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Abstract 
A connected graph G is said to be (a, d)-antimagic, for some posi
tive integers a and d, if its edges admit a labeling by the integers 
1,2, ... , IE( G) I such that the induced vertex labels consist of an arith
metic progression with the first term a and the common difference d. 
In this paper we prove that the generalized Petersen graph P(n,2) is 
(3n2+6, 3)-antimagic for n == 0 (mod 4), n ~ B. 

1. INTRODUCTION AND DEFINITIONS 

The graphs considered here will be finite, undirected and simple. The vertex 
(edge) set of a graph G will be denoted by V(G) (E(G)), respectively. The weight 
w(v) of a vertex v E V(G) under an edge labeling f is the sum of values f(e) 
assigned to all edges incident to a given vertex v. 

A connected graph G = (V(G), E(G)) is said to be (a, d)-antimagic ifthere exist 
positive integers a,d and a bijection f: E(G) -+ {1,2, ... ,IE(G)I} such that the 
induced mapping gt : V(G) -+ W is also a bijection, where 

W = {w(v) : v E V(G)} = {a, a + d, a + 2d, ... , a + (IV(G)I- l)d} 

is the set of the weights of vertices. 
If G = (V, E) is (a, d)-antimagic and f : E(G) -+ {I, 2, ... , IE(G)I} is a corre

sponding bijective mapping of G then f is said to be an (a, d)-antimagic labeling 
ofG. 

Hartsfield and Ringel [12] introduced the concept of an antimagic graph. An an
timagic graph G is a graph whose edges can be labeled with the integers 1,2,3, ... , 
IE(G)I so that the sum of the labels at any given vertex is different from the sum 
of the labels at any other vertex, that is, no two vertices receive the same weight. 
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Hartsfield and Ringel conjecture that every tree other than K 2 is antimagic and, 
more strongly, that every connected graph other than K2 is antimagic. 

Bodendiek and Walther [6] defined the concept of an (a, d)-antimagic graph as 
a special case of an antimagic graph. They showed [7] that the theory of linear 
Diophantine equations and other concepts of number theory can be applied to 
determine the set of all connected (a, d)-antimagic graphs. For special graphs 
called parachutes, (a, d)-antimagic labelings are described in [8,9]. 

The generalized Petersen graphs P(n, k), 1 s;; k < ~, consist of an outer n-cycle 
Yl, Y2, ... ,Yn, a set of n spokes YiXi, (1 s;; i s;; n), and n inner edges XiXi+k, 

1 ::; i s;; n, with indices taken modulo n. The standard Petersen graph is the 
instance P(5,2). Generalized Petersen graphs were first defined by Watkins [15]. 
The classification of the Hamiltonicity of P(n, k) was begun in [15], continued by 
Bondy [10] and Bannai [5], and completed by Alspach [1]. Schwenk [14] determined 
the precise number of Hamiltonian cycles in P(n,2). Upper and lower bounds for 
the toughness of the P(n, k} are established by Ferland in [11]. The irregularity 
strength of the P(n, k) was determined by Jendro! and Zoldak in [13]. Bodendiek 
and Walther [7] conjecture that P(n,l), n == 0 (mod 2) is Cn:ii-4, 1 )-antimagic 
and P(n,l), n == 1 (mod 2), is ( 5nt 5

, 2)-antimagic. In [3] are given the proofs 
of the conjectures of Bodendiek and Walther and it is shown that P(n, 1), n == 0 
(mod 2), is ent 6

, 3)-antimagic. In [4] it is proved that the generalized Petersen 
graph P(n, k} is (a,l}-antimagic if and only if n is even, n 2: 4, k s;; ~ - 1 and 
a - 7n±4 

- 2 . 

A connected graph G = (V(G), E(G)) with p vertices and q edges is said to be 
(a, b }-consecutive, where b is a positive divisor of p with t = t 2: 2, if there exist 
an integer a 2: 0 and a bijection 8 from E(G) to {I, 2, '" ,q} such that the induced 
mapping 8* : V (G) -7 W is also a bijection, where the set of weights of vertices W 
can be partitioned into t intervals 

Wj = [Wmin + (j -l)b+ (j -l)a,wmin +jb+ (j l)a-l], 1::; j::; t and 

Wmin min{8*(v): v E V(G)}. 

In [2] is shown that (i) if n 2: 3 and 1 ::; k < ~, then the generalized Petersen 
graph P(n, k) is (n, n)-consecutive and (3n, n)-consecutive and (ii) if n is even, 
n 2: 4, 1 s;; k s;; ~ 1, then P(n, k) is (2n, n}-consecutive. 

Now, we will concentrate on the (a, d)-antimagicness of P(n, k) and we show 
that if n 0 (mod 4) then P(n, 2) is ent 6

, 3)-antimagic. 

