of S must dominate  $(V_1 - \{x, u_1\}) \cup (V_4 - \{u_4\})$ , which is impossible. Hence,  $[u_1, S] \to u_4$ . Then x must dominate  $V_1 - \{u_1\}$  while the remaining vertex y of S must dominate  $(V_4 - \{u_4\}) \cup$  $\{v_5\}$ . Hence,  $|V_4| = 2$  and  $y \in V_4 - \{u_4\}$ . Since  $u_4$  is an arbitrary vertex in  $V_4$ , it follows that  $[V_4, V_5]$  is full. Let  $V_4 = \{u_4, w_4\}$ . We show next that  $[V_1, V_2]$  is full.

Claim 14.1  $[V_1, V_2]$  is full.

**Proof.** Suppose  $[V_1, V_2]$  is not full. We may assume  $u_1$  is not adjacent to some vertex  $u_2$  in  $V_2$ . Then x must belong to  $V_2$  and  $\{u_1, x\}$  dominate  $V_1 \cup V_2$ . Thus,  $x = u_2$ . This shows that each vertex of  $V_1$  ( $V_2$ ) is adjacent to all except possibly one vertex of  $V_2$  ( $V_1$ ). If  $u_2$  dominates  $V_3$ , then  $\{u_1, u_2, v_5\}$  dominates G. Hence,  $u_2$  is not adjacent to some vertex in  $V_3$  which we call  $u_3$ . We now consider adding the edge  $u_1u_2$ . If  $[u_2, T] \rightarrow u_1$ , then T contains a vertex in  $V_1$  (to dominate  $v_0$ ). The remaining vertex of T must dominate  $\{u_3, v_5\} \cup V_4$ , which is impossible. Hence,  $[u_1, T] \rightarrow u_2$ . Thus, T contains a vertex  $t \in V_0 \cup (V_2 - \{u_2\})$  (to dominate  $V_1 - \{u_1\}$ ). In order to dominate  $V_4 \cup V_5, v_5 \in T$ . Thus, t dominates  $V_1 \cup V_3$  and  $t \in V_2 - \{u_2\}$ . If some vertex z of  $V_1$  dominates  $V_2$ , then  $\{v_5, t, z\}$  dominates G, a contradiction. Hence each vertex of  $V_1$  must be not adjacent to exactly one vertex of  $V_2$ . Thus we can partition  $V_2$  into two sets C and D such that  $[V_1, C]$  is full and  $[V_1, D]$  is full except for the edges of a perfect matching between  $V_1$  and D. In particular,  $|V_2| = |C| + |D| = |C| + |V_1| \ge 4$ . This in turn implies  $|V_3| \ge 3$ .

We now consider adding the edge  $v_0u_3$ . If  $[u_3, W] \to v_0$ , then W contains a vertex of  $V_4 \cup V_5$  to dominate  $v_5$ . The remaining vertex of W must then dominate both  $V_1 \cup \{u_2\}$ , which is impossible. Hence,  $[v_0, W] \to u_3$ . Now W contains a vertex, w say, in  $V_4 \cup V_5$  to dominate  $v_5$  and a vertex in  $V_3 - \{u_3\}$  to dominate  $V_2$ . Since  $|V_3| \ge 3$ , w must dominate vertices in  $V_3$  as well as  $v_5$ . Hence,  $w \in V_4$ , say  $w = u_4$ . Since W does not dominate  $u_3$ , the vertices  $u_3$  and  $u_4$  are not adjacent. Hence,  $u_1$  is not adjacent to  $u_2$ ,  $u_2$  is not adjacent to  $u_3$ , and  $u_3$  is not adjacent to  $u_4$ . We now consider adding the edge  $u_1w_4$ . If  $[u_1, Z] \to w_4$ , then  $u_4 \in Z$ . But then the remaining vertex of Z must dominate both  $u_2$  and  $u_3$ , which is impossible. Hence,  $[w_4, Z] \to u_1$ . Thus, Z contains a vertex of  $V_1 - \{u_1\}$  to dominate  $v_0$ . Since  $|V_1| \ge 3$ , the remaining vertex of Z must dominate a vertex of  $V_1$  as well as  $u_4$ , which is impossible. Hence,  $[V_1, V_2]$  must be full.  $\Box$ 

We now return to the proof of Claim 14. By Claim 14.1,  $[V_1, V_2]$  is full. Hence no vertex of  $V_2$  dominates  $V_3$ , for otherwise a vertex from  $V_1$ , a vertex from  $V_2$ , and the vertex  $v_5$  form a dominating set of G, a contradiction. Since  $|V_1| > |V_4| = 2$ , we must have  $|V_2| > |V_3|$  (and so  $|V_2| \ge 3$ ). Hence there exists a vertex  $u_3$  in  $V_3$  that is not adjacent to at least two vertices, say  $u_2$  and  $w_2$ , in  $V_2$ .

