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Abstract 

Let G be a spanning subgraph of K(s, s) and let H be the complement of 
G relative to K(s, s); that is, K(s, s) = G(f)H is a factorization of K(s, s). 
The graph G is ,),-relative-critical if ')'(G) = ')' and ')'(G + e) = "( - 1 for 
all e E E(H), where "((G) denotes the domination number of G. The 
2-relative-critical graphs and 3-relative-critical graphs are characterized 
in [7]. In [7], it is shown that the diameter of a connected 4-relative­
critical graph is at most 5. In this paper, we construct five families of 
connected 4-relative-critical graphs of diameter 5 and show that a graph 
G is a connected 4-relative-critical graph of diameter 5 if and only if G 
belongs to one of these five families. 

1 Introduction 

A set D of vertices of a graph G = (V, E) is a dominating set if every vertex in 
V D is adjacent to at least one vertex in D. The minimum cardinality among 
all dominating sets of G is the domination number of G and is denoted by "((G). 
A graph G is said to be ,,(-domination critical, or just ,),-critical, if "((G) = "( and 
')'(G + e) = ')' - 1 for every edge e in the complement G of G. This concept of 
,),-critical graphs has been studied by, among others, Blitch [1], Sumner [9], Sumner 
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and Blitch [8], and Wojcicka [10]. For a more thorough survey of these concepts, see 
Chapter 5 of [5] and Chapter 16 of [6]. Terminology and notation not defined here 
may be found in (2]. 

If G is a spanning subgraph of a graph F, then the graph F E(G) is the com-
plement of G relative to F with respect to a fixed embedding of G into F. The idea 
of a relative complement of a graph was suggested by Cockayne (3] and is studied 
in [4]. In (7], domination critical graphs with respect to relative complements are 
investigated. 

Let G (f) H = K (s, s) be a factorization of the complete bi parti te graph K (s, s). (If 
G and H are graphs on the same vertex set but with disjoint edge sets, then G (f) H 
denotes the graph whose edge set is the union of their edge sets.) Notice that if there 
is a unique (proper) 2-coloring of the vertices of G with each color coloring s vertices, 
then the graph H is unique. That is, if G is uniquely embeddable in K(s, s), then 
H is unique. In particular, if G is a connected spanning sub graph of K(s, s), then 
G is uniquely embeddable in K(s, s). 

We say that G is a ,,(-critical s-relative graph, or simply a ,,(-relative-critical graph, 
if 1'( G) "( and "(( G + e) = I' - 1 for all e E E (H). We denote the relative 
complement H of G by G. The rest of this paper deals only with relative complements 
with the exception of K 2 , so confusion with complements in the ordinary sense is 
unlikely. Hence, for notational convenience, we shall also denote a ,,(-relative-critical 
graph simply as a ,,(-critical graph. The 2-critical graphs and 3-critical graphs are 
characterized in [7], as are disconnected 4-critical graphs. Furthermore it is shown 
in [7] that the diameter of a connected 4-critical graph is at most 5. That this bound 
is sharp may be seen by considering, for example, the connected 4-critical 5-relative 
graph with diameter 5 shown in Figure 1. 

Figure 1: A connected 4-critical 5-relative graph with diameter 5. 

Our aim in this paper is to characterize the (connected) 4-critical graphs of diam­
eter 5. We construct five families of 4-critical graphs of diameter 5 and show that 
a graph G is a connected 4-critical s-relative graph of diameter 5 if and only if G 
belongs to one of these five families. 

For this purpose, we introduce the following notation. Let G be a connected 4-
critical s-relative graph. If u and v are non-adjacent vertices in different partite sets 
of G, then --y( G + uv) = 3 and so there exists a set W of cardinality 3 that dominates 
G + uv. Since W does not dominate G, it must be that exactly one of u and v, say v, 
belongs to Wand that W dominates all of G except u. Thus, S = W - {v} is a 
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set of cardinality 2 such that S U {v} dominates G - u and we write [v, Sj -t u. In 
particular, when we write [v, S] -t u it is understood that u is not dominated by S. 

2 Five Families of 4-Critical Graphs of Diameter 5 

In this section, we construct five families 91,92, ... ,95 of connected 4-critical s­
relative graphs of diameter 5, and we let 9 = u~=19i' For each G E 9, the vertex set 
of G is partitioned into five sets Vo, VI, ... , V5 where lVol 1. Let E be the set of 
all edges between Vi and Vi+l for i = 0,1, ... ,4. In what follows, we describe each 
of the five families in turn. 

Let G E 91' Then lVol = IVil = IV21 = 1, 1V41 = 2k, and 1V5! = 2, while V3 
is partitioned into two sets V3,1 and 113,2 with 1V3,1! = k and 1113,21 = k - 1 where 
k 2:: 2. Let EI be a set of edges between V3,1 and V4 that induces a collection of 
k (vertex-disjoint) paths on three vertices with each center vertex in 113,1. Then 
E(G) = EEl' 

Let G E 92. Then lVol = IVI ! = 1V51 = 1, 1V21 2:: 2, and 1V41 = 2k, while 
V3 is partitioned into three sets V3,1, 113,2 and V3,3 with !V3,d = 1V21, !V3,2! = k, and 
1V3,3! = k 1 where k 2:: 2. Let E2,1 be a set of edges between V2 and V3,1 that induces 
a perfect matching between these two sets. Let E2,2 be a set of edges between V3,2 
and V4 that induces a collection of k (vertex-disjoint) paths on three vertices with 
each center vertex in V3,2. Then E(G) E - (E2,1 U E2,2). 

Let G E 93' Then lVo! = 1V1! = IV5! = 1 and 1%1 = I!, where I! 2:: 1, while V3 is 
partitioned into two sets 113,1 and 113,2 with !V3,ll = k and IVs,2! = k + I! + 1, where 
k 2:: 2. Furthermore, V4 is partitioned into two sets V4,1 and V4 ,2 with IV4,1! = 2k and 
1V4,21 = 2. Let E 3,1 be a set of edges between V3,1 and V4,1 that induces a collection 
of k (vertex-disjoint) paths on three vertices with each center vertex in V3 ,l' Let E3 ,2 

be the set of edges between V4,2 and V5. Then E(G) E - (E3,1 U E3,2)' 
Let G E 94' Then lVol = IV51 = 1, IVI! = 1V41 = 2, and IV21 = 1V31 ~ 2. Let E 5,1 be 

the set of edges between V2 and V3 that induces a perfect matching between these 
two sets. Then E( G) = E - E5,1' 

Let G E 95. Then lVol = IV51 = 1 and IVII = 1V41 2, while V2 is partitioned 
into two sets V2 ,1 and V2,2 with 1V2,11 = k and 1V2,21 = I!, where k 2: 2 and I! 2: 1. 
Furthermore, V3 is partitioned into two sets V3,1 and V3,2 with IV3,tI = k and IV3,21 = e. 
Let E5,1 be the set of edges between a vertex of VI and the vertices of V2,1, and let 
E5 ,2 be the set of edges between a vertex of V4 and the vertices of V3,1. Let E 5 ,3 be a 
set of edges between V2,2 and 113,2 that induce a perfect matching between these two 
sets. Then E(G) = E - (E5,1 U E5,2 U E5,3)' 

It is straightforward to check that each 9i, 1 SiS 5, is a family of 4-critical 
graphs of diameter 5. Note that the graph G in Figure 1 is in 94' 

3 Main Results 

We shall prove: 

21 



Theorem 1 Let G be a connected 4-critical s-relative graph having diameter 5. If 
there exists a vertex in G with at least two vertices at distance 5 from it, then G E 91. 