2. NECESSARY CONDITIONS 

Assume that P(n, k) is (a, d)-antimagic on IV(P(n, k))1 = 2n vertices and 
IE(P(n,k))1 = 3n edges. Let p: E(P(n,k)) -7 {1,2,3, ... ,3n} be edge label
ing and W = {w(v} : v E V(P(n, k))} = {a, a + d, ... , a + (2n - l)d} be the set of 
weights of vertices. 
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L p(e) = 3n(3~ + 1) , 
eEE(P(n,k)) 

L w(v) 2na + nd(2n - 1) . 
vEV(P(n,k)) 

Clearly, the following equations (1), (2) hold 

(1) 2 I: p(e) = I: w(v) , 
eEE(P(n,k)) vEV(P(n,k)) 

(2) 3n(3n + 1) = 2na + nd(2n - 1). 

From the linear Diophantine equation (2) we have 

d 
3(3n + 1) - 2a 

2n -1 

The minimal value of weight which can be assigned to a vertex of degree three is 
a = 6. Thus we get the upper bound on the value d, i.e., 0 < d < ~ . This implies 
that: 

(3) if n == 0 (mod 2), then d is necessarily odd and the equation (2) has exactly 
the two different solutions (a, d) = (7n2t4, 1) or (a, d) = (3; + 3,3), respectively 
and 

(4) if n == 1 (mod 2), then d is necessarily even and the equation (2) has exactly 
the two different solutions (a, d) = ( 5nt 5

, 2) or (a, d) = (~, 4), respectively. 

3. MAIN RESULT 

Theorem 1. For n 2:: 8, n == 0 (mod 4), the generalized Petersen graph P(n,2) 
has a (3; + 3, 3)-antimagic labeling. 

Proof. Define the edge labeling f of P(n, 2), n == 0 (mod 4), as follows: 

if 1 ~ i ~ n - 1 is odd and i =f. 3, 

if i = 2, 

if i = 3, 

if 4 ~ i ~ n is even. 
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!~ 
if 3:::;i:::;n-1 is odd, 2 

=1 if i = 1, 
f(YiYi+I) = = n + 1 if i = 2, 

_ n±4-i if 4:::;i:::;n is even. - 2 

rn

-

I if i = 1, 
_ 4n±l-i if i == 3 (mod 4), i ~ 3, - 2 

f(xi Xi+2) = _ 5n-i-1 
if i == 1 (mod 4), i ~ 5, --2-

_ 3n±2i if i == 0 (mod 2). - 2 

It is easy to verify that the labeling! uses each integer 1,2, ... , 3n exactly once 
and this implies that the labeling! is a bijection from the edge set E(P(n, 2)) to 
the set {1,2, '" ,3n}. 

Let us denote the weights (under an edge labeling f) of vertices Xi and Yi of 
P(n, 2) by 

W(Yi) = !(YiYi±l) + !(Yi-IYi) + !(XiYi) for 1 :::; i ::; n, 

W(Xi) = !(XiXi+2) + !(XiYi) + !(Xn±i-2Xi) for 1 :::; i :::; n 

with indices taken modulo n. 

The weights of vertices of P(n, 2) under the edge labeling! constitute the sets 

WI {W(Yi): 1 :::; i :::; n} = {3; + 3i : 1 :::; i :::; n} and 

W2 = {W(Xi) : 1 :::; i :::; n} = {9; + 3i : 1 :::; i :::; n} . 

We can see that each vertex of P(n, 2) receives exactly one label of weight from 
WI U W2 and each number from WI U W2 is used exactly once as a label of weight 
and further that the set 

W = WI U W 2 = {a, a + d, a + 2d, ... ,a + (2n - l)d}, where a = ~ + 3 and 
d = 3 and finally that the induced mapping gt : V(P(n, 2)) ~ W is bijective. This 
completes the proof of the theorem. 

4. OPEN PROBLEMS 

In view of Theorem 1 and the result [4) that P(n, k) is ((7n + 4)/2, 1)-antimagic 
if n ~ 4 is even and k ::; n/2 -1, we conjecture that the generalized Petersen graph 
P(n, k) is (a, d)-antimagic for all feasible values of a and d. More specifically, we 
put forward the following three conjectures. 

Conjecture 2. If n is even, n ~ 6 and 2 ::; k :::; ~ 1, then the generalized 
Petersen graph P(n,k) is (3; +3,3)-antimagic. 
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Conjecture 3. If n is odd, n ~ 5 and 2 ~ k ~ n 21, then the generalized Petersen 

graph P(n, k) is ( 5nt 5
, 2)-antimagic. 

Conjecture 4. For n == 1 (mod 2), n ~ 7 and 1 ~ k < n 21, the generalized 
Petersen graph P(n,k) has a (~,4)-antimagic labeling. 
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