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Abstract 

Pott has shown that the product of two semiregular relative difference 
sets in commuting groups El and E2 relative to their intersection sub
group C is itself a semiregular relative difference set in their amalgamated 
direct product. We generalise this result in the case that C is central in 
El and in E2 by using an equivalence with corresponding co cycles 7./Jl and 
'l/J2' We prove that in the central case the converse of this product con
struction holds: if there is a relative difference set in the central extension 
corresponding to 'l/Jl ® 'l/J2 it factorises as a product of relative difference 
sets in El and E2• 

1 Introd uction 

Relative difference sets (RDSs) have been found by a number of techniques, and there 
are iterative methods which construct a larger relative difference set as the product 
of given smaller relative difference sets. For instance, an abelian RDS in E relative 
to a subgroup N may be (set-) multiplied by an abelian RDS in N relative to U 
to give an abelian RDS in E relative to the smaller subgroup U provided suitable 
parametric conditions on the RDSs hold (Pott [11, Prop. 3.2.1]). J. A. Davis [1] and 
A. Pott [11] have shown how to construct a RDS in a larger group relative to N by 
taking the product of RDSs in smaller groups relative to the same N, given suitable 
conditions on the groups. Recently Jungnickel and Tonchev [5] have shown that the 
former of these iterative techniques can sometimes be reversed when U = 1; that 
is, they give sufficient conditions under which a given difference set in E (an RDS 
relative to 1) factorises as a product of an RDS in E relative to N and a difference 
set in N. 
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Here we give sufficient conditions under which the second iterative technique can 
be reversed; that is, we show how to decompose a given RDS in E relative to N as 
a product of RDS in suitable subgroups of E, relative to N. 

We work in the group algebra R[G], where R is a commutative ring with identity 
and G is a finite group, and in the twisted group algebra Ra[G], where a is a co cycle 
over G. We will follow standard practice and identify any subset X of G with 
the group algebra element X = L:xEX x in R[G). For more background on relative 
difference sets, the reader is referred to [11, 12], and on co cycles and twisted algebras, 
to [6, 7]. 

2 Product constructions for relative difference sets 

Under certain conditions it is possible to multiply two relative difference sets together 
and obtain a new relative difference set in a larger group. Before we describe these 
constructions, let us recall the required definitions. 

Definition 2.1 (Elliott and Butson [2]) A relative (v, w, k, A)-difference set (RDS) 
in a finite group E of order vw relative to a normal subgroup N of order w, is a k
element subset D of E such that the multiset of quotients d1d21 of distinct elements 
dl , d2 of D contains each element of E\N exactly A times, and contains no elements 
of N. (The ordinary (v, k, A}-difference sets correspond to the case N = 1.) 

It is easily seen that the definition of a relative difference set translates into an 
equation in the group algebra: D is a relative (v, w, k, A)-difference set in E if and 
only if the following equation holds in R[E]: 

DD(-l) klE + A(E - N). (1) 

There is always a short exact sequence 1 -+ N -+ E -+ E / N -+ 1. We will be 
concerned with relative difference sets having k v and therefore also k = WA. A 
relative difference set with the latter property is termed semiregular. Note that any 
semiregular RDS in E relative to N is a transversal of N in E. 

The simplest product construction for RDS is due to Davis [1, Theorem 2.1]: if El 
has a (vl,w,k1,Ad-RDS Dl with respect to Nand N x E2 has a (v2,w,k2,A2)-RDS 
D2 with respect to N x 1 then the product Dl x D2 is a (VIV2, w, klk2' AIA2W)-RDS 
in E = El X E2 relative to N x 1. 

When Dl and D2 are semiregular, so is Dl X D2 , and we will term this the direct 
pTOduct construction for semi regular RDS. 

A slight generalisation of the direct product construction for semiregular RDS is 
due to Pott. 

Proposition 2.1 (Pott [11, Lemma 2.2.3]) Let E be a group of order' VIV2W con
taining a normal subgroup N of order w. Let El and E2 be subgroups of E of order 
Vl wand V2W, such that 
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(i) (Ell E2) = E 
(ii) [Ell E2] = 1 (i.e. El and E2 commute.) 
(iii) El n E2 = N. 