Theorem 2 Let G be a connected 4-critical s-relative graph having diameter 5. If 
each vertex of eccentricity 5 in G has a unique vertex at distance 5 from it, then 

G E 9 - {91}' 

As an immediate consequence of Theorems 1 and 2 and the construction of the 
graphs in g, we have the following characterization of connected 4-critical graphs of 
diameter 5. 

Theorem 3 A graph G is a connected 4-critical s-relative graph of diameter 5 if and 
only if G E g. 

4 Proof of Main Results 

Let G be a connected 4-critical s-relative graph having diameter 5. Let u and v be 
vertices of G with diamG = d(u, v) = 5. Let u = VO, Vl, ... , V5 v be a shortest u-v 
path. For i 0, 1, ... , 5, let Vi = {x I d( u, x) = i}. Necessarily, Va = {u} and Vi E Vi 
for i 1,2, ... ,5. The partite sets of G are Vo U V2 U V4 and Vl U V3 U V5 . Hence 

If all edges between Vi and Vi+l are present, then we shall say that [Vi, Vi+d is full. 
In particular, [Vo, VI] is full. 

Before proceeding further, we introduce some notation. If sand t are non-adjacent 
vertices in different partite sets of G, then as pointed out in the introduction, there 
is a set T of cardinality 2 such that [s, Tj --+ t or [t, T] --+ s. For the discussion, it is 
convenient to consider T to be an ordered set, the first element of which belongs to 
a set Vi of smallest index. That is, if T = {s, t} where s E Vi and t E Vj, then i :::; j. 
Furthermore, if T = 5, then we let 5 = {x, y}. 

4.1 Proof of Theorem 1 

We may assume that Vo is the vertex with at least two vertices at distance 5 from it, 
that is, IV5 \ ?:: 2. 

Claim 4 IViI = 1 for some i, 1 :::; i :::; 4. 

Proof. Suppose that IViI ?:: 2 for all i =f=. O. Consider G + V2V5. Then, [v2,5j --+ V5 

or [V5, S] -+ V2. Suppose [v5,5j --+ V2' Since Vo must be dominated, it follows that 
x E Vo U VI and since 1V51 ?:: 2, it must be the case that y E V4 U V5 . But to dominate 
V2 - {V2}, x must be in VI, and hence, VI {x} is not dominated. Thus, [V2' S) --+ V5. 

Since Vo and V'i { V5} must be dominated, it follows that x E Vo U VI and y E V4 U V5 . 
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If x Vo, then V2 - {V2} is not dominated. Thus, x E Vi, x dominates V2 - {V2}, and 
V2 dominates VI - {x}. If y E \14, then at least one vertex of V4 is not dominated. 
Hence, y E V5 implying that IV5 1 = 2. Furthermore, y dominates V4 and V2 dominates 
V3 • 

Now consider G + voy. Then [vo, T] -+ Y or [y, T] -+ vo. If [vo, T] -+ y, then since 
y dominates V4 , no vertex of V4 is in T. Furthermore, V5 must be dominated by T, 
and so V5 E T. But then the other vertex in T must dominate V2 U V3 , which is 
impossible since IV21 2 2 and 1%1 2 2. On the other hand, if [y, T] -+ Vo, then T 
must dominate V5, and so one vertex of T is in V4 U V5. The remaining vertex of T 
must dominate Vi U V2 , which is impossible since IViI 2 2 and 1'\121 ~ 2. Hence for at 
least one i E {I, 2, 3, 4}, IViI = l. 0 

Claim 5 11141 2 2. 

Proof. Suppose IV4 1 = 1 and consider G + V2V5. Then [V2' S] -+ V5 or [V5, S] -+ V2' 
Suppose [V5, S] -+ V2. Then x E YO U Vi in order to dominate Va, while y E V4 U V5 
in order to dominate V5 - {vs} since 1V51 2 2. Since V4 dominates 114 U Vs, we may 
assume that y = V4. But then x must dominate Va U VI U (V2 - {V2}) and V4 must 
dominate V3. Hence, {x, V2, V4} dominates G, contradicting the fact that ')'(G) = 4. 
Thus, [V2' S] -+ V5' Now x E Vo U VI to dominate Vo. Since IVsl 22 and y tJ. N[V5J, it 
follows that y E Vs and IVsI = 2. But then V4 can replace y in S, contradicting the 
fact that no vertex of S is in N[V5]' Thus, 1V41 2 2. 0 

Claim 6 1%1 ~ 2. 

Proof. Suppose IV3 1 = 1. Consider G + VaV3. Then [vo, S] -+ V3 or [V3, S] -+ Va· 
Suppose [vo, S] -+ V3' Then x E VI U'\12 to dominate V2 • Hence, y must dominate 
V4 U V5 , a contradiction since, by assumption, IV51 ~ 2 and, by Claim 5, 11141 2 2. 
Thus, [V3' S] -+ Vo. Now no vertex of Vi is in S since VI = N(vo). To dominate VI, 
x E '\12. Furthermore, y must be in V4 U Vs to dominate V5 • Since 11151 2 2, y E V4 . 

If x E N(V3), {VO,V3,Y} dominates G, contradicting the fact that ')'(G) = 4. Hence, 
x ~ N(V3) and V3 dominates V2 - {x}. Consider now G + XV5. Then [x, T] -+ V5 or 
[V5, T] -+ x. Let T = {w, z}. If [x, T] --+ V5, then w E Va U VI to dominate Va and 
z E V4UV5 to dominate V4U(V5- {V5})' Since 1V412 2, it follows that z E V5. But V3 
is not dominated by T U {x}, a contradiction. If [V5, T] -+ x, then since x dominates 
Vl, W Va to dominate Vo. Now z must dominate (V2 - {x}) U {V3} U (V5 - {V5}), 
which is impossible. Therefore, IV3 1 ~ 2. 0 

Claim 7 IVt! = 1. 

Proof. By Claims 5 and 6, we know that 1V31 2 2 and 1V41 2 2. By Claim 4 at 
least one of Vi and V2 have cardinality one. Assume IVI! 2 2 and hence 1V21 = 1. 
Furthermore, V2 dominates VI; otherwise, diam(G) > 5, a contradiction. Thus, 
[Vi, V2] is full, as is [V2, %}. 
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Suppose 1V41 ;:::: 3. Let U4 E V4 and consider G + VIU4' Then [VI,S] -t U4 or 
[U4' S] -t VI' Suppose [VI, SJ -t U4. Since IVII ;:::: 2, it follows that x E Va U VI U V2 to 
dominate VI {VI}' Hence, y must dominate (V4 - {U4}) U V5. But this is impossible 
since 1V4 - {U4}\ ;:::: 2 and \V5\ ;:::: 2. Hence, [U4, S]-t VI' 

In order to dominate Vo, x E VI' In order to dominate V4 - {U4}, y E V3 U Vs since 
1V41 ;:::: 3. Furthermore, {U4' y} must dominate V3 U V4 U Vs. If y E V3, then {va, U4, y} 
dominates G, a contradiction. Therefore, y E V5 implying that U4 dominates V3 · 

Since U4 is an arbitrary vertex of V4, [V3, V4J is full. Furthermore, IVII = 2. Now 
if any vertex W4 E V4 dominates Vs, then {va, V3, W4} dominates G, a contradiction. 
Thus no vertex of V4 dominates Vs. In particular, U4 is not adjacent to y. Also, y 
dominates V4 - {U4} and U4 dominates Vs {y}. 

