Factorisation of semiregular relative difference sets™

A. A. 1. Pereral and K. J. Horadam

Department of Mathematics, RMIT University
Melbourne, VIC 3001, AUSTRALIA

Abstract

Pott has shown that the product of two semiregular relative difference
sets in commuting groups F; and E, relative to their intersection sub-
group C is itself a semiregular relative difference set in their amalgamated
direct product. We generalise this result in the case that C is central in
E; and in E, by using an equivalence with corresponding cocycles v, and
1. We prove that in the central case the converse of this product con-
struction holds: if there is a relative difference set in the central extension
corresponding to v¥; ® 1, it factorises as a product of relative difference
sets in F; and FE,.

1 Introduction

Relative difference sets (RDSs) have been found by a number of techniques, and there
are iterative methods which construct a larger relative difference set as the product
of given smaller relative difference sets. For instance, an abelian RDS in E relative
to a subgroup N may be (set-) multiplied by an abelian RDS in N relative to U
to give an abelian RDS in E relative to the smaller subgroup U provided suitable
parametric conditions on the RDSs hold (Pott {11, Prop. 3.2.1]). J. A. Davis [1] and
A. Pott [11] have shown how to construct a RDS in a larger group relative to N by
taking the product of RDSs in smaller groups relative to the same /V, given suitable
conditions on the groups. Recently Jungnickel and Tonchev [5] have shown that the
former of these iterative techniques can sometimes be reversed when U = 1; that
is, they give sufficient conditions under which a given difference set in E (an RDS
relative to 1) factorises as a product of an RDS in F relative to N and a difference
set in V.
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Here we give sufficient conditions under which the second iterative technique can
be reversed; that is, we show how to decompose a given RDS in F relative to N as
a product of RDS in suitable subgroups of E, relative to N.

We work in the group algebra R[G], where R is a commutative ring with identity
and G is a finite group, and in the twisted group algebra R*|G], where « is a cocycle
over G. We will follow standard practice and identify any subset X of G with
the group algebra element X = 3 ., = in R[G]. For more background on relative
difference sets, the reader is referred to [11, 12], and on cocycles and twisted algebras,
to [6, 7).

2 Product constructions for relative difference sets

Under certain conditions it is possible to multiply two relative difference sets together
and obtain a new relative difference set in a larger group. Before we describe these
constructions, let us recall the required definitions.

Definition 2.1 (Elliott and Butson [2]) A relative (v, w, k, A)-difference set (RDS)
in a finite group F of order vw relative to a normal subgroup N of order w, is a k-
element subset D of E such that the multiset of quotients did; ' of distinct elements
dy,dy of D contains each element of F\N exactly X times, and contains no elements
of N. (The ordinary (v, k, \)-difference sets correspond to the case N = 1.)

It is easily seen that the definition of a relative difference set translates into an
equation in the group algebra: D is a relative (v, w, k, A)-difference set in E if and
only if the following equation holds in R[E]:

DDY = klg + M\(E ~ N). (1)

There is always a short exact sequence 1 - N — F — E/N — 1. We will be
concerned with relative difference sets having k = v and therefore also k = wi. A
relative difference set with the latter property is termed semiregular. Note that any
semiregular RDS in E relative to N is a transversal of N in E.

The simplest product construction for RDS is due to Davis [1, Theorem 2.1]: if E,
has a (v, w, ki, A)-RDS D with respect to N and N x E; has a (vg, w, kg, A2)-RDS
D, with respect to N x 1 then the product D; x Dj is a (vyvq, w, k1k2, Ay Aow)-RDS
in E = F; x E, relative to N x 1.

When D, and D, are semiregular, so is Dy X Dy, and we will term this the direct
product construction for semiregular RDS.

A slight generalisation of the direct product construction for semiregular RDS is
due to Pott.

Proposition 2.1 (Pott (11, Lemma 2.2.3]) Let E be a group of order vyvaw con-
taining a normal subgroup N of order w. Let E, and E, be subgroups of E of order

vniw and vow, such that
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(i) (E1, Ep) = E
(ii) [Ey, B2} = 1 ( i.e. Ey and Ey commute.)
(iii) By Ey = N.
If E; contains a (v;, w, v, vi/w)-difference set D; relative to N, i = 1,2, then

DD, ={d1d2 1dy € Dy,ds € DQ}
is a (v1Uy, w, V1v2, V12 /w)-difference set in E relative to N. [

We will term this the amalgamated direct product construction of semiregular
RDS. The choice of nomenclature is based on the next observation. Recall that if N
is a subgroup of two groups F, and Ej, the amalgamated direct product of Fy and
E, with respect to N, denoted by E; Yy Es, is the group By Yy Ey = E; X E3/N,
where N is the normal closure of {(n~!,n) : n € N}. If N is abelian and normal in
each of E; and E,, then N = {(n~',n) : n € N}. If E is the group of Proposition
2.1, N is abelian, and E is isomorphic to the amalgamated direct product By Y x Ej
under the isomorphism defined by eje; — (eq,e3)N.