We show firstly that  $u_3$  dominates  $V_4$ . If  $[v_5, Z] \rightarrow u_2$ , then, since  $[V_1, V_2]$  is full and Z does not dominate  $u_2$ , we must have  $v_0 \in Z$  (to dominate  $v_0$ ). But then the remaining vertex of Z must dominate  $(V_2 - \{u_2\}) \cup V_3$ , which is impossible since  $|V_2| \geq 3$  and  $|V_3| \geq 2$ . Hence,  $[u_2, Z] \rightarrow v_5$ . Then Z contains a vertex of  $V_0 \cup V_1$  (to dominate  $v_0$ ). The remaining vertex of Z must dominate  $V_4 \cup \{u_3\}$ . Hence,  $u_3 \in Z$ and  $u_3$  dominates  $V_4$ .

We now consider adding the edge  $v_0u_3$ . If  $[u_3, W] \to v_0$ , then W contains a vertex of  $V_4 \cup V_5$  (to dominate  $v_5$ ). The remaining vertex of W must then dominate  $V_1 \cup \{u_2, w_2\}$ , which is impossible. Hence,  $[v_0, W] \to u_3$ . Since W contains no vertex of  $V_4$ ,  $v_5 \in W$  (to dominate  $v_5$ ). The remaining vertex of W must dominate  $V_2 \cup (V_3 - \{u_3\})$ . Hence,  $|V_3| = 2$  and the vertex of  $V_3$  different from  $u_3$  dominates  $V_2$ . But since each vertex of  $V_2$  must be not adjacent with some vertex of  $V_3$ , each vertex of  $V_2$  is not adjacent to  $u_3$ . But this is a contradiction since at least one vertex of  $V_2$  must be adjacent with  $u_3$ . Hence our assumption that  $|V_1| \geq 3$  in incorrect. Thus,  $|V_1| = 2$ , completing the proof of Claim 14.  $\Box$ 

Claim 14 shows that each vertex of eccentricity 5 has degree exactly 2. In particular,  $v_5$  is adjacent to exactly two vertices of  $V_4$ . Let  $u_4$  and  $w_4$  be the two neighbours of  $v_5$ . Thus,  $N(v_5) \cap V_4 = \{u_4, w_4\}$ . Further, let  $V_1 = \{u_1, w_1\}$ .

#### Claim 15 $|V_4| = 2$ .

**Proof.** Suppose  $|V_4| \geq 3$ . Let  $A = \{u_4, w_4\}$  and  $B = V_4 - A$ . Then  $|B| \geq 1$ . Let  $u_2 \in V_2$  and consider  $G + u_2v_5$ . Then  $[v_5, S] \rightarrow u_2$  or  $[u_2, S] \rightarrow v_5$ . Suppose  $[v_5, S] \rightarrow u_2$ . Then S must contain a vertex in  $V_3 \cup B$  (to dominate B). The remaining vertex of S must dominate  $V_0 \cup V_1$ . Hence,  $v_0 \in S$ . But then the vertex of S different from  $v_0$  must dominate  $(V_2 - \{u_2\}) \cup V_3 \cup B$ , which is impossible. Hence,  $[u_2, S] \rightarrow v_5$ . Now S must contain a vertex of  $V_0 \cup V_1$  (to dominate  $v_0$ ). The remaining vertex of S must dominate  $V_4$  and therefore belongs to  $V_3$ . In particular,  $u_2$  is adjacent to every vertex of  $V_3$  except possibly for one vertex. Since  $u_2$  was an arbitrary vertex of  $V_2$ , each vertex of  $V_2$  is adjacent to every vertex of  $V_3$  except possibly for one vertex.

We now consider adding the edge  $u_1u_4$ . If  $[u_1, T] \to u_4$ , then  $w_4 \in T$  (to dominate  $v_5$ ) and the remaining vertex of T belongs to  $V_1 \cup V_2$  (to dominate  $w_1$ ). But then B is not dominated by  $T \cup \{u_1\}$ . Hence,  $[u_4, T] \to u_1$ . Then  $w_1 \in T$  (to dominate  $v_0$ ).