Consider G + VOV3. Then [va, T] -t V3 or [V3, T] -t Va. Suppose [va, T] -t V3. Let 
T {w, z}. In order to dominate V2, w E VI U V3. If W E VI, then we can replace 
w with any vertex in V3 - {V3}' Hence we may assume that W E V3 - {V3}' But 
now z must dominate V5, which is impossible since 1V51 ;:::: 2 and no vertex of V4 
dominates V5 . Hence, [V3' T] -t va. Then w = V2 to dominate VI' Once again, z 
must dominate V5, a contradiction. Therefore, we must have IV4\ = 2. However, 
2 + \V4 \ = IVa \ + \V2 \ + \V4 1 = IVII + \V3 ! + 1V5\ ;:::: 6, and so IV4 1 2:: 4. Thus we have a 
contradiction, implying that IVII = 1. 0 

Claim 8 IV2 1 = 1. 

Proof. Suppose IV2 1 ;:::: 2. Let U2 E V2 and Us E Vs , and consider G + U2US. Then 
[us, S] -t U2 or [U2' SJ -t U5. If [U5' S] -t U2, then we can choose VI to be in S 
(to dominate vo)' contradicting the fact that no vertex of S is in N[U2J. Hence, 
[U2' S] -t U5' Now va must be dominated, so we may assume that x = VI. Then y 
must dominate (Vs - {U5}) U V4• Since 1V41 ;:::: 2, it follows that y E V5 and 11151 = 2. 
Furthermore, U2 dominates V3. Since U2 is an arbitrary vertex of V2 , it follows that 
[V2' V::!] is full. Since Us is an arbitrary vertex of Vs, it follows that [V4' V5] is full. 

Consider G+vovs. Then [vo,T] -t Vs or [vs,T] -t Va. Let T = {w,z}. Suppose 
[V5, T] -t va. Then VI U V2 must be dominated and VI ~ T; hence, it must be the 
case that W E V2 to dominate VI. Since I V21 ;:::: 2, z is in V2 U v'3 to dominate V2 - {x}. 
But then V5 - {V5} is not dominated, a contradiction. Hence, [vo, T] -t Vs. Then 
w E VI U V2 U V3 to dominate V2 and Z E V4 U Vs to dominate V5 - {vs}. If w = Vl, 

then z must dominate V::!UV4U(V5-{V5}), which is not possible. Hence, w E V2UV3. 
If w E V2, then since 1V21 ;:::: 2, Z E V2 U V3 to dominate V2 {w}, contradicting the 
fact that z E V4 U V5. Therefore, W E V3. Since IV3 1 2 2, z E V4, contradicting the 
fact that no vertex in N[vsJ is in T. Thus, we conclude that 1V21 = 1. 0 

Claim 9 \V5\ = 2. 

Proof. Suppose IVsl 2 3 and consider G + V2VS. Then [V2' S] -+ Vs or [V5, S] -t V2. 
If [V5' S] -t V2, we can choose VI E S, a contradiction. Thus, [V2' S] -t V5' Now 
S must dominate va, and so either Va or VI is in S. The other vertex in S must 
dominate V4 U (V5 - {V5}). But since \V41 2 2 and \V5 {v5}1 2:: 2, no single vertex 
can dominate V4 U (V5 - {V5}). Hence, 1V5\ = 2. 0 
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Claim 10 [V4' V5] is full. 

Proof. Let V5 = {U5' W5} and consider G + V2U5' As before, [U5, S] -7 V2 cannot 
occur. Thus, [V2' S] -7 U5. In order to dominate vo, we may assume x = VI. The 
remaining vertex y of S must dominate 114 U {W5}. Since I V4 1 2: 2, y = W5 and W5 
dominates V4. Similarly, by considering G + V2W5, U5 dominates V4. Hence, [V4' V5] 
is full. 0 

By the above claims, IVoI = IVI! = 11121 = 1, IV51 = 2, IV31 2: 2 and IV4 ! 2: 2. 
Furthermore, [V2' V3] and [V4' V5] are full. Since lVol+1V21+IV4 1 = s IVI I+IV31+1V51, 
we note that IV4 1 = IV3 1 + 1. 

Suppose IV41 = 3 (and so 11131 = 2). Then a vertex of V3 must be adjacent to 
at least two vertices of V4. Let V3 = {U3, V3}' If U3 is adj acent to V2 only, then 
V3 dominates 114 and the graph G would not be 4-critical since 'Y( G + VI V4) = 4, a 
contradiction. Hence, U3 is adjacent to at least one vertex of V4 . However, we can 
now find a vertex of V3 and a vertex of V4 that together dominate V3 U V4. But then 
we can dominate G with three vertices, a contradiction. Hence, 11141 2: 4. 

Let U4 E V4 and consider G + VI U4' Since Vo must be dominated, the case [U4' S] -+ 
VI cannot occur. Hence, [VI, S1 -+ U4. Let S = {x, y}. Now y must dominate V5 and 
y ~ V5, and so y E V4 - {U4}. Since x dominates V4 - {U4' y}, and IV41 2: 4, x E V3 . 

Hence, y dominates 113 - {x} and x dominates V4 - {U4'Y}' However, if we now 
consider G + VIY, then we must have [VI, T] -+ Y and T = {x, U4}' In particular, x is 
adjacent to every vertex of V4 except for U4 and y, and each of U4 and y dominates 
V3 - {x}. Since U4 is an arbitrary vertex in V4, it follows that the edges of G that are 
missing between V3 and 114 induce a collection of 1V41/2 2: 2 (vertex-disjoint) paths 
on three vertices with each center vertex in V3. The 1V41/2 1 vertices in V3 that are 
not center vertices each dominate V4 in G. Hence, G E 91. This completes the proof 
of Theorem 1. 

4.2 Proof of Theorem 2 

In this case, V5 consists only of the vertex V5. Furthermore, each vertex of VI is 
adjacent to some vertex of V2 and each vertex of 112 is adjacent to some vertex of V3 
(for otherwise V5 would have at least two vertices at distance 5 from it). 

Claim 11 IV3 1 ?: 2. 

Proof. If IV31 = 1, then V3 dominates 112 U V4, whence {vo, V3, vs} would be a 
dominating set of G, a contradiction. Hence, 11131 2: 2. 0 

Claim 12 If IVII = 1) then G E 92 U 93' 

Proof. Let A = N(V5). Then A ~ V4. If A consists only of the vertex V4, then 
G is not 4-critical as may be seen by adding the edge VI V4. Hence, IAI ?: 2. Let 
B = V4 A (possibly, B = 0). Let C be the set of vertices in V3 each of which 
dominates V4 (possibly, C = 0), and let D = V3 - C. Then [V4, CJ is full. 
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Let U2 E V2 and consider G + U2V5. Then [U2' Sj --1- V5 or [V5' S] --1- U2' If 
[V5, S1 --1- U2, then we can choose VI E S, a contradiction. Hence, (U2' S] --1- V5' Then 
x = VI to dominate Vo and y E V3 to dominate V4 (since IAI 2:: 2). Note that, yEO. 
Furthermore, U2 dominates V3 - {y}. Since U2 is an arbitrary vertex of V2, every 
vertex of V2 dominates at least 1V31- 1 vertices of V3 . Moreover, [V2' D] is full. 

Case 1: [V2' V3] is not full. 

We show then that G E 92' Now, 1V21 2:: 2 and there is a vertex U2 in V2 that is 
not adjacent to a vertex U3 E V3. Since [V2' D] is full, U3 E O. Consider G + U2U3' 
Then [U2' T] --1- U3 or [U3, T] --1- U2' If [U3' T] --1- U2, then we can choose Vl E T, 
contradicting the fact that there is no vertex of T in N(U2)' Hence, [U2, T} --1- U3. 
Then VI E T to dominate Vo and V5 E T to dominate V5 (since no vertex of V4 can 
be in T). Hence, V4 = A (and so, B = 0). Thus, if V2 contains a vertex W2 that 
dominates V3 , then {VI, W2, V5} dominates G, a contradiction. It follows that each 
vertex of V2 is not adjacent to exactly one vertex of V3 and this vertex belongs to O. 