If Ei contains a (Vi, W, Vi, vi/w)-difference set Di relative to N, i = 1,2, then 

DID2 ={ d1d2 : d1 E Dil d2 E D2} 

is a (VIV2, W, VIV2, vlv2/w)-difference set in E relative to N. o 

We will term this the amalgamated direct product construction of semiregular 
RDS. The choice of nomenclature is based on the next observation. Recall that if N 
is a subgroup of two groups El and E2, the amalgamated direct product of El and 
E2 with respect to N, denoted by El Y N E2, is the group El Y N E2 = El x E2/ N, 
where N is the normal closure of {( n -1, n) : n E N}. If N is abelian and normal in 
each of El and E2 , then N = {(n-l, n) : n EN}. If E is the group of Proposition 
2.1, N is abelian, and E is isomorphic to the amalgamated direct product El Y N E2 
under the isomorphism defined byele2 H (el' e2)N. 

In order to relate this to the co cyclic construction of semiregular RDS given 
in [10] we must restrict to central semiregular RDS; that is, those for which the 
forbidden subgroup N is central (hence abelian) in E, not just normal. This is 
only a restriction if we are interested in nonabelian RDS: in the abelian case, it is 
automatically satisfied. Any central semiregular RDS is isomorphic to one with a 
particularly simple form, which we can describe in terms of a corresponding cocycle. 

3 Central semiregular relative difference sets 

Hereafter, G will be a finite group of order v and C will be a finite abelian group 
of order w. A (2-dimensional) cocycle is a mapping 'IjJ : G x G -+ C satisfying the 
cocycle equation 

'IjJ(g, h) 'IjJ(gh, k) = 'IjJ(g, hk) 'IjJ(h, k), Vg, h, kEG. (2) 

This implies 'IjJ(g, 1) = 'IjJ(I, h) = 'IjJ(1,1), Vg, h E G, so we follow standard usage 
and consider only normalised cocycles, for which 'IjJ(I, 1) = 1. 

An extension of C by G (sometimes called an extension of G by C) is a short 
exact sequence of groups 

1-+C-4E~G-+l . (3) 

Each co cycle 'IjJ determines a central extension of C by G, 

1 -+ C -+ E1jJ -+ G -+ 1, 

in which the extension group E1jJ of order vw is the set C x G with 'IjJ-twisted multi
plication: 

E1jJ = {(c, g) : c E C, 9 E G}, (c, g)(d, h) = (cd'IjJ(g, h), gh), (4) 
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and the image C x 1 of C lies in the centre of E1j;. The set T('l/J) = {(1, g), 9 E G} is 
a normalised transversal of C x 1 in E1j;. Conversely, if in (3), ~ (C) is central in E, 

each normalised transversal T = {eg : 9 E G} of C in E determines a cocycle 'l/JT by 
'l/JT(g,h) = [,-1(egeh(eght 1

), g,h E G. 

Theorem 3.1 (Canonical Form) [10, Theorem 3.1] Suppose there is a central 
extension (3) of C by G. There exists a relative (v, w, v, v/w)-difference set in E 
relative to [, ( C), if and only if there exists a cocycle 'l/J : G x G -7 C such that 
E 9!. E1j; and T('l/J) = {(1, g) : 9 E G} is a relative (v, w, v, v/w)-difference set in E1j;, 

relative to C x 1. 0 

The co cycles for which such a central semiregular RDS exists have been characterised. 

Definition 3.1 Let wlv. The co cycle 'l/J : G x G -7 C is orthogonal if, for each 
9 i= 1 E G and each e E C, I{h E G : 'l/J(g, h) = e}1 = v/w, or equivalently, if in ZC, 
for each 9 i= 1 E G, L:hEG 1jJ(g, h) = v/w (L:cEC e). 

Theorem 3.2 (Equivalence Theorem) [10, Lemma 2.2, Theorem 4.1] Let wlv 
and let 1jJ: G x G -7 C be a cocycle. Then T(1jJ) = {(1,g), 9 E G} c E1j; is a relative 
(v, w, v, v / w) -difference set relative to the central subgroup C x 1, if and only if the 
cocycle 'l/J is orthogonal. 0 

A co cycle is a coboundary 84> if it is derived from a set mapping 4> : G -7 C 
having 4>(1) 1 by the formula 84>(g, h) = 4>(g)-l4>(h)-l4>(gh). 