The remaining vertex  $u_3$  (say) of T belongs to  $V_3$  and dominates  $V_4 - \{u_4\}$ . Thus,  $u_4$  dominates all of  $V_3$ , except for possibly one vertex of  $V_3$ . If  $u_3$  dominates  $V_2$ , then  $\{v_0, u_3, u_4\}$  dominates G, a contradiction. Hence we may assume that  $u_3$  is not adjacent to  $u_2$ . However,  $[u_2, S] \rightarrow v_5$ . Now S must contain a vertex of  $V_0 \cup V_1$  (to dominate  $v_0$ ). The remaining vertex of S must dominate  $\{u_3\} \cup V_4$ . Thus,  $u_3 \in S$ . In particular,  $u_2$  is adjacent to every vertex in  $V_3$  different from  $u_3$  and  $u_3$  is adjacent to  $u_4$ . This shows that  $u_4$  dominates  $V_3$  and  $u_3$  dominates  $V_4$ . Similarly,  $w_4$  dominates  $V_3$ . Hence,  $[V_3, A]$  is full.

Let  $b \in B$  and consider  $G + bu_1$ . Suppose  $[b, W] \to u_1$ . Then  $w_1 \in W$  (to dominate  $v_0$ ) and  $v_5 \in W$  (to dominate  $V_4 \cup A$ ). Hence, |B| = 1 and b dominates  $V_3$ . Hence,  $[V_3, V_4]$  is full. If a vertex, say  $u_3$ , of  $V_3$  dominates  $V_2$ , then  $\{v_0, u_3, u_4\}$  dominates G, a contradiction. Thus, every vertex of  $V_3$  is not adjacent to some vertex of  $V_2$ . However,  $|V_0| + |V_2| + |V_4| = |V_1| + |V_3| + |V_5|$ , and so we must have  $|V_3| = |V_2| + 1$ . By the Pigeonhole Principle, at least one vertex of  $V_2$  is not adjacent to at least two vertices of  $V_3$ . However, this contradicts our earlier observation that each vertex of  $V_2$  is adjacent to every vertex of  $V_3$  except possibly for one vertex. Hence,  $[u_1, W] \to b$ .

Now W contains a vertex of  $V_1 \cup V_2$  (to dominate  $w_1$ ) and a vertex of  $A \cup V_5$  (to dominate  $v_5$ ). Hence,  $v_5 \in W$  and W contains a vertex  $u_2$  (say) of  $V_2$  that dominates  $\{w_1\} \cup V_3$ . This implies that  $\{u_1, u_2\}$  dominates  $V_0 \cup V_1 \cup V_2 \cup V_3$  and |B| = 1. However, since  $[u_4, T] \rightarrow u_1$ , we have shown that T contains a vertex  $u_3$  in  $V_3$  that dominates  $V_4$ . Hence,  $\{v_0, u_3, u_4\}$  dominates G, a contradiction. Consequently,  $|V_4| = 2$ .  $\Box$ 

By Claim 15,  $V_4 = \{u_4, w_4\}.$ 

**Claim 16** If each vertex in  $V_1$  is adjacent to all except possibly one vertex of  $V_2$ , then  $[V_1, V_2]$  is full.

**Proof.** Suppose  $u_1$  is not adjacent to a vertex  $u_2$  in  $V_2$ . Then  $w_1u_2$  must be an edge and, by assumption,  $u_1$  dominates  $V_2 - \{u_2\}$ . If  $u_2$  dominates  $V_3$ , then  $\{u_1, u_2, v_5\}$  dominates G, a contradiction. Hence there must be a vertex  $u_3$  (say) in  $V_3$  that is not adjacent to  $u_2$ .

We now consider adding the edge  $v_0u_3$ . If  $[u_3, W] \to v_0$ , then W contains a vertex of  $V_2 - \{u_2\}$  (to dominate  $V_1$ ). The remaining vertex of W must then dominate both  $u_2$  and  $v_5$ , which is impossible. Hence,  $[v_0, W] \to u_3$ . Now W contains a vertex in  $V_4 \cup V_5$  to dominate  $v_5$ . The remaining vertex, w say, of W must dominate  $V_2$ . If  $w = w_1$ , then z must also dominate  $V_3 - \{u_3\}$ , which is impossible. Hence,  $w \in V_3 - \{u_3\}$  and w dominates  $V_2$ . If  $|V_3| = 2$ , then, letting  $w_2$  denote the vertex of  $V_2$  different from  $u_2$ ,  $\{w_1, w_2, v_5\}$  dominates G, a contradiction. Hence,  $|V_3| \ge 3$ . Since the vertex of W different from w must dominate vertices in  $V_3$  as well as  $v_5$ , we may assume  $u_4 \in W$ . Since W does not dominate  $u_3$ ,  $u_3$  and  $u_4$  are not adjacent vertices. Hence,  $u_1$  is not adjacent to  $u_2$ ,  $u_2$  is not adjacent to  $u_3$ , and  $u_3$  is not adjacent to  $u_4$ .