If there is a vertex of A, say a, that dominates V3 , then {VI, a, c} would dominate 
G, where cEO, a contradiction. Hence no vertex of A dominates V3 . In particular, 
IDI2:: 1. 

Now, 1V31 = IV21 + 1V41 - 1 2:: 3. Let U3 be a vertex in 0 that does not dominate 
V2. Consider G + VOU3' If [vo, R] --1- U3, then V5 E R to dominate V5 (since no vertex 
of A can be in R). The remaining vertex of R must dominate (V3 - {U3}) U V2 , which 
is impossible since IV21 2:: 2 and 1V31 2: 3. Hence, [U3, R] -+ Vo. Thus, R contains a 
vertex x in V2 to dominate VI' The remaining vertex of R is in A U { V5} to dominate 
V5. Hence, {x, U3} dominates V2 , and so x must be the only vertex of V2 that is not 
adjacent to U3. Since U3 is an arbitrary vertex of 0 that does not dominate V2, each 
vertex of C is not adjacent to at most one vertex of V2 • Thus, the edges of G that are 
missing between V2 and 0 induce a matching from V2 to a subset of C. In particular, 

1012:: IV21· 
We show next that each vertex of D is adjacent to some vertex of A. Suppose d E D 

is adjacent to no vertex of A. Then the neighborhood of d is Vz. Consider G + VI V4. 

Then [VI, K] -+ V4. Thus, K contains a vertex U2 of V2 to dominate d. The remaining 
vertex of K must dominate V5 and the vertex of 0 that is not adjacent to U2' Hence, 
IAI = 2. However, IV21 + 2 = 1V21 + IAI = 101 + IDI + 1 2:: 1V2\ + IDI + 1 2:: 1V2\ + 2. 
Thus we must have equality throughout, and so IV2 1 = 101 and ID\ = 1. This implies 
that each vertex of 0 is not adjacent to a (unique) vertex of V2 • We now consider 
G + vod. Then [vo, W] -+ d or [d, W] --1- Vo. Let W = {w, z}. If [d, W] --1- Vo, then 
w belongs to V2 to dominate VI' Hence, V5 E W to dominate A U {V5}. But then 
the vertex of 0 that is not adjacent to w is not dominated, a contradiction. Hence, 
[vo, W] -+ d. Now z belongs to AU {V5} to dominate V5' If z = V5, then w must 
dominate V2 U 0, which is impossible. On the other hand, if z E A, then w must 
dominate Vz U (A - {z}), which is impossible. Therefore, each vertex of D must 
have been adjacent to some vertex of A. In particular, {VI} U A dominates G, and 
so IAI2:: 3. 

Let Al be the set of vertices in A that are not adjacent to exactly one vertex of 
D, and let A2 = A - AI. If A2 =10, then each vertex of A2 is not adjacent to at least 
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two vertices of D. 
Let al E AI, and let dl be the vertex of D not adjacent to al. If d l dominates 

A - {al}, then {aI, dl , VI} dominates G, a contradiction. Thus there is a vertex a2 in 
A, different from aI, that is not adjacent to dl. Consider G+vlal. Then [VI, L] -t al' 
Thus, L contains a vertex II of A to dominate V5' The remaining vertex of L, say 
£2, must dominate (A U D) - (N[ll] U {ad). If £2 E A, then IAI = 3 and IDI ::; 2. 
Since each vertex of A is not adjacent to at least one vertex of D, IDI = 2. Let d2 

be the vertex of D different from dl , and let a3 be the vertex of A different from al 
and a2. Then, ald2, a2d2, and a3dl are edges in G. But then {VI, d2, a3} dominates 
G, a contradiction. Hence, l2 ¢:. A. Thus, we must have l2 = dl , implying that 
£ I = a2· Now, a2 dominates V3 - {d l }, and dl dominates A - {all a2}. It follows 
that D - N[al] = D - N[a2] = {d l } and A - N[dd = {aI, a2}. 

We show next that A2 = 0. Suppose U4 E A2• Then there are at least two vertices, 
say dl and d2 , in D that are not adjacent to U4. Thus, IDI ~ 2, and so IAI ~ 3. 
We consider G + VIU4. Then [VI, M1 -t U4. Thus, M contains a vertex W4 of A to 
dominate Vs. Suppose W4 E AI' Then the vertex, d3 say, of D that is not adjacent 
to W4 must be adjacent to U4, since each vertex of Al is an endvertex of a path 
component on three vertices in the relative complement of G. Thus, IDI ~ 3, and so 
IAI 2: 4. Hence the vertex m of M, different from W4, must belong to V3 to dominate 
(A - {U4' W4})' Since d3 ¢:. M, d3 is then not dominated by M, a contradiction. 
Hence, w E A2 • If IAI ;::: 4, then the vertex m of M, different from W4, must belong 
to V3 to dominate (A - {U4,W4}). But at least one vertex of D - N(W4) is not 
dominated. Hence, IAI = 3, and so IDI = 2. Since U4 and W4 both belong to A2, the 
two vertices of D are not adjacent to U4 and W4 and must therefore be adjacent to 
the vertex of A different from U4 and W4' But then this vertex of A dominates V3 , a 
contradiction. We deduce, therefore, that A2 = 0, that is, A = AI. Thus the edges 
of G missing between A and D induce a collection of IDI ;::: 2 (vertex-disjoint) paths 
on three vertices with each center vertex in D, and hence, G E 92. 

Case 2: [V2 , 'V3] is full. 

Then B =1= 0, for otherwise, {VI,V2,V5} dominates G, a contradiction. Each vertex of 
A is not adjacent to at least one vertex of D, for otherwise if a E A dominates D, 
then {a, c, VI} dominates G for any vertex c of C. Let U4 E A and consider G + VI U4. 
If [U4' W] -t VI, then we can choose VI E W, a contradiction. Hence, [VI, W] -t U4. 
In order to dominate Vs, W contains a vertex, W4 say, in A - {U4}' The remaining 
vertex, w say, of W must therefore dominate B and the vertices in D that are not 
adjacent to W4. In particular, this implies that each vertex of D is adjacent to some 
vertex of V4 , for otherwise such a vertex w would not exist. 

Suppose wEB. Then IBI = 1 and IAI = 2. If w dominates D, then {VI, w, vs} is 
a dominating set of G, a contradiction. Hence, there is a vertex d E D not adjacent 
to w. Since {w, W4} dominates D, every vertex in D that is not adjacent to W4 

(respectively, w) is adjacent to w (respectively, W4). In particular, d is adjacent to 
W4. We now consider G + dw. If [d, Y] -t w, then VI is in Y. The remaining vertex 
of Y dominates (V3 - {d}) U { V5}. Hence, U4 E Y and U4 dominates V3 - {d}. Since 
U4 is not adjacent to at least one vertex of D, d is therefore the only vertex of D 
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not adjacent to U4. Consider now G + VIW4. Then [VI, X]-+ W4 and U4 must belong 
to X to dominate V5' But then the remaining vertex of X must dominate both d 
and W, which is impossible. Hence, [w, Y] -+ d. Then VI E Y to dominate Vo and 
therefore V5 E Y to dominate AU {V5}' Thus, d is the only vertex of D that is not 
adjacent to w. Consider now G + VIW4. Then [VI, Xj -+ W4 and U4 must belong to 
X to dominate V5. The remaining vertex of X must dominate w. Consequently, U4 

must be adjacent to d. Thus, d dominates A. Consider now G + vod. If [d, R] -+ vo, 
then R contains a vertex of V2 to dominate Vl' The remaining vertex of R must 
dominate B U Vs, which is impossible. Hence, [vo, R] -+ d. Thus, R must contain V5' 

The remaining vertex of R must therefore dominate V2 U (V3 - {d}) U {w} which is 
impossible unless lei = 1 and D = {d}. But then each of U4 and W4 dominates D, 
a contradiction. Hence, w f/:. B. 