The orthogonal co boundaries correspond to the splitting RDS ([10, p. 196]). 

Two co cycles 'l/J and 1jJ' are cohomologous if there exists a coboundary 84> such 
that 1jJ' = 1jJ . 84>. Two cohomologous co cycles 'l/J and 1jJ' are shift equivalent [3] if 
'l/J' = 'l/J . 8'I/Jg for some 9 E G, where 'l/Jg(h) = 'l/J(g, h), Vh E G. 

Definition 3.2 If a : K x K -7 C and (3 : H x H -+ Care cocycles, then their 
tensor product a ® f3 : (K x H) x (K x H) -+ C is the co cycle defined by 

(5) 

We will simplify notation, without any loss of generality, by making the following 
identifications of elements in E00f3 as needed, without further comment: (a, (k, h)) == 
(a, k, h) in E o0fJ ; (a, k, 1) == (a, k) in Eo; (a, 1, h) == (a, h) in EfJ and (a, 1, 1) == a in 
C. Under these identifications, Eo and Ef3 are commuting subgroups of E00f3 which 
intersect in the central subgroup C of Eo0f3' 

Lemma 3.1 With the identifications above, T(a ® (3) = T(a)T(f3) as sets in E o0f3 . 
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Proof: Note that T(o;) n T((3) = {(1, 1, 1)} and I T(o; 0 (3) 1 = I T(o;) 1 1 T(f3) I· 

(1, k, 1)(1, 1, h) = ((0; 0 (3)((k,l), (1, h)), (k, 1)(1, h)) 

= (o;(k, l)(3(l,h),k,h) 

= (1, k, h) 

since 0; and (3 are normalised. 0 

It is readily checked that if 0; and (3 are orthogonal, so is 0; 0 (3 (d. [10, Theorem 
5.1]). Consequently the product T(o; 0 (3) of central semiregular RDSs T(o;) in Ea 
and T((3) in Ej3 is a central semiregular RDS in Ea0j3. This is the same result as we 
obtain by applying the amalgamated direct product construction in the case that C 
is central in ED.0j3 and using the Equivalence Theorem and the identifications above. 

Using the Equivalence Theorem and applications of the Canonical Form, we ob
tain a slight generalisation of the amalgamated direct product construction for central 
semi regular RDS. 

Lemma 3.2 (Central Extension Construction of RDS) Let El and E2 be 
groups of order VIW and V2W, respectively, with WIVl and WIV2, for which there are 
central extensions 

If Di is a (Vi, w, Vi, vdw}-dijJerence set in Ei relative to Ni = (,i(C), i = 1,2, there 
is a relative (VIV2,W,VIV2,VIV2/w)-dijJerence set D ~ 7fl(Dd x 7f2(D2) in a central 
extension of C by G1 X G2. 

Proof: Let'lfJi : Gi X Gi -+ C be the orthogonal co cycles determined by the transver
sals Di , i = 1,2. Thus {(1, (7fl(dd, 7f2(d2))), di E Di , i = 1, 2} is an RDS in E1fJ101j;2 

relative to C. Let E be a central extension of C by G1 X G2 • For any isomorphism 
() : E1/J10'P2 -+ E which preserves the image of C, the isomorphic image under () of 
the canonical RDS is an RDS D in E relative to C. 0 

For central semi regular RDS, we can prove the converse of this central extension 
construction of RDS. 

4 Factorisation of central semiregular RDS 

~From now on, R will denote a commutative ring with identity, with multiplicative 
group of units R*, and we will assume C ~ R*. We write the twisted group al
gebra RD.[G] as a free R-module with basis {g : 9 E G}. Multiplication is defined 
distributively from g h = o;(g, h) gh, \:Ig, hE G. 