In order to relate this to the cocyclic construction of semiregular RDS given
in [10] we must restrict to central semiregular RDS; that is, those for which the
forbidden subgroup N is central (hence abelian) in F, not just normal. This is
only a restriction if we are interested in nonabelian RDS: in the abelian case, it is
automatically satisfied. Any central semiregular RDS is isomorphic to one with a
particularly simple form, which we can describe in terms of a corresponding cocycle.

3 Central semiregular relative difference sets

Hereafter, G will be a finite group of order v and C will be a finite abelian group
of order w. A (2-dimensional) cocycle is a mapping ¥ : G x G — C satisfying the
cocycle equation

"»[)(g) h) Q/)(ghv k) = w(gvhk) w(h” k)? v97 hke€G. (2)

This implies ¥(g,1) = ¥(1,h) = 9(1,1), Vg,h € G, so we follow standard usage
and consider only normalised cocycles, for which (1,1) = 1.

An egstension of C by G (sometimes called an extension of G by C) is a short
exact sequence of groups

1-CHESG—1. 3)

Each cocycle v determines a central extension of C' by G,
1-C—=Ey—»G—=1,

in which the eztension group E, of order vw is the set C' x G with ¢-twisted multi-
plication:

E1/J = {(c,g) ice Cv g€ G} 3 (c,g)(d, h) = (qur/)(.% h)agh), (4)
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and the image C x 1 of C lies in the centre of E,. The set T() = {(1,9), g€ G}is
a normalised transversal of C' x 1 in Ey. Conversely, if in (3), ¢(C) is central in E,
each normalised transversal T = {e, : g € G} of C in E determines a cocycle ¢z by
11)T(g1h) = L-l(egeh(egh)_l)s g,h €q.

Theorem 3.1 (Canonical Form) [10, Theorem 3.1} Suppose there is a central
extension (3) of C by G. There exists a relative (v, w, v, v/w)-difference set in E
relative to o(C), if and only if there exists a cocycle 1 : G X G - C such that
E=E, and T(¢) = {(1,9) : g € G} is a relative (v, w,v,v/w)-difference set in Ey,
relative to C' x 1. O

The cocycles for which such a central semiregular RDS exists have been characterised.

Definition 3.1 Let w|v. The cocycle ¥ : G x G — C'is orthogonal if, for each
g#1€Gandeach ce C, |{h€G:9(g,h)=c}|=v/w,or equivalently, if in ZC,
foreach g #1 € G, Zhec P(g, h) = v/w (ECEC c).

Theorem 3.2 (Equivalence Theorem) [10, Lemma 2.2, Theorem 4.1] Let wlv
and let v : Gx G — C be a cocycle. Then T(¥) = {(1,9), g € G} C Ey is a relative
(v, w, v, v/w)-difference set relative to the central subgroup C x 1, if and only if the
cocycle ¥ is orthogonal. O

A cocycle is a coboundary 8¢ if it is derived from a set mapping ¢ : G = C
having ¢(1) = 1 by the formula 0¢(g, h) = ¢(g) *¢(h)~'d(gh).

The orthogonal coboundaries correspond to the splitting RDS ([10, p. 196]).

Two cocycles 1 and 1 are cohomologous if there exists a coboundary 0¢ such
that ¢ = 1 - d¢. Two cohomologous cocycles ¢ and ¢ are shift equivalent 13} if
Y =1 - Onp, for some g € G, where 1),(h) = ¥(g, h), Vhe G.