Since w ~ B, wED and w dominates B U (A - {U4' W4} ). Furthermore, w is the 
only vertex of D not adjacent to W4. We now consider G+VIW4. Then [Vl,Xj-+ W4. 

Let X = {Xl, X2}' In order to dominate V5, X2 E A {W4}' Thus, Xl dominates B 
and the vertices in D that are not adjacent to X2. As shown above, Xl must belong 
to D. But Xl is therefore not adjacent to W4, and so Xl = w. Hence, w is the only 
vertex of D not adjacent to X2. Consequently, X2 = U4. Thus, w is the only vertex 
of D not adjacent to each of U4 and W4, while U4 and W4 are the only vertices of 
A that are not adjacent to w. Hence we have established that the edges of G that 
are missing between A and D induce a collection of IAI/2 (vertex-disjoint) paths on 
three vertices with each center vertex in D. Moreover, each center vertex dominates 
B. 

Suppose IBI = 1. Let B = {b}. If b dominates D, then {VI, b, V5} dominates G, a 
contradiction. Hence, there is a vertex d E D that is not adjacent to b. As shown 
above, d dominates A. Consider G + bd. If [d, Q] -+ b, then VI E Q. The remaining 
vertex of Q belongs to A U {vs} to dominate V5' But then a vertex of D that is 
not adjacent to two vertices of A will not be dominated. Hence, [b, Qj -+ d. Since d 
dominates A, we must have V5 E Q. Once again, VI E Q. Thus, b dominates V3 - {d}. 
Consider now G + vod. If [d, R] -+ Vo, then R contains a vertex of V2 to dominate 
VI. The remaining vertex of R must dominate {b, V5} which is impossible. Hence, 
[vo, R] -+ d. Thus, R must contain V5 since d dominates A. The remaining vertex of 
R must therefore dominate V2U(V3-{d})U{b} which is impossible. Hence, IBI2: 2. 

Consider G +vIb, where b E B. Then [VI, Pj -+ b. If P contains a vertex of A, then 
the remaining vertex of P must dominate a vertex of D and a vertex of A that is not 
adjacent with this vertex of D, which is impossible. Hence, V5 E P. The remaining 
vertex must dominate V3 U (B - {b}). This is possible only if IBI = 2 and the vertex 
of B, different from b, dominates V3. Similarly, b dominate V3 . Hence, G E g3' 0 

In what follows, we may assume that each vertex of eccentricity 5 has degree at 
least 2, for otherwise,by Claim 12, G E 92 U 93. In particular, 

IVII 2: 2 

Thus, s = IVII + IV3 1 + IV5 1 2: 5. 

and 
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Claim 13 IV2 ! 2:: 2. 

Proof. Suppose 1V21 = 1. Then [Vi, V2] and [V2' V3] are full. Let A denote the set of 
vertices in V4 that are adjacent to V5, and let B = 1;4 - A. If B = 0, then {vo, V2, V5} 
dominates G, a contradiction. Hence, IBI ~ 1 and 1V41 ~ 3. Let a E A and let b E B. 
We consider G + VIa. Now [VI, W] -+ a or [a, W] -+ VI' Suppose [VI, W] -+ a. We 
may assume V2 E W (to dominate Vi - {VI})' But then the remaining vertex of W 
must dominate both band V5, which is impossible. Hence, [a, W] -+ Vi. Then W 
must contain a vertex of Vi to dominate Vo. Thus, the remaining vertex, w say, of W 
belongs to V3 to dominate V4 - {a}. But then {a, Vo, w} dominates G, a contradiction. 
Hence, IV2 1 2:: 2. 0 

Claim 14 IVII = 2. 

Proof. Suppose IVI! ~ 3. Let Ul E VI and let U4 E V4. We now consider adding 
the edge UIU4' Suppose [U4' Sj -+ Ul. Then, S must contain a vertex x (say) of 
VI - {ud (to dominate vo). But then the remaining vertex of S must dominate 
(VI {x,ud) U (V4 - {U4}), which is impossible. Hence, [UI'S]-+ U4. Then x must 
dominate VI {ud while the remaining vertex y of S must dominate (1;4 - {U4}) U 

{V5}' Hence, IV4 1 = 2 and y E V4 - {U4}. Since U4 is an arbitrary vertex in V4, it 
follows that [1;4, V5] is full. Let 1;4 = {U4' W4}. We show next that [Vi, VzJ is full. 

Proof. Suppose [Vi, V2 ] is not full. We may assume Ul is not adjacent to some vertex 
U2 in V2. Then x must belong to V2 and {UI' x} dominate VI U V2. Thus, x = U2. 
This shows that each vertex of VI (V2) is adjacent to all except possibly one vertex of 
V2 (Vi). If U2 dominates V3, then {Ul' U2, V5} dominates G. Hence, U2 is not adjacent 
to some vertex in V3 which we call U3. We now consider adding the edge Ul U2. If 
[U2' T]-+ Ul, then T contains a vertex in Vl (to dominate vo). The remaining vertex 
of T must dominate {U3, V5} U V4, which is impossible. Hence, [UI, T] -+ U2' Thus, T 
contains a vertex t E Vo U (V2 - {U2}) (to dominate Vi - {ud). In order to dominate 
V4 U V5, V5 E T. Thus, t dominates Vl U V3 and t E V2 {U2}' If some vertex z of 
VI dominates V2 , then {V5, t, z} dominates G, a contradiction. Hence each vertex of 
Vi must be not adjacent to exactly one vertex of V2• Thus we can partition Vz into 
two sets C and D such that [Vi, C] is full and [VI, D] is full except for the edges of a 
perfect matching between VI and D. In particular, 1V21 101 + IDI = 101 + IVil ~ 4. 
This in turn implies IV3 1 ~ 3. 

We now consider adding the edge VOU3. If [U3' W] -+ Vo, then W contains a vertex 
of V4 U V5 to dominate V5. The remaining vertex of W must then dominate both 
VI U {U2}, which is impossible. Hence, [vo, Wj -+ U3. Now W contains a vertex, 
w say, in V4 U V5 to dominate V5 and a vertex in V3 { U3} to dominate V2. Since 
1V3i ~ 3, w must dominate vertices in V3 as well as V5. Hence, w E 114, say w = U4. 
Since W does not dominate U3, the vertices U3 and U4 are not adjacent. Hence, Ul is 
not adjacent to U2, U2 is not adjacent to U3, and U3 is not adjacent to U4. 
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We now consider adding the edge UIW4' If [UI, Z1 -+ W4, then U4 E Z. But 
then the remaining vertex of Z must dominate both U2 and U3, which is impossible. 
Hence, [W4' Z1 -+ UI' Thus, Z contains a vertex of VI - {ud to dominate vo. Since 
IVII ;::: 3, the remaining vertex of Z must dominate a vertex of VI as well as U4, which 
is impossible. Hence, [VI, V2] must be full. 0 

We now return to the proof of Claim 14. By Claim 14.1, [VI, V2J is full. Hence 
no vertex of V2 dominates V3 , for otherwise a vertex from VI, a vertex from V2 , and 
the vertex V5 form a dominating set of G, a contradiction. Since IVII > 1V41 = 2, we 
must have IV21 > IV31 (and so 1V21 ;::: 3). Hence there exists a vertex U3 in V3 that is 
not adjacent to at least two vertices, say U2 and W2, in V2. 