Proposition 4.1 [7, cf. Proposition 1.3], [8, cf. Lemma 6.1). 
Let K and H be finite groups, let 0; : K x K -+ C and j3 : H x H -+ C be 

cocycles over K and H respectively, and let {k : k E K} and {h : h E H} be bases 
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for RQ[K] and RfJ[H] respectively. Then RQ[K] o RfJ [H] is a free R-module with basis 
{k 0h : k E K, h E H} and the mapping e((k, h)) k 0h extends to an R-algebra 
isomorphism e: RQ&fJ[K x H] -t RQ[K] 0 RfJ[H). D 

Theorem 4.1 (Factorisation) Let G = K x H be a finite group with IKI = VI and 
IHI = V2, let C be a finite abelian group of order w such that WIVI and WIV2, and let 
a : K x K --+ C and {3 : H x H -t C be cocycles. 

IfT(a 0 {3) = {(l,g) : 9 E G} is a relative (VIV2,W,VIV2,VIV2/w)-dijJerence set 
in EQ&fJ relative to C x 1, then T(a 0 {3) factorises as a product T(a)T({3) of RDSs; 
that is, T(a) is a relative (VI, w, VI, vI/w)-difference set in EQ relative to C x 1 and 
T((3) is a relative (V2' w, V2, v2/w)-difference set in Ef3 relative to C x 1. 

Proof: Take R Z[C] and write D = T(a 0 {3). By Equation (1), in R[EQ&f3J, 

DD(-I) = VIV2.1E"0fl + vIvdw(EQ&fJ - C x 1) 

= VIV2. 1E.,®fl + VIV2/W L 2:(a,g). 
l¥gEG aEC 

Since 7f' : R[EQ&(3) -t RQ&fJ[G] defined by (a, g) -t ag is a ring homomorphism, in 
RQ&f3[G], D satisfies 

7f'(DD(-l)) vlv2I + VIV2/W 2: L ag 
l¥gEG aEC 

L a(k,h). 
(l,l)¥(k,h)EKxH aEC 

So, by Proposition 4.1, in RQ[K] 0 Rf3[H]' 

e07f'(DD(-I)) = vlv2(I 0 I) + VIV2/W 2: 2: a (k 0h) 
(1,1)¥(k,h)EKxH aEC 

= vlv2(I 0 I) + VIV2/W 2: L a (k 0 I) 
l¥kEK aEC 

+VIV2/W L I: a(I0h)+vlv2/w L 2:::: a(k0h). 
l¥hEH aEC l¥kEK,Ii=hEH aEC 

But DD(-I) = E(k,h)EKXH E(k',h')EKxH(l, (k, h))(l, (k', h'))-l in R[EQ&,B]. 
By (2) (compare with the proof of Lemma 4.1 of [10]), in RQ&fJ[K x H], 

7f'(DD(-I)) = VIV2(1, 1) + L (2: (a 0 {3)((k, h), (k', h'))-I) (k, h) 
(1,1)¥(k,h) (k',h') 

= VIV2(1, 1) + L (2: a(k, k'tl{3(h, h')-l) (k, h). 
(l,l):;t(k,h) (k',h') 
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So, by Proposition 4.1, in Ra[K] Q9 Rt3[H], 

() 0 7r(DD(-l») 

VI v2(1 Q9 1) + L(1,l);i(k,h) ( L(kl,hl) a(k, k,)-l {3(h, h')-I) (k Q9 h) 

VIV2(l Q9l) + L1#,1# (L(k',hl) a(k, k')-l {3(h, h')-l) (k Q9 h) 

+ L1# (2:(kl,hl) a(k, k')-l{3(l, h')-l) (~Q9:) 
+ 2:1# (L(k',hl) a(l, k')-l {3(h, h')-l) (1 Q9 h) 

VIV2(l Q91) + 2:1;ik,1# (2:(k',hl) a(k, k')-l{3(h, h')-I) (k Q9 h) 

+ 2:1;ik ( V2 2:kIEK a(k, k') -1 ) (k Q9 1) + 2:1# (VI 2:hIEH {3(h, h,)-l ) (I Q9 h). 

Since RQ[K] Q9 Rt3[H] is a free R-module, we can equate coefficients of basis elements, 
and since VI =1= 0 and V2 =1= 0 in R = Z[C], 

for each 1 =1= k E K, vI/w(I:a) = I: a(k,k')-1 and 
aEG k'EK 

for each 1 =1= h E H, V2/W (I: a) = I: {3(h, h't1. 
aEG k'EK 

Hence the result follows from Definition 3.1 and Theorem 3.2. 0 

In terms of the corresponding cocycles, by Theorem 3.2 this means that a Q9 13 is 
orthogonal if and only if a and 13 are both orthogonal. A direct proof of this result 
appears in Hughes [4, Thm. 4.iii]. 