Definition 3.2 f o : K x K — C and 8 : H x H — C are cocycles, then their
tensor product a ® B : (K x H) x (K x H) — C is the cocycle defined by

(a® ) (s, ), (kay ha)) = alhy, ko) B, o). (5)

We will simplify notation, without any loss of generality, by making the following
identifications of elements in E,gp as needed, without further comment: (a, (k, h)) =
(a,k, h) in Eagp; (a,k,1) = (a,k) in Ey; (a,1,h) = (a,h) in Eg and (a,1,1)=ain
C. Under these identifications, E, and E; are commuting subgroups of Eugg which
intersect in the central subgroup C of Eyggs-

Lemma 3.1 With the identifications above, T(a ® §) = T'(a)T'(B) as sets in Eqgg.
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Proof: Note that T(a)NT(8) = {(1,1,1)} and | T(a®B) | = |T(a)| |T(B) |

(1,k,1)(1,1,h) = (e ® B)((k, 1), (1, h)), (k, 1)(1, h))
= (a(ka l)ﬁ(lv h)a k7h)
=(1,k,h)

since o and f are normalised. (J

It is readily checked that if @ and 3 are orthogonal, so is @ ® 8 (cf. [10, Theorem
5.1]). Consequently the product T(a ® ) of central semiregular RDSs T'(«) in E,
and T'(3) in Ej is a central semiregular RDS in E,gg. This is the same result as we
obtain by applying the amalgamated direct product construction in the case that C
is central in E,gg and using the Equivalence Theorem and the identifications above.

Using the Equivalence Theorem and applications of the Canonical Form, we ob-
tain a slight generalisation of the amalgamated direct product construction for central
semiregular RDS.

Lemma 3.2 (Central Extension Construction of RDS) Let By, and E; be

groups of order vyw and vow, respectively, with w|vy and wlvy, for which there are
central extensions

1—')Ciz')E,1‘?G,~'}1, i=1,2.

If D; is a (v, w, v;,v;/w)-difference set in E; relative to N; = ;(C), ¢ = 1,2, there
is a relative (vyv2, w, v1v2, V1V /w)-difference set D = w1(Dy) X mo(Dy) in a central
extension of C by Gy X Gs.

Proof: Let 9); : G; x G; — C be the orthogonal cocycles determined by the transver-
sals D;, i = 1,2. Thus {(1, (m1(d1), m2(d2))), di € Di, i =1,2} is an RDS in Ey, ey,
relative to C. Let E be a central extension of C by G; X G3. For any isomorphism
6 : Ey, gy, — E which preserves the image of C, the isomorphic image under 6 of
the canonical RDS is an RDS D in E relative to C. O

For central semiregular RDS, we can prove the converse of this central extension
construction of RDS.

4 Factorisation of central semiregular RDS

iFrom now on, R will denote a commutative ring with identity, with multiplicative
group of units R*, and we will assume C < R*. We write the twisted group al-
gebra R°[G] as a free R-module with basis {g : ¢ € G}. Multiplication is defined
distributively from g 7 = a(g, k) gh, Yg,h € G.

Proposition 4.1 [7, cf. Proposition 1.3], [8, ¢f. Lemma 6.1].
Let K and H be finite groups, let a« : K x K — C and §: H X H - C be
cocycles over K and H respectively, and let {k : k € K} and {h: h € H} be bases
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for R*[K] and RP[H) respectively. Then R*[K)® RP[H] is a free R-module with basis
{k@h:ke€ K ,he H} and the mapping 0((k h)) = k ® h eztends to an R-algebra
isomorphism 0 : R*®[K x H] — R*[K]® RP[H]. O

Theorem 4.1 (Factorisation) Let G = K x H be a finite group with |K| = v; and
|H| = vy, let C be a finite abelian group of order w such that w|vy and wlvs, and let
a:KxK-—Cand : Hx H— C be cocycles.

IfT(a® B) = {(1,9) : g € G} is a relative (viv2, W, V102, V102 /w)-difference set
in Eagp relative to C x 1, then T(a® B) factorises as a product T'()T(B) of RDSs;
that is, T(a) is a relative (vy, w, vy, v1/w)-difference set in E, relative to C x 1 and
T(B) is a relative (va, w, vy, vo/w)-difference set in Ey relative to C x 1.

Proof: Take R = Z[C] and write D = T(a ® ). By Equation (1), in R[Eaes],

DD = vvy.1p,, + viva/w(Eags ~ C X 1)

= 010 1E g, + ViV2/W Z Z(a,g).

1#g€G a€C

Since 7 : R[Eqgs) — R*®P|G] defined by (a,g) — aF is a ring homomorphism, in
R®P[G), D satisfies

7(DDUY) = vy T + vyva/w Z E ag

1#9€G acC

=v1v2.(—1:‘15+v1v2/w Z Z k h)

(1,1)#(k,h)€K x H a€C

So, by Proposition 4.1, in R*[K]® R°[H],

o n(DDY) = v10p(1 ® 1) + vyva/w Z z a(E®R)
(L,1)#(k,h)eK x H a€C

=v0(1® 1) +vve/w Z Z a(k®1)

1#keK acC

+ vyva/w Z Z a(1®h) +viva/w E Z a{k®h).