We now consider adding the edge  $u_1u_2$ . If  $[u_2, T] \to u_1$ , then  $w_1 \in T$  (to dominate  $v_0$ ). The remaining vertex of T must then dominate  $\{u_3, v_5\} \cup V_4$ , which is impossible. Hence,  $[u_1, T] \to u_2$ . Then T contains a vertex to dominate  $w_1$  and a vertex of  $V_4 \cup V_5$  to dominate  $v_5$ . Hence,  $v_5 \in T$  and the remaining vertex t (say) of T must belong to  $V_2$  and dominates  $\{w_1\} \cup V_3$ . If  $w_1$  dominates  $V_2$ , then  $\{w_1, t, v_5\}$  dominates G, a contradiction. Therefore,  $w_1$  is not adjacent to a vertex  $w_2$  in  $V_2$  (distinct from  $u_2$ ). Thus there must be a vertex  $w_3$  (say) in  $V_3$  that is not adjacent to  $w_2$ .

Suppose that  $u_3 \neq w_3$ . We now consider adding the edge  $u_1w_4$ . If  $[u_1, Z] \to w_4$ , then  $u_4 \in Z$ . But then the remaining vertex of Z must dominate both  $u_2$  and  $u_3$ , which is impossible. Hence,  $[w_4, Z] \to u_1$ . Thus,  $w_1 \in Z$  (to dominate  $v_0$ ). If  $w_3w_4$  is not an edge of G, then the remaining vertex of Z must dominate  $w_2$  and  $w_3$ , which is impossible. Hence,  $w_3$  and  $w_4$  are adjacent. We now consider adding the edge  $v_0w_3$ . If  $[w_3, K] \to v_0$ , then K contains a vertex of  $V_2 - \{w_2\}$  (to dominate  $V_1$ ). The remaining vertex of K must then dominate both  $w_2$  and  $v_5$ , which is impossible. Hence,  $[v_0, K] \to w_3$ . Now K contains either  $u_4$  or  $v_5$  (to dominate  $v_5$ ). In any event, the remaining vertex of K must dominate both  $u_2$  and  $u_3$ , which is impossible. Hence,  $u_3 = w_3$ .

We now consider adding the edge  $u_2v_5$ . If  $[u_2, F] \to v_5$ , then F contains a vertex of  $V_3 - \{u_3\}$  (to dominate  $V_4$ ). The remaining vertex of F must then dominate both  $v_0$  and  $u_3$ , which is impossible. Hence,  $[v_5, F] \to u_2$ . Now F contains a vertex, fsay, to dominate  $V_3$  and a vertex in  $V_0 \cup V_1$  to dominate  $v_0$ . Since f dominates  $V_3$ ,  $f \notin \{u_2, w_2\}$ . Since  $|V_3| \ge 3$ ,  $f \notin V_3$ . Hence the vertex of F different from f must dominate all of  $v_0, u_2$ , and  $w_2$ , which is impossible. Therefore,  $[V_1, V_2]$  must be full.  $\Box$ 

A symmetrical argument yields the following result.

**Claim 17** If each vertex in  $V_4$  is adjacent to all except possibly one vertex of  $V_3$ , then  $[V_3, V_4]$  is full.

Claim 18 If both  $[V_1, V_2]$  and  $[V_3, V_4]$  are full, then  $G \in \mathcal{G}_4$ .