We show firstly that U3 dominates V4. If [V5' Z] -+ U2, then, since [VI, V2J is full 
and Z does not dominate U2, we must have Vo E Z (to dominate vo). But then the 
remaining vertex of Z must dominate (V2 - {U2}) u l/3, which is impossible since 
1V21 2: 3 and 1V31 2: 2. Hence, [U2' Z] -+ V5. Then Z contains a vertex of Vo U VI (to 
dominate vo). The remaining vertex of Z must dominate V4 U {U3}' Hence, U3 E Z 
and U3 dominates V4. 

We now consider adding the edge VOU3' If [U3, W] -+ Vo, then W contains a 
vertex of V4 U V5 (to dominate V5). The remaining vertex of W must then dominate 
VI U {U2' W2}, which is impossible. Hence, [vo, W1 -+ U3. Since W contains no 
vertex of V4, V5 E W (to dominate V5). The remaining vertex of W must dominate 
V2 U (V3 - { U3} ). Hence, I V31 = 2 and the vertex of l/3 different from U3 dominates V2. 
But since each vertex of V2 must be not adjacent with some vertex of V3 , each vertex 
of 1/2 is not adjacent to U3' But this is a contradiction since at least one vertex of 1/2 
must be adjacent with U3' Hence our assumption that IVt! 2: 3 in incorrect. Thus, 
IVII 2, completing the proof of Claim 14. 0 

Claim 14 shows that each vertex of eccentricity 5 has degree exactly 2. In particu­
lar, V5 is adjacent to exactly two vertices of V4. Let U4 and W4 be the two neighbours 
OfV5' Thus, N(V5) n V4 = {U4,W4}' Further, let VI = {Ul,Wl}' 

Claim 15 1V41 = 2. 

Proof. Suppose IV41 2: 3. Let A = {U4' W4} and B % - A. Then IBI 2: l. 
Let U2 E V2 and consider G + U2V5' Then [V5, Sj -+ U2 or [U2' S] -+ V5' Suppose 
[V5' S] -+ U2' Then S must contain a vertex in V3 U B (to dominate B). The 
remaining vertex of S must dominate Va U VI. Hence, Vo E S. But then the vertex 
of S different from Vo must dominate (V2 - {U2}) U V3 U B, which is impossible. 
Hence, [U2' SJ -+ V5. Now S must contain a vertex of Vo U VI (to dominate vo). The 
remaining vertex of S must dominate V4 and therefore belongs to V3 . In particular, 
U2 is adjacent to every vertex of V3 except possibly for one vertex. Since U2 was 
an arbitrary vertex of V2, each vertex of V2 is adjacent to every vertex of V3 except 
possibly for one vertex. 

We now consider adding the edge UIU4. If [Ul l T]-+ U4, then W4 E T (to dominate 
V5) and the remaining vertex of T belongs to Vl U V2 (to dominate wd. But then B 
is not dominated by T U {ud. Hence, [U4' TJ -+ UI. Then WI E T (to dominate vo). 
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The remaining vertex U3 (say) of T belongs to V3 and dominates V4 - {U4}. Thus, 
U4 dominates all of l/3, except for possibly one vertex of V3 . If U3 dominates 112, 
then {vo, U3, U4} dominates G, a contradiction. Hence we may assume that U3 is not 
adjacent to U2' However, [U2' S] --+ V5. Now S must contain a vertex of Va U VI (to 
dominate vo). The remaining vertex of S must dominate {U3}UV4 . Thus, U3 E S. In 
particular, U2 is adjacent to every vertex in Va different from U3 and U3 is adjacent to 
U4. This shows that U4 dominates Va and U3 dominates V4 . Similarly, W4 dominates 
V3• Hence, [113, A] is full. 

Let b E B and consider G + bUI' Suppose [b, W] --+ UI. Then WI E W (to dominate 
va) and V5 E W (to dominate 114 U A). Hence, IBI = 1 and b dominates V3 . Hence, 
[V3, V 4] is full. If a vertex, say U3, of V3 dominates V 2 , then {vo, U3, U4} dominates 
G, a contradiction. Thus, every vertex of V3 is not adjacent to some vertex of V2 . 

However, IVol + 1V21 + 1V41 = IVII + 1%1 + 1V5L and so we must have IV3 1 = 1V21 + l. 
By the Pigeonhole Principle, at least one vertex of V2 is not adjacent to at least two 
vertices of 113. However, this contradicts our earlier observation that each vertex of V2 

is adjacent to every vertex of V3 except possibly for one vertex. Hence, [UI' W] --+ b. 
Now W contains a vertex of Vt U V2 (to dominate wd and a vertex of A U V5 (to 

dominate V5). Hence, V5 E Wand W contains a vertex U2 (say) of V2 that dominates 
{wduV3 . This implies that {UI' ud dominates VauVtuV2uV3 and lEI = 1. However, 
since [U4' T] --+ Ul, we have shown that T contains a vertex U3 in V3 that dominates 
V4. Hence, {vo, U3, U4} dominates G, a contradiction. Consequently, 11141 = 2. 0 

By Claim 15, V 4 = {U4' W4}' 

Claim 16 If each vertex in VI is adjacent to all except possibly one vertex of V2 , 

then [VI, V2] is full. 

Proof. Suppose Ul is not adjacent to a vertex U2 in V 2 . Then WI U2 must be an edge 
and, by assumption, Ul dominates V 2 {U2}. If U2 dominates V3 , then {Ul,U2,Vs} 

dominates G, a contradiction. Hence there must be a vertex U3 (say) in V3 that is 
not adjacent to U2' 

We now consider adding the edge VOU3' If [U3, W] --+ vo, then W contains a vertex 
of V2 - {U2} (to dominate VI)' The remaining vertex of W must then dominate 
both U2 and V5, which is impossible. Hence, [va, W] --+ U3' Now W contains a 
vertex in 114 U V5 to dominate V5. The remaining vertex, w say, of W must dominate 
V2 . If W WI, then z must also dominate V3 - {U3}, whiGh is impossible. Hence, 
w E V3 - {U3} and w dominates V2 . If 1V31 = 2, then, letting W2 denote the vertex 
of V 2 different from U2, {Wl,W2,V5} dominates G, a contradiction. Hence, 1V31 2: 3. 
Since the vertex of W different from w must dominate vertices in V3 as well as V5, 

we may assume U4 E W. Since W does not dominate U3, U3 and U4 are not adjacent 
vertices. Hence, Ul is not adjacent to U2, U2 is not adjacent to U3, and U3 is not 
adjacent to U4. 

We now consider adding the edge UIU2' If [U2' T] --+ UI, then WI E T (to dominate 
vo). The remaining vertex of T must then dominate {U3, V5} UV4 , which is impossible. 
Hence, [UI' T] --+ U2. Then T contains a vertex to dominate WI and a vertex of V 4 U V5 

to dominate V5' Hence, V5 E T and the remaining vertex t (say) of T must belong 
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to V 2 and dominates {WI} U V 3 · If WI dominates V 2 , then {WI, t, V5} dominates G, a 
contradiction. Therefore, WI is not adjacent to a vertex W2 in V2 (distinct from U2). 

Thus there must be a vertex W3 (say) in V3 that is not adjacent to W2. 