1#heH acC 1#keK,1#heH acC

But DD( E(k h)eK xH E(k’ h’)erH( ’ (kv h))(17 (klv h’l))ul in R[Ea®ﬁ}’
By (2) (compare with the proof of Lemma 4.1 of [10]), in R*®A[K x H],

r(DD) = oL+ Y (3 (@ B)((kh), (6, 1)) o)

(LD #(kR) (kb1

=ow(LD+ Y. (Z (k, K'Y B(h, 1)~ )(k,h).

(L1)ZKkR) (K )
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So, by Proposition 4.1, in R*[K] ® R?[H],
§on(DDY)
vi2(1® 1) + 11y k) ( oy @k, k)T B(, h’)'l) (k®h)
o1 @ 1) + 30 sk 1zm (Z(k’,h’) a(k, k')~ B(h, h’)"l) (k®h)
+ S ( Sy @k KB R)T (k@ T)
+ i ( Doy (LK) BT (T ® h)
(1@ 1) + X1 21 (Z(k’,h’) ak, k)71 B(h, h')—l) (k®h)
+ e (02 Twerc ol ) ) B 1) + Ty (01 Srerr Blb, 0)) (10 ).

Il

Il

Since R*[K]|® RP[H] is a free R-module, we can equate coefficients of basis elements,
and since v; # 0 and ve % 0 in R = Z[C],

foreach 1#ke€K, m/w(Za):Za(k,k')'l and

aeC kKeK
for each 1#he H, UQ/w(Za) =3 B, ).
aeC KeK

Hence the result follows from Definition 3.1 and Theorem 3.2. {1

In terms of the corresponding cocycles, by Theorem 3.2 this means that o ® § is
orthogonal if and only if o and 3 are both orthogonal. A direct proof of this result
appears in Hughes [4, Thm. 4.iii].

With notation as in Theorem 4.1, suppose there is an isomorphism § : E,gs — E.
Then D* = §(D) is a relative (vivq, w, v1vg, V102 /w)-difference set in E relative to
0(C), and D* factorises as D* = 6(T(«))8(T(B)) into relative difference sets in
0(Eug1) and 0(E1gs) respectively. In particular, if § € Aut(E,gs) then the isomor-
phic relative difference set 6(D) factorises into relative difference sets in 6(E,) and
6(Eg).

Now suppose that £ = E, for some cocycle ).

Case (i): ¢ is cohomologous to a ® (.

Since cohomology need not preserve orthogonality, 1 need not be orthogonal.
Therefore, the relative difference set D* = (D) in E,, corresponding to the relative
difference set D in E,gp is not necessarily equivalent to the canonical transversal

T{(1) corresponding to 1. Hence T(¢) need not always factorise in Ey. Indeed, it
need not be a relative difference set.

Case (ii): ¢ is shift-equivalent to a ® .

By the proof of Theorem 3.3 of [3], the relation between the corresponding
transversals is that 7'(s) is a shift of T(a ® 8), say T(¢) = eT(a ® §) where
e € Eagp. We will prove that T'(¢) factorises.
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Write e = (¢, (x,9)), so if (1, (k,h)) € T(a® B), then

(¢, (z,9)) (1, (k, b)) = (C(a®ﬂ)((x) y), (k, 1)), (=, y)(k, b))
= (ca(z, k)B(y, h), (zk, yh))
= (ca(z, k), (zk,1))(By, h), (1,yh))
= [(e, (=, D), (&, A, (L) (A, (1, h)].

We can easily see that {c,z) {(1,k): k € K} and (1,y) {(1,h) : h € H} are relative
difference sets in E, and Ej respectively, equivalent by a shift to T'(a) and T(8)
respectively. Therefore T'(¢) = eT(a ® ) factorises, into the relative difference sets
(,)T () and (L,y)T(8).

In view of the remarks above, we have proved the following.

Lemma 4.1 Under the conditions of Theorem 4.1, if T(a ® B) is a RDS then any
element of its equivalence class factorises into RDSs in E, and Ep. d

Theorem 4.1 clearly extends by induction to a direct product of n finite groups.

v Theorem 4.2 Let G = G x Gy x -+ X G, where G; is a finite group of order v;
and let C be a finite abelian group of order w such that wlv; for alli =1,2,--- ,n.
Let «; be a cocycle over G, i = 1,2,-++,n, and let By gar@--0a, e the central
extension of C by G corresponding to oy ® e ® - - Q@ avn. If D = {(1,9) : g€ G} s
a relative (H?:x Vi, W, [ Tomg Uiy ([Tiey vi)/w)-diﬁ”erence set in By gae--0a, Telative
to C, then D factorises as a product T(c;)T (ag) - T{es) of RDSs; that is, for
each i = 1,2,--+,n, T(a;) is a relative (v;, w,v;, v;/w)-difference set in the central
extension E,, of C by G, relative to C. 0

Let us now prove the converse of Pott’s Proposition 2.1 in the case that C' is
central.