**Proof.** If any vertex  $u_2$  in  $V_2$  dominates  $V_3$ , then  $\{u_1, u_2, v_5\}$  dominates G, a contradiction. Similarly, if any vertex  $u_3$  in  $V_3$  dominates  $V_2$ , then  $\{v_0, u_3, u_4\}$  dominates G, a contradiction. Hence each vertex in  $V_2$  is not adjacent to some vertex of  $V_3$  and each vertex of  $V_3$  is not adjacent to some vertex of  $V_2$ . Suppose a vertex  $u_2 \in V_2$  is not adjacent to two vertices, say a and b, in  $V_3$ . Then  $|V_2| = |V_3| \ge 3$ , since each vertex in  $V_2$  is adjacent to at least one vertex in  $V_3$ . We now consider adding the edge  $u_2v_5$ . If  $[u_2, W] \to v_5$ , then we may assume  $u_1$  is in W. The remaining vertex of W must dominate  $\{a, b\} \cup V_4$ , which is impossible. Hence,  $[v_5, W] \to u_2$ . Thus,  $v_0 \in W$ . The remaining vertex of W must dominate  $(V_2 - \{u_2\}) \cup V_3$ , which is impossible (since  $|V_2| = |V_3| \ge 3$ ). Thus each vertex of  $V_2$  is not adjacent to exactly one vertex of  $V_3$ . Similarly, each vertex of  $V_3$  is not adjacent to exactly one vertex of  $V_2$ . Hence,  $[V_2, V_3]$  is full except for the edges of a perfect matching between  $V_2$  and  $V_3$ . Thus,  $G \in \mathcal{G}_4$ .  $\Box$ 

By Claims 16, 17, and 18, we may assume that a vertex in  $V_1$  is not adjacent to at least two vertices in  $V_2$  or a vertex in  $V_4$  is not adjacent to at least two vertices in  $V_3$ , for otherwise  $G \in \mathcal{G}_4$ . Without loss of generality, we may assume that  $u_1$  has the smallest degree of the four vertices  $u_1, w_1, u_4$  and  $w_4$ . Then,  $u_1$  is not adjacent to at least two vertices of  $V_2$ . Let A be the set of vertices in  $V_2$  that are not adjacent to  $u_1$ . Further, let  $B = V_2 - A$ . Since each vertex of  $V_1$  is adjacent to some vertex of  $V_2$ ,  $|B| \ge 1$ . By assumption,  $|A| \ge 2$ . Hence,  $|V_2| = |V_3| \ge 3$ . We now consider  $G + u_1 a$  where  $a \in A$ .

Claim 19 If there is a vertex  $a_1$  in A such that  $[u_1, W] \rightarrow a_1$ , then  $G \in \mathcal{G}_5$ .

**Proof.** The set W contains a vertex of  $V_4 \cup V_5$  (to dominate  $v_5$ ) and a vertex of  $V_2$  (to dominate  $(A - \{a_1\}) \cup \{w_1\}$ ). Hence,  $v_5 \in W$ . Thus, W contains a vertex  $a_2$  in  $A - \{a_1\}$  and this vertex dominates  $(A - \{a_1\}) \cup V_3$ . Thus,  $A = \{a_1, a_2\}$  and  $a_2$  dominates  $V_3$ . Before proceeding further, we prove two claims.

#### Claim 19.1 $[A, V_3]$ is full.

**Proof.** Suppose  $a_1$  is not adjacent to a vertex,  $u_3$  say, in  $V_3$ . Then we must have  $[a_2, M] \rightarrow u_1$ . Thus,  $w_1 \in M$  (to dominate  $v_0$ ). The remaining vertex of W must dominate  $V_4 \cup V_5$ , and so  $v_5 \in M$ . In particular, we note that  $w_1$  dominates  $V_2$ .

We now consider  $G + v_0 u_3$ . Then  $[u_3, L] \to v_0$  or  $[v_0, L] \to u_3$ . Let  $L = \{\ell_1, \ell_2\}$ . If  $[u_3, L] \to v_0$ , then  $\ell_2 \in V_4 \cup V_5$  to dominate  $v_5$ . But then  $\ell_1$  must dominate both  $u_1$  and  $a_1$ , which is impossible. Hence,  $[v_0, L] \to u_3$ . If  $\ell_2 = v_5$ , then  $\ell_1$  must dominate  $V_2 \cup (V_3 - \{u_3\})$ , which is impossible since  $|V_3| \ge 3$ . Hence, we may assume that  $\ell_2 = u_4$ , and so the vertices  $u_3$  and  $u_4$  are not adjacent.

We now consider  $G + a_1u_3$ . If  $[a_1, K] \to u_3$ , then K contains a vertex from  $V_4 \cup V_5$ to dominate  $v_5$ . The remaining vertex of K must dominate both  $u_1$  and  $a_2$ , which is impossible. Hence,  $[u_3, K] \to a_1$ . Now, K contains a vertex from  $V_0 \cup V_1$  to dominate  $v_0$  and a vertex from  $V_4 \cup V_5$  to dominate  $v_5$ . Thus,  $v_0 \in K$ . The remaining vertex of K must dominate  $(V_3 - \{u_3\}) \cup \{u_4, v_5\}$ . Hence,  $u_4 \in K$ . In particular,  $u_4$  dominates  $V_3 - \{u_3\}$  and  $u_3$  dominates  $V_2 \cup \{w_4\}$ .

