On the decomposition of Cayley graphs into isomorphic trees

Saad El-Zanati, Charles Vanden Eynden
4520 Mathematics Department
Illinois State University
Normal, Illinois 61790-4520 U.S.A.

Sidney Stubbs
Department of Mathematical and Computer Sciences
Huntingdon College
Montgomery, AL 36106-2148 U.S.A.

Abstract

We prove a theorem about the decomposition of certain n-regular Cayley graphs into any tree with n edges. This result implies that the product of any r cycles of even length and the cube Q_{s} decomposes into copies of any tree with $2 r+s$ edges.

1 Introduction

By a decomposition of a graph G we mean a sequence $G_{1}, G_{2}, \ldots, G_{k}$ of subgraphs whose edge sets partition the edge set of G. If each subgraph G_{i} is isomorphic to a fixed graph H, then we say that H divides G. Many papers and indeed a whole book [1] have been written about graph decompositions. Much investigation has been motivated by the 1963 conjecture of Ringel [9] that the complete graph on $2 n+1$ vertices can be decomposed into copies of any tree with n edges. A generalisation of Ringel's conjecture, attributed to Graham and Häggkvist (see [4]), proposes that every tree T with n edges divides every $2 n$-regular graph G. When G is bipartite, Häggkvist [4] proposes an even stronger variant.

Conjecture 1 Every tree T with n edges divides every n-regular bipartite graph G.
In the early 90s, Fink [2], Ramras [7], and Jacobson, Truszczyński, and Tuza [6] independently discovered a theorem which verifies Conjecture 1 when G is the n-cube. The n-cube, denoted Q_{n}, is defined to be the graph with vertices all binary n-tuples and with two n-tuples adjacent when they differ in exactly one component.

It is easily seen that Q_{n} is n-regular, has 2^{n} vertices and $n 2^{n-1}$ edges, and is bipartite. Indeed every edge joins an even vertex (one with an even number of 1s) to an odd vertex. The theorem referred to is the following.
Theorem 1 Let T be any tree with n vertices. Then T divides Q_{n}.
Fink and Ramras give essentially the same proof. The tree T is embedded in Q_{n} by having each edge move in a different coordinate. Then adding all even n-tuples to the embedded graph gives the required decomposition of Q_{n}. (If we think of the vertex set of Q_{n} as Z_{2}^{n}, then adding a fixed n-tuple is a graph automorphism.)

In his original paper Ramras considered replacing the addition of even n-tuples by the addition of an arbitrary subgroup of the automorphism group of Q_{n}, defining a set of edges of Q_{n} to be fundamental if applying such a subgroup to it gave a decomposition of Q_{n}. Later [8] he investigated fundamental sets of edges of Q_{n} of cardinality $2 n$.

Fink went in a different direction in [3], generalizing from cubes to certain Cayley graphs. His Cayley graphs are directed, so we will start with this definition to explain his results. Of course for directed graphs to be isomorphic the edge directions must correspond. With this restriction the definition of one directed graph dividing another is analogous to that for undirected graphs. The edge directed from u to v will be denoted (u, v). Let Γ be a finite group and Δ a subset of Γ. By the directed Cayley graph of Γ with respect to Δ we mean the graph $G_{d}=G_{d}(\Gamma, \Delta)$ with vertex set Γ and edge set

$$
\{(u, u d): u \in \Gamma, d \in \Delta\}
$$

By an oriented tree we mean an ordinary tree in which each edge has been assigned a direction. The following is Fink's main result.

Theorem 2 If Γ is a group with minimum generating set Δ, and if T is an oriented tree with $|\Delta|$ edges, then T divides $G_{d}(\Gamma, \Delta)$.

By taking $\Gamma=Z_{2}^{n}$ and $\Delta=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$, where u_{i} is the n-tuple with 1 in the i th coordinate and 0 s elsewhere, the previous theorem can be applied to n-cubes. The resulting directed Cayley graph is Q_{n} with each edge replaced by two directed edges, one in each direction. By using only the edges directed from even to odd vertices Fink gets another proof of Theorem 1.

We will prove a result similar to Fink's (Theorem 2) for certain undirected Cayley graphs. Although the edges of our original tree will not be directed, we make up for this by allowing it to have $2|\Delta|$ edges instead of $|\Delta|$ in many applications. We also replace the condition that Δ be a minimal set of generators with a weaker one. Our theorem has Theorem 1 as a direct consequence.