Suppose that U3 i= W3' We now consider adding the edge UIW4. If [UI, Zj ~ W4, 

then U4 E Z. But then the remaining vertex of Z must dominate both U2 and U3, 

which is impossible. Hence, [W4' Z] ~ UI. Thus, WI E Z (to dominate va). If W3W4 is 
not an edge of G, then the remaining vertex of Z must dominate W2 and W3, which 
is impossible. Hence, W3 and W4 are adjacent. We now consider adding the edge 
VOW3. If [W3' K] ~ vo, then K contains a vertex of V 2 {W2} (to dominate VI)' 
The remaining vertex of K must then dominate both W2 and V5, which is impossible. 
Hence, [vo, KJ ~ W3' Now K contains either U4 or V5 (to dominate V5). In any event, 
the remaining vertex of K must dominate both U2 and U3, which is impossible. Hence, 
U3 = W3· 

We now consider adding the edge U2V5' If [U2, F) ~ V5, then F contains a vertex 
of V3 - {U3} (to dominate li4). The remaining vertex of F must then dominate both 
Vo and U3, which is impossible. Hence, [V5, F) -+ U2. Now F contains a vertex, f 
say, to dominate V3 and a vertex in Vo U VI to dominate va. Since f dominates V 3, 

f ~ {U2' W2}' Since 1%1 :.::: 3, f ~ V3 · Hence the vertex of F different from f must 
dominate all of Vo, U2, and W2, which is impossible. Therefore, [Vl, V2J must be full. 0 

A symmetrical argument yields the following result. 

Claim 17 If each vertex in V4 is adjacent to all except possibly one vertex of V3, 

then [%, 1141 is full. 

Claim 18 If both [Vi, V2] and [V3, V4] are full, then G E 94. 

Proof. If any vertex U2 in V 2 dominates V 3 , then {Ul' U2, V5} dominates G, a contra­
diction. Similarly, if any vertex U3 in V3 dominates V 2 , then {vo, U3, U4} dominates 
G, a contradiction. Hence each vertex in V 2 is not adjacent to some vertex of V3 and 
each vertex of % is not adjacent to some vertex of V2. Suppose a vertex U2 E V2 is 
not adjacent to two vertices, say a and b, in V3 . Then IV2 1 = IV3 1 :.::: 3, since each 
vertex in V2 is adjacent to at least one vertex in V3 • We now consider adding the edge 
U2V5' If [U2' W] ~ V5, then we may assume Ul is in W. The remaining vertex of W 
must dominate {a, b} U V4, which is impossible. Hence, [V5' W] -+ U2' Thus, Vo E W. 
The remaining vertex of W must dominate (V2 - {U2}) U V3, which is impossible 
(since \V21 = 1%1 :.::: 3). Thus each vertex of V2 is not adjacent to exactly one vertex 
of V3 • Similarly, each vertex of % is not adjacent to exactly one vertex of V2 . Hence, 
[V2' V3J is full except for the edges of a perfect matching between V 2 and V 3• Thus, 
G E 94. 0 

By Claims 16, 17, and 18, we may assume that a vertex in Vi is not adjacent to 
at least two vertices in V2 or a vertex in V4 is not adjacent to at least two vertices 
in V3 , for otherwise G E 94' Without loss of generality, we may assume that UI has 
the smallest degree of the four vertices UI, Wl, U4 and W4. Then, Ul is not adjacent 
to at least two vertices of V2• Let A be the set of vertices in V2 that are not adjacent 

32 



to UI' Further, let B = V2 - A. Since each vertex of VI is adjacent to some vertex 
of 112, IBI 2:: 1. By assumption, IAI 2:: 2. Hence, 1\/21 = IV3 1 2:: 3. We now consider 
G + uia where a E A. 

Claim 19 If there is a vertex al in A such that [UI, Wj -+ aI, then G E 9s. 

Proof. The set W contains a vertex of V4 U V5 (to dominate V5) and a vertex of V2 
(to dominate (A - {ad) U {WI})' Hence, V5 E W. Thus, W contains a vertex a2 
in A - {ad and this vertex dominates (A - {ad) U V3 . Thus, A = {ai, a2} and a2 
dominates V3 • Before proceeding further, we prove two claims. 

Claim 19.1 lA, V3] is full. 

Proof. Suppose a1 is not adjacent to a vertex, U3 say, in V3. Then we must have 
[a2' M] -+ Ul' Thus, WI E M (to dominate vo). The remaining vertex of W must 
dominate V4 U Vs, and so V5 EM. In particular, we note that Wi dominates 112. 

We now consider G + VOU3' Then [U3, L]-+ Vo or [vo, L] -+ U3. Let L = {t\, £d. If 
[U3, L] -+ Vo, then £2 E V4 U V5 to dominate Vs. But then £1 must dominate both U1 
and aI, which is impossible. Hence, [vo, L]-+ U3. If £2 V5, then £1 must dominate 
V2 u (113 - {U3}), which is impossible since 1V31 2: 3. Hence, we may assume that 
£2 U4, and so the vertices U3 and U4 are not adjacent. 

We now consider G + al U3' If [aI, K] -+ U3, then K contains a vertex from V4 U \15 

to dominate Vs. The remaining vertex of K must dominate both Ul and a2, which is 
impossible. Hence, [U3, K] -+ aI- Now, K contains a vertex from Va UV1 to dominate 
Vo and a vertex from V4 U Vs to dominate Vs. Thus, Vo E K. The remaining vertex of 
K must dominate (V3 - {U3}) U {U4' V5}' Hence, U4 E K. In particular, U4 dominates 
V3 { U3} and U3 dominates V2 U {W4}. 

Since [V3, V4 ] is not full, and since U4 is adjacent to every vertex of V3 except for 
U3, Claim 17 implies that W4 is not adjacent to two vertices of V3 , say d1 and d2 • If 
[d l , T] -+ W4 where T = {tl, t2}, then tl E Vo U VI and t2 E V4 U Vs. But then at 
least one of d2 and U3 will not be dominated. Hence, [W4' T] -+ dl. Now, tl E VOUVI 
and t2 E V3 U V4 to dominate d2 and U4. Thus, tl Vo and t2 = d2. Moreover, d2 

dominates V2 and V3 - N(W4) = {d 1,d2 }. Similarly, dl dominates V2 . 

If some vertex b E B dominates V3 , then {WI, b, vs} dominates G. Hence, each 
vertex in B is not adj acent to some vertex of V3. However, [{ U3, dl , d2 }, B] is full. 
Since I V2 1 I V31, some vertex, W3 say, of V3 is not adjacent to at least two vertices of 
B, say bi and b2 • Consider G+VOW3' If [vo, Z] -+ W3, then V5 E Z (since W3 is adjacent 
to both U4 and W4) and the remaining vertex of Z must dominate V2 U (V3 - {wa}), 
which is impossible since IV2! = IV3 1 2:: 4. On the other hand, if [W3l Z] -+ vo, then Z 
contains a vertex in V4 U Vs. The remaining vertex of Z must dominate VI U {bl , b2 }, 

which is impossible. Therefore, al dominates V3l and so lA, V3) is full. 0 

Claim 19.2 [V3, V4] is not full. 
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Proof. Suppose [V3, V4] is full. Then each vertex U3 in V3 is not adjacent to a vertex 
of B, for otherwise {va, U3, U4} would dominate G. However, 11131 = 1 B I + 2. Hence, 
by the Pigeonhole Principle, there is a verex b in B that is not adjacent to two 
vertices of V3, say U3 and W3· 

We show that the vertices WI and b are not adjacent. Consider G + bV5' If 
[b, TJ -+ vs, then T contains a vertex in Vi U V2 • The remaining vertex of T must 
dominate {U3' W3} U V4, which is impossible. Thus, [vs, T] -+ b. If Va E T, then 
the remaining vertex of T must dominate V2 U {U3' W3}, which is impossible. Hence, 
Va ~ T. Thus, since no neighbour of b is in T, WI E T and WI is not adjacent to b. 