Since  $[V_3, V_4]$  is not full, and since  $u_4$  is adjacent to every vertex of  $V_3$  except for  $u_3$ , Claim 17 implies that  $w_4$  is not adjacent to two vertices of  $V_3$ , say  $d_1$  and  $d_2$ . If  $[d_1, T] \to w_4$  where  $T = \{t_1, t_2\}$ , then  $t_1 \in V_0 \cup V_1$  and  $t_2 \in V_4 \cup V_5$ . But then at least one of  $d_2$  and  $u_3$  will not be dominated. Hence,  $[w_4, T] \to d_1$ . Now,  $t_1 \in V_0 \cup V_1$  and  $t_2 \in V_3 \cup V_4$  to dominate  $d_2$  and  $u_4$ . Thus,  $t_1 = v_0$  and  $t_2 = d_2$ . Moreover,  $d_2$  dominates  $V_2$  and  $V_3 - N(w_4) = \{d_1, d_2\}$ . Similarly,  $d_1$  dominates  $V_2$ .

If some vertex  $b \in B$  dominates  $V_3$ , then  $\{w_1, b, v_5\}$  dominates G. Hence, each vertex in B is not adjacent to some vertex of  $V_3$ . However,  $[\{u_3, d_1, d_2\}, B]$  is full. Since  $|V_2| = |V_3|$ , some vertex,  $w_3$  say, of  $V_3$  is not adjacent to at least two vertices of B, say  $b_1$  and  $b_2$ . Consider  $G+v_0w_3$ . If  $[v_0, Z] \to w_3$ , then  $v_5 \in Z$  (since  $w_3$  is adjacent to both  $u_4$  and  $w_4$ ) and the remaining vertex of Z must dominate  $V_2 \cup (V_3 - \{w_3\})$ , which is impossible since  $|V_2| = |V_3| \ge 4$ . On the other hand, if  $[w_3, Z] \to v_0$ , then Z contains a vertex in  $V_4 \cup V_5$ . The remaining vertex of Z must dominate  $V_1 \cup \{b_1, b_2\}$ , which is impossible. Therefore,  $a_1$  dominates  $V_3$ , and so  $[A, V_3]$  is full.  $\Box$ 

Claim 19.2  $[V_3, V_4]$  is not full.

**Proof.** Suppose  $[V_3, V_4]$  is full. Then each vertex  $u_3$  in  $V_3$  is not adjacent to a vertex of B, for otherwise  $\{v_0, u_3, u_4\}$  would dominate G. However,  $|V_3| = |B| + 2$ . Hence, by the Pigeonhole Principle, there is a verex b in B that is not adjacent to two vertices of  $V_3$ , say  $u_3$  and  $w_3$ .

We show that the vertices  $w_1$  and b are not adjacent. Consider  $G + bv_5$ . If  $[b,T] \to v_5$ , then T contains a vertex in  $V_1 \cup V_2$ . The remaining vertex of T must dominate  $\{u_3, w_3\} \cup V_4$ , which is impossible. Thus,  $[v_5, T] \to b$ . If  $v_0 \in T$ , then the remaining vertex of T must dominate  $V_2 \cup \{u_3, w_3\}$ , which is impossible. Hence,  $v_0 \notin T$ . Thus, since no neighbour of b is in  $T, w_1 \in T$  and  $w_1$  is not adjacent to b.

We now consider  $G + v_0u_3$ . If  $[v_0, W] \to u_3$ , then  $v_5 \in W$ . The remaining vertex of W must then dominate  $V_2 \cup (V_3 - \{u_3\})$ , which is impossible. On the other hand, if  $[u_3, W] \to v_0$ , then W contains a vertex of  $V_4 \cup V_5$ . The remaining vertex of Wmust then dominate both  $w_1$  and b, which is impossible. Therefore,  $[V_3, V_4]$  cannot be full.  $\Box$ 