With notation as in Theorem 4.1, suppose there is an isomorphism () : E Q ®t3 -t E. 
Then D* = O(D) is a relative (VIV2,W,V1V2,V1V2/w)-difference set in E relative to 
()(C), and D* factorises as D* = O(T(a))()(T({3)) into relative difference sets in 
()(Ea®d and O(El®t3) respectively. In particular, if 0 E Aut(Ea®t3) then the isomor
phic relative difference set O(D) factorises into relative difference sets in O(Ea) and 
()(Et3). 

Now suppose that E E1jJ for some co cycle 'ljJ. 

Case (i): 'ljJ is cohomologous to a Q9 {3. 

Since cohomology need not preserve orthogonality, 'ljJ need not be orthogonal. 
Therefore, the relative difference set D* = O(D) in E1jJ corresponding to the relative 
difference set D in Ea®t3 is not necessarily equivalent to the canonical transversal 
T('ljJ) corresponding to 'ljJ. Hence T('ljJ) need not always factorise in E1jJ. Indeed, it 
need not be a relative difference set. 

Case (ii): 'ljJ is shift-equivalent to a Q9 {3. 

By the proof of Theorem 3.3 of [3], the relation between the corresponding 
transversals is that T('ljJ) is a shift of T(a Q9 {3), say T('ljJ) eT(a Q9 13) where 
e E EQ ®t3. We will prove that T('ljJ) factorises. 

147 



Write e = (c, (x, y)), so if (1, (k, h)) E T(a 0 (3), then 

(c, (x, y)) (1, (k, h)) (c (a 0 (3)((x, y), (k, h)), (x, y)(k, h)) 

= (ca(x, k)(3(y, h), (xk, yh)) 

= (ca(x, k), (xk, l))(,8(y, h), (1, yh)) 

= [( c, (x, 1)) (1, (k, 1))] [( 1, (1, y) ) (1, (1 , h) )]. 

We can easily see that (c, x) {(I, k) : k E K} and (1, y) {(I, h) : h E H} are relative 
difference sets in Ea and Ef3 respectively, equivalent by a shift to T(a) and T(,8) 
respectively. Therefore T( 'ljJ) = e T( a 0 (3) factorises, into the relative difference sets 
(c, x)T(a) and (1, y)T((3). 

In view of the remarks above, we have proved the following. 

Lemma 4.1 Under the conditions of Theorem 4.1, if T(a 0(8) is a RDS then any 
element of its equivalence class factorises into RDSs in Ea and Ef3. 0 

Theorem 4.1 clearly extends by induction to a direct product of n finite groups. 

Theorem 4.2 Let G = Gl X G2 X •.• x Gn where Gi is a finite group of order Vi 
and let C be a finite abelian group of order w such that WIVi for all i = 1,2",' ,n. 
Let ai be a cocycle over Gi, i = 1,2"" ,n, and let Ea10a2(1)'''QI)an be the central 
extension of C by G corresponding to al 0 a2 0 ... 0 an. If D = {(I, g) : g E G} is 

a relative (TI7=1 Vi, W, D7=1 Vi, (D7=1 Vi)/W) -difference set in E a1 Ql)a2Q1)"'QI)an relative 
to C, then D factorises as a product T(aI)T(a2) ... T(an ) of RDSs; that is, for 
each i = 1,2, '" ,n, T(ai) is a relative (Vi, w, Vi, vi/w)-difference set in the central 
extension Eai of C by Gi, relative to C. 0 

Let us now prove the converse of Pott's Proposition 2.1 in the case that C is 
central. 

Theorem 4.3 Let E be a group of order VI V2W containing a central subgroup C of 
order w. Let EI and E2 be subgroups of E of order VI wand V2W respectively with 
(i) (EI' E2) = E 
(ii) [EI' E2J = 1 (i.e. EI and E2 commute) 
(iii) EI n E2 = C, 
and let DI be a transversal of C in EI and D2 be a transversal of C in E2. The 
transversal D = DID2 is a relative (VI V2, W, VI V2, VI V2/W )-difference set in E relative 
to C if and only if Dl is a relative (VI, W, VI, vd w) -difference set in El relative to C 
and D2 is a relative (V2' w, V2, v2/w)-difference set in E2 relative to C. 