We now consider G + VOU3' If [vo, W] ----t U3, then Vs E W. The remaining vertex 
of W must then dominate V2 U (V3 - {U3}), which is impossible. On the other hand, 
if [U3, Wj -+ Vo, then W contains a vertex of V4 U Vs. The remaining vertex of W 
must then dominate both WI and b, which is impossible. Therefore, [V3, V4J cannot 
be full. 0 

We now return to the proof of Claim 19. By Claim 19.2, [V3, V4] is not full. Hence, 
by Claim 17, there is a vertex of V4 , say U4, that is not adj acent to two vertices 
of V3, say CI and C2. Let e = {CI' C2} and let D = Vs e. Then U4 dominates 
D, for otherwise U4 would have smaller degree than UI, contradicting our choice of 
UI. We show next that [e, V2] is full. If [CI' Z] ----t U4, then W4 E Z (to dominate 
vs) and Vo E Z (to dominate Vo U Yd. In particular, CI dominates V2 . Similarly, 
if [C2, Zj ----t U4, then C2 dominates \12. Thus, if [CI, Zj -+ U4 and [C2, Zj -+ U4, then 
[e, V2] is full. On the other hand, if [U4' Zj -+ CI or [U4' Z] -t C2, then similar 
arguments to those used to establish Claim 19.1 show that [e, V2 ] is full. 

Claim 19.3 If WI dominates B, then G E 9s. 

Proof. Suppose WI dominates B. Let bE B. Then b is not adjacent to at least one 
vertex of D, for otherwise {WI, b, V5} would dominate G. Suppose b is not adjacent to 
two vertices, say dl and d2 , of D. Consider G + bvs. Then [b, T] -t V5 or [vs, Tj ----t b. 
Let T {tl' t2}. If [b, T]----t vs, then tl E VOUVI and so t2 must dominate {dI,d2}UV4, 
which is impossible. On the other hand, if [vs, T] ----t b, then tl Vo and so t2 must 
dominate (V2 - {b}) U V3 , which is impossible. Hence, b is not adjacent to exactly 
one vertex of D. Since b is an arbitrary vertex of B, each vertex of B is not adjacent 
to exactly one vertex of D. 

We show next that each vertex of D is not adjacent to exactly one vertex of B. 
Let d E D and suppose that d is not adjacent to two vertices of B. If d is adjacent 
to W4, then by considering G + vod we arrive at a contradiction. Hence, d and W4 are 
not adjacent. Let b be a vertex of B not adjacent to d and consider G + bvs. Then 
[b, T] ----t Vs or [V5' TJ -+ b. Let T = {tl' td· If [b, T] -+ Vs, then tl E Yo U Vi and so 
t2 must dominate {d, U4, W4}, which is impossible. On the other hand, if [vs, T] ----t b, 
then tl Vo and so t2 must dominate (V2 - {b}) U V3 , which is impossible. Hence, 
each vertex of D is not adjacent to exactly one vertex of B. Since IBI = IDI, it 
follows that [V2' Vs] is full except for the edges of a perfect matching between Band 
D. 
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Suppose now that W4 is not adjacent to some vertex, say d, of D. Let b be the 
vertex of B that is not adjacent to d, and consider G + bV5' If [b, T] -+ V5, then one 
vertex of T belongs to Vo U Vl' The remaining vertex of T must then dominate both 
W4 and d, which is impossible. Hence, [V5' T] -t b. Thus, Vo E T. The remaining 
vertex of T must dominate (V2 - {b}) U V3 , which is impossible. Hence, W4 must 
dominate D. Thus, G E 95' 0 

A symmetrical argument yields the following result. 

Claim 19.4 If W4 dominates D, then G E 95' 

By Claims 19.3 and 19.4, we may assume that Wl is not adjacent to some vertex 
of B and that W4 is not adjacent to some vertex of D, for otherwise G E 95. 

Suppose Wl is not adjacent to exactly one vertex, say b, of B. Then b is not 
adjacent to a vertex, say d, of D, for otherwise {Wl' b, V5} would dominate G. We 
now consider G + vod. If [d, W] -t vo, then one vertex of W belongs to V4 U V5· 

The remaining vertex of W must then dominate both Wl and b, which is impossible. 
Hence, [vo, W] -+ d. If V5 E W, then the remaining vertex of W must dominate 
V2 U (V3 - {d}), which is impossible. Hence, W4 E W. This implies that the vertices 
d and W4 are not adjacent. We now consider G + UlU4. By symmetry, we may 
assume that [Ul, Z] -t U4. Then W4 E Z. The remaining vertex of Z must dominate 
{Wl' d} U A, which is impossible. Hence, Wl is not adjacent to at least two vertices 
of B. A symmetrical argument shows that W4 is not adjacent to at least two vertices 
of D. 

We again consider G + UlU4' By symmetry, we may assume that [Ul, Z] -+ U4. 

Then W4 E Z. The remaining vertex of Z must then dominate AU (V3 - N(W4)), 

which is impossible since IAI ~ 2 and \V3 - N(w4)1 ~ 2. This completes the proof of 
Claim 19.0 

Claim 20 If [a, W] -+ Ul for every a E A, then G E 95' 

Proof. Let a E A and suppose [a, W] -t Ul' Then, WI E W (to dominate vo). The 
remaining vertex of W must dominate V4 U V5 , and so V5 E W. In particular, Wl 

dominates V2 and the vertex a dominates V3 . Since [a, W] -+ UI for every a E A, 
this shows that [A, V3 ] is full. 

If some vertex b E B dominates V3 , then {WI, b, V5} dominates G. Hence, each 
vertex in B is not adjacent to some vertex of V3. Suppose some vertex b E B is 
not adjacent to at least two vertices in V3 . Consider G + bV5' If [V5' Z] -t b, then 
Vo E Z and the remaining vertex of Z must dominate A as well as V3 N(b), which 
is impossible since IV3 - N(b) I ~ 2 and IAI ~ 2. Hence, [b, Z] -+ V5. Thus, Wl or Vo is 
in Z (to dominate vo). The remaining vertex of Z must dominate V4 U (V3 - N(b)), 
which is impossible. Hence each vertex of B is not adjacent to exactly one vertex of 
V3 • 

Let D be the set of vertices in V3 that are not adjacent to some vertex of B, and 
let C = V3 D. Then IDI ::; IBI and therefore ICI ~ IAI ~ 2. Thus, since [C, V2] is 
full, [V3' V4 ] cannot be full, for otherwise {vo, c, 'U4} would dominate G for any vertex 
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c in C. This in turn implies, by Claim 17, that at least one vertex in V4 , say U4, is 
not adjacent to at least two vertices in V3 . But then proceeding as above, we can 
show that W4 dominates V3 , C is the set of vertices in Va that are not adjacent to U4, 

and each vertex in D is not adjacent to exactly one vertex of B. Hence, G E 95' 0 

References 
[1] P. Blitch, Domination in Graphs, Dissertation, Univ. of S.C., 1983. 

[2] G. Chartrand and L. Lesniak, Graphs fj Digraphs: Third Edition, Chapman & 
Hall, London, 1996. 

[3] E. Cockayne, Variations on the Domination Number of a Graph, Lecture at the 
University of Natal, May 1988. 

[4] W. Goddard, M.A. Henning, and H.C. Swart, Some Nordhaus-Gaddum-type 
results. J. Graph Theory 16 (1992), 221-231. 

[5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination 
in Graphs. Marcel Dekker, New York, 1998. 

[6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: 
Advanced Topics. Marcel Dekker, New York, 1998. 

[7] T.W. Haynes and M.A. Henning, Domination critical ~raphs with respect to 
relative complements. Australasian J. Gombin. 18 (1998), 115-126. 

[8] D.P. Sumner and P. Blitch, Domination critical graphs. J. Gombin. Theory B 
34 (1983), 63-76. 

[9] D.P. Sumner, Critical concepts in domination. Discrete Math. 86 (1990),33-46. 

[10] E. Wojcicka, Hamiltonian properties of domination-critical graphs. J. Graph 
Theory 14 (1990), 205-215. 

(Received 14/5/99) 

36 