We now return to the proof of Claim 19. By Claim 19.2,  $[V_3, V_4]$  is not full. Hence, by Claim 17, there is a vertex of  $V_4$ , say  $u_4$ , that is not adjacent to two vertices of  $V_3$ , say  $c_1$  and  $c_2$ . Let  $C = \{c_1, c_2\}$  and let  $D = V_3 - C$ . Then  $u_4$  dominates D, for otherwise  $u_4$  would have smaller degree than  $u_1$ , contradicting our choice of  $u_1$ . We show next that  $[C, V_2]$  is full. If  $[c_1, Z] \to u_4$ , then  $w_4 \in Z$  (to dominate  $v_5$ ) and  $v_0 \in Z$  (to dominate  $V_0 \cup V_1$ ). In particular,  $c_1$  dominates  $V_2$ . Similarly, if  $[c_2, Z] \to u_4$ , then  $c_2$  dominates  $V_2$ . Thus, if  $[c_1, Z] \to u_4$  and  $[c_2, Z] \to u_4$ , then  $[C, V_2]$  is full. On the other hand, if  $[u_4, Z] \to c_1$  or  $[u_4, Z] \to c_2$ , then similar arguments to those used to establish Claim 19.1 show that  $[C, V_2]$  is full.

#### Claim 19.3 If $w_1$ dominates B, then $G \in \mathcal{G}_5$ .

**Proof.** Suppose  $w_1$  dominates B. Let  $b \in B$ . Then b is not adjacent to at least one vertex of D, for otherwise  $\{w_1, b, v_5\}$  would dominate G. Suppose b is not adjacent to two vertices, say  $d_1$  and  $d_2$ , of D. Consider  $G + bv_5$ . Then  $[b, T] \to v_5$  or  $[v_5, T] \to b$ . Let  $T = \{t_1, t_2\}$ . If  $[b, T] \to v_5$ , then  $t_1 \in V_0 \cup V_1$  and so  $t_2$  must dominate  $\{d_1, d_2\} \cup V_4$ , which is impossible. On the other hand, if  $[v_5, T] \to b$ , then  $t_1 = v_0$  and so  $t_2$  must dominate  $(V_2 - \{b\}) \cup V_3$ , which is impossible. Hence, b is not adjacent to exactly one vertex of D. Since b is an arbitrary vertex of B, each vertex of B is not adjacent to exactly one vertex of D.

We show next that each vertex of D is not adjacent to exactly one vertex of B. Let  $d \in D$  and suppose that d is not adjacent to two vertices of B. If d is adjacent to  $w_4$ , then by considering  $G + v_0 d$  we arrive at a contradiction. Hence, d and  $w_4$  are not adjacent. Let b be a vertex of B not adjacent to d and consider  $G + bv_5$ . Then  $[b, T] \rightarrow v_5$  or  $[v_5, T] \rightarrow b$ . Let  $T = \{t_1, t_2\}$ . If  $[b, T] \rightarrow v_5$ , then  $t_1 \in V_0 \cup V_1$  and so  $t_2$  must dominate  $\{d, u_4, w_4\}$ , which is impossible. On the other hand, if  $[v_5, T] \rightarrow b$ , then  $t_1 = v_0$  and so  $t_2$  must dominate  $(V_2 - \{b\}) \cup V_3$ , which is impossible. Hence, each vertex of D is not adjacent to exactly one vertex of B. Since |B| = |D|, it follows that  $[V_2, V_3]$  is full except for the edges of a perfect matching between B and D. Suppose now that  $w_4$  is not adjacent to some vertex, say d, of D. Let b be the vertex of B that is not adjacent to d, and consider  $G + bv_5$ . If  $[b, T] \to v_5$ , then one vertex of T belongs to  $V_0 \cup V_1$ . The remaining vertex of T must then dominate both  $w_4$  and d, which is impossible. Hence,  $[v_5, T] \to b$ . Thus,  $v_0 \in T$ . The remaining vertex of T must dominate  $(V_2 - \{b\}) \cup V_3$ , which is impossible. Hence,  $w_4$  must dominate D. Thus,  $G \in \mathcal{G}_5$ .  $\Box$ 

A symmetrical argument yields the following result.

#### Claim 19.4 If $w_4$ dominates D, then $G \in \mathcal{G}_5$ .

By Claims 19.3 and 19.4, we may assume that  $w_1$  is not adjacent to some vertex of B and that  $w_4$  is not adjacent to some vertex of D, for otherwise  $G \in \mathcal{G}_5$ .