Proof: Let EdC = K and E2/C = H, DI = {ek' k E K} and D2 = {eh' h E H}. 
Let a : K x K -t C be the cocycle determined by DI and let ,8 : H x H -t C 
be the co cycle determined by D2. The mapping cek -t (c, k) gives an isomorphism 
El -+ Ea and the mapping ceh -t (c, h) gives an isomorphism E2 -t Ef3. 
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Furthermore, E / C ~ K x H: consider the short exact sequences 

1 -t C -t E1 -7 K -t 1 and 1 -7 C -7 E2 -t H -7 1. 

These short exact sequences give the short exact sequence 

1 -t C X C -t E1 X E2 -t K x H -7 1. 

Therefore, 1 -t eYe C -t E1 Y c E2 -t K x H -7 1 is a short exact sequence, and 
the result follows from the fact that eYe C 9'! C and Y c E2 ~ E. 

Consequently the mapping cek eh -t (c, (k, h)) gives an isomorphism E -t Eo:®f3 
which takes D to {(I, (k, h)) : k E K, hE H}. If D is a RDS in E, {(I, (k, h)) : k E 
K, h E H} is a RDS in EO:®f3 relative to C x 1. By Theorem 4.1 there are RDSs 
T(a) in Eo: and T(fJ) in Ef3. Their isomorphic inverse images in El and E2 are Dl 
and D2 , respectively. 0 

We close with an application to the case G = Z~ for v odd. By using the 
Factorisation Theorem we can show that many non-splitting abelian extensions of 
Zv by Z~, cannot contain a semi regular RDS. 

Let G Z~, C = Zv and ai : Zv x Zv -t Zv be cocycles, i = 1,2,'" ,n, for v odd, 
and let Eo: be the (necessarily abelian) central extension of Zv by Z~ corresponding 
to a a1 0 a2 ... 0 an. LFrom (4) we see that Eo: has exponent at most v2 • If 
T(a) = {(1,g) : g E G} is a relative (vn,v,vn,vn- 1)-difference set in Eo: relative to 
Zv then by Theorem 4.1, it factorises; that is, for each i 1,2, ... n, there exists a 
relative (v, v, v, 1)-difference set Di in the central extension EO:i of Zv by Zv relative 
to Zv' Therefore the ai, for i = 1,2,'" ,n, are orthogonal cocycles, and by [10, 
Prop. 5.3] each ai is a coboundary. It is then easy to check that a is a coboundary, 
so that T(a) is splitting. 

We have proved the following Lemma. 

Lemma 4.2 Let a = a1 0 a2 ... 0 an where ai : Zv x Zv -t Zv is any cocycle, 
1 ~ i ~ n, and v is odd. If T(a) is a RDS in the abelian group Eo: relative to Zv, 
then Eo: 9'! Z~+1 and T(a) must be a splitting relative (vn,v,vn,vn- 1)-difference set. 

o 
The total number of co cycles of the form a1 0 a2 ... 0 an is only (IZvlv-1)n = 

Ivlnv-n. However, the total number of cocycles Z~ x Z~ -7 Zv which determine 
abelian extension groups is IZvIIGI-1 = Ivlvn-1, and all of these abelian extension 
groups will have exponent at most v2 • 

If n > 1, orthogonal co cycles which are not tensor products do exist, and equate 
with other relative (vn, v, vn , vn- 1 )-difference sets, including non-splitting RDS. For 
instance, all the abelian relative (p2, p, p2, P )-difference sets in Zp2 x Zp relative to 
Zp, for p an odd prime power, are characterised in [9, Theorem 3.2], and some of 
these are non-splitting. Each of these non-splitting abelian RDS corresponds to some 
orthogonal co cycle Z~ x Z~ -7 Zp, which by Lemma 4.2 cannot be a tensor product. 

Acknowledgement. This work forms part of the Ph. D. thesis of the first author, 
taken under the supervision of the second author. 
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