Theorem 4.3 Let E be a group of order vivaw containing a central subgroup C of
order w. Let E; and E, be subgroups of E of order viw and vow respectively with
(i) (B, E2) = E

(i) [Ey, Eo) =1 (i.e. By and By commute)

(m) E1 n Ez = C,

and let Dy be a transversal of C in Ey and D, be a transversal of C in Ey. The
transversal D = Dy D, is a relative (vyvg, w, vivg, vyve/w)-difference set in E relative
to C if and only if Dy is a relative (vy,w, vy, v1/w)-difference set in E; relative to C
and Dy is a relative (ve, w, v2, vo/w)-difference set in Ey relative to C.

Proof: Let E,/C = K and Ey/C = H, D, = {ey,k € K} and D, = {ep,h € H}.
Let @ : K x K — C be the cocycle determined by D; and let 8 : H x H = C
be the cocycle determined by D,. The mapping cex — (c, k) gives an isomorphism
E; — E, and the mapping cey — (c, h) gives an isomorphism E; — Ejg.
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Furthermore, E/C = K x H: consider the short exact sequences
1-C—>E —+K—1and 1-C—FE,—H-—1
These short exact sequences give the short exact sequence
152CxC—E, xEy,—~KxH-—1.

Therefore, 1 = C Y¢ C — Ey Yo By — K x H — 1 is a short exact sequence, and
the result follows from the fact that C YcC = C and E; Yo Ep, 2 E.

Consequently the mapping ceg e, — {(c, (k, h)) gives an isomorphism E — E,gp
which takes D to {(1,(k,h)): k€ K, he H}. f DisaRDS in E, {(1,(k,h)): k €
K, h € H} is a RDS in E,gg relative to C x 1. By Theorem 4.1 there are RDSs
T(c) in E, and T(f) in Eg. Their isomorphic inverse images in £, and E, are D,
and D, respectively. O

We close with an application to the case G = Z7 for v odd. By using the
Factorisation Theorem we can show that many non-splitting abelian extensions of
Z, by Z?, cannot contain a semiregular RDS.

Let G = Z*,C = Z, and o : Zy X Zy —+ Zy, be cocycles, i = 1,2,-- -, n, for v odd,
and let E, be the (necessarily abelian) central extension of Z, by Z} corresponding
toa =01 ®az - ® ay. (From (4) we see that E, has exponent at most v2. If
T(a) = {(1,9) : g € G} is a relative (v",v,v",v""!)-difference set in E, relative to
Z, then by Theorem 4.1, it factorises; that is, for each 4 = 1,2, .- -n, there exists a
relative (v, v,v, 1)-difference set D; in the central extension E,; of Z, by Z, relative
to Z,. Therefore the o, for ¢ = 1,2, ,n, are orthogonal cocycles, and by [10,
Prop. 5.3} each o is a coboundary. It is then easy to check that « is a coboundary,
so that T'(«) is splitting.

We have proved the following Lemma.

Lemma 4.2 Let o = oy @ oy @ o, where o; : Z, X Z, — Z, is any cocycle,
1<i<n, and v is odd. If T(c) is a RDS in the abelian group E, relative to Z,,
then E, = Z0 and T(a) must be a splitting relative (v", v, v™, v""!)-difference set.

O

The total number of cocycles of the form oy ® 0y -+ ® oy, is only (|Z,]'"1)" =
|u|"*=". However, the total number of cocycles Z} x Z? — Z, which determine
abelian extension groups is |Z,|!%I"! = [v[""~!, and all of these abelian extension
groups will have exponent at most v?.

If n > 1, orthogonal cocycles which are not tensor products do exist, and equate
with other relative (v™, v, v", v"~!)-difference sets, including non-splitting RDS. For
instance, all the abelian relative (p?, p, p?, p)-difference sets in Z,2 x Z, relative to
Z,, for p an odd prime power, are characterised in [9, Theorem 3.2}, and some of
these are non-splitting. Each of these non-splitting abelian RDS corresponds to some
orthogonal cocycle ZZ X Z?, — Z,, which by Lemma 4.2 cannot be a tensor product.
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