Suppose  $w_1$  is not adjacent to exactly one vertex, say b, of B. Then b is not adjacent to a vertex, say d, of D, for otherwise  $\{w_1, b, v_5\}$  would dominate G. We now consider  $G + v_0 d$ . If  $[d, W] \to v_0$ , then one vertex of W belongs to  $V_4 \cup V_5$ . The remaining vertex of W must then dominate both  $w_1$  and b, which is impossible. Hence,  $[v_0, W] \to d$ . If  $v_5 \in W$ , then the remaining vertex of W must dominate  $V_2 \cup (V_3 - \{d\})$ , which is impossible. Hence,  $w_4 \in W$ . This implies that the vertices d and  $w_4$  are not adjacent. We now consider  $G + u_1u_4$ . By symmetry, we may assume that  $[u_1, Z] \to u_4$ . Then  $w_4 \in Z$ . The remaining vertex of Z must dominate  $\{w_1, d\} \cup A$ , which is impossible. Hence,  $w_1$  is not adjacent to at least two vertices of B. A symmetrical argument shows that  $w_4$  is not adjacent to at least two vertices of D.

We again consider  $G + u_1u_4$ . By symmetry, we may assume that  $[u_1, Z] \to u_4$ . Then  $w_4 \in Z$ . The remaining vertex of Z must then dominate  $A \cup (V_3 - N(w_4))$ , which is impossible since  $|A| \ge 2$  and  $|V_3 - N(w_4)| \ge 2$ . This completes the proof of Claim 19.  $\Box$ 

Claim 20 If  $[a, W] \rightarrow u_1$  for every  $a \in A$ , then  $G \in \mathcal{G}_5$ .

**Proof.** Let  $a \in A$  and suppose  $[a, W] \to u_1$ . Then,  $w_1 \in W$  (to dominate  $v_0$ ). The remaining vertex of W must dominate  $V_4 \cup V_5$ , and so  $v_5 \in W$ . In particular,  $w_1$  dominates  $V_2$  and the vertex a dominates  $V_3$ . Since  $[a, W] \to u_1$  for every  $a \in A$ , this shows that  $[A, V_3]$  is full.

If some vertex  $b \in B$  dominates  $V_3$ , then  $\{w_1, b, v_5\}$  dominates G. Hence, each vertex in B is not adjacent to some vertex of  $V_3$ . Suppose some vertex  $b \in B$  is not adjacent to at least two vertices in  $V_3$ . Consider  $G + bv_5$ . If  $[v_5, Z] \to b$ , then  $v_0 \in Z$  and the remaining vertex of Z must dominate A as well as  $V_3 - N(b)$ , which is impossible since  $|V_3 - N(b)| \ge 2$  and  $|A| \ge 2$ . Hence,  $[b, Z] \to v_5$ . Thus,  $w_1$  or  $v_0$  is in Z (to dominate  $v_0$ ). The remaining vertex of Z must dominate  $V_4 \cup (V_3 - N(b))$ ), which is impossible. Hence each vertex of B is not adjacent to exactly one vertex of  $V_3$ .

Let D be the set of vertices in  $V_3$  that are not adjacent to some vertex of B, and let  $C = V_3 - D$ . Then  $|D| \leq |B|$  and therefore  $|C| \geq |A| \geq 2$ . Thus, since  $[C, V_2]$  is full,  $[V_3, V_4]$  cannot be full, for otherwise  $\{v_0, c, u_4\}$  would dominate G for any vertex c in C. This in turn implies, by Claim 17, that at least one vertex in  $V_4$ , say  $u_4$ , is not adjacent to at least two vertices in  $V_3$ . But then proceeding as above, we can show that  $w_4$  dominates  $V_3$ , C is the set of vertices in  $V_3$  that are not adjacent to  $u_4$ , and each vertex in D is not adjacent to exactly one vertex of B. Hence,  $G \in \mathcal{G}_5$ .  $\Box$ 

## References

- [1] P. Blitch, Domination in Graphs, Dissertation, Univ. of S.C., 1983.
- [2] G. Chartrand and L. Lesniak, *Graphs & Digraphs: Third Edition*, Chapman & Hall, London, 1996.
- [3] E. Cockayne, Variations on the Domination Number of a Graph, Lecture at the University of Natal, May 1988.
- [4] W. Goddard, M.A. Henning, and H.C. Swart, Some Nordhaus-Gaddum-type results. J. Graph Theory 16 (1992), 221-231.
- [5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
- [6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics. Marcel Dekker, New York, 1998.
- [7] T.W. Haynes and M.A. Henning, Domination critical graphs with respect to relative complements. Australasian J. Combin. 18 (1998), 115–126.
- [8] D.P. Sumner and P. Blitch, Domination critical graphs. J. Combin. Theory B 34 (1983), 63-76.
- [9] D.P. Sumner, Critical concepts in domination. Discrete Math. 86 (1990), 33-46.
- [10] E. Wojcicka, Hamiltonian properties of domination-critical graphs. J. Graph Theory 14 (1990), 205-215.

(Received 14/5/99)