Jacobson et al. define a $(p+q)$-tree to be a tree with a bipartite vertex partition with p vertices on one side and q on the other. They prove a more general result than Theorem 1, producing a decomposition of Q_{n} into a list of 2^{n-1} arbitrary $(p+q)$-trees, where $p+q=n+1$. They moreover verify Conjecture 1 when T is a double-star with n edges (a tree of diameter ≤ 3 with at most two vertices of degree greater than 1) and in the case when T is the path with 4 edges.

Later Horak, Šiŕaň, and Wallis [5] generalized Theorem 1 in various ways. For example they show the tree in the theorem can be replaced with any graph with n edges, each block of which is an even cycle or an edge.

2 Main result

We can avoid loops in Cayley graphs, directed or not, by requiring that $1 \notin \Delta$. Defining undirected Cayley graphs presents a slight additional complication. In the directed case each element d of Δ generates $|\Gamma|$ corresponding edges $(g, g d)$ of the Cayley graph $G_{d}(\Gamma, \Delta)$. The same holds in the undirected case, except when d is its own inverse, that is, d has order 2. Then the edges $\{g, g d\}$ and $\{g d,(g d) d\}$ are the same, so only $\Gamma / 2$ edges result. This is why elements of order 2 get special treatment in what follows.

Let Γ be a finite group. Suppose Δ is a subset of Γ that does not contain the identity 1. By the Cayley graph of Γ with respect to Δ we mean the graph $G=G(\Gamma, \Delta)$ such that $V(G)=\Gamma$ and $E(G)=\{\{g, g d\}: g \in \Gamma, d \in \Delta\}$. Let Δ_{2} denote the set of elements of Δ of order 2 and Δ^{+}its complement in Δ. We call Δ square-independent if whenever $d_{1}, d_{2}, \ldots, d_{t}$ are distinct elements of Δ and $\prod_{i=1}^{t} d_{i}^{j_{i}}=1$, where $j_{i} \in\{-2,-1,0,1,2\}$ if $d_{i} \in \Delta^{+}$, and $j_{i} \in\{-1,0,1\}$ if $d_{i} \in \Delta_{2}$, $1 \leq i \leq t$, then all the exponents j_{i} are 0 . This implies that if $d \in \Delta^{+}$, then $d^{-1} \notin \Delta^{+}$. As we have seen, if $d \in \Delta^{+}$, then there are $|\Gamma|$ edges of the form $\{g, g d\}$ in G, while if $d \in \Delta_{2}$ there are half this number. Thus if Δ is square-independent, then the Cayley graph $G(\Gamma, \Delta)$ has $|\Gamma|\left(\left|\Delta^{+}\right|+\left|\Delta_{2}\right| / 2\right)$ edges.

We will use two well-known results in the proof of the following theorem. One is that if $h \in \Gamma$, then the map that sends each vertex g into $h g$ is a (graph) automorphism of G. The other is that any connected graph with an even number of edges has a decomposition into paths with two edges.

Theorem 3 Let Γ be a finite group, and let Θ be a subgroup of Γ with index 2. Suppose that Δ is a square-independent subset of $\Gamma \backslash \Theta$ containing r elements of order greater than 2 and s elements of order 2 . Then if T is any tree with $2 r+s$ edges, T divides $G(\Gamma, \Delta)$.

Proof. We can remove s edges from T, leaving a tree T^{*} with $2 r$ edges. Let T^{*} have the decomposition $P_{1}, P_{2}, \ldots, P_{r}$, where P_{i} is a path with 2 edges for each i. Let $\Delta^{+}=\left\{d_{1}, d_{2}, \ldots, d_{r}\right\}$ and $\Delta_{2}=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$. Assign the labels $\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$ to the s edges of T not in T^{*}, and assign to the two edges of P_{i} the labels d_{i} and d_{i}^{-1}, $1 \leq i \leq r$.

Now we will assign labels to the vertices of T. Choose one vertex v_{0} arbitrarily and assign it the label 1. If v is any vertex of T and $h_{1}, h_{2}, \ldots, h_{m}$ are the labels on the edges of the unique simple path in T from v_{0} to v, in order, then give v the label $h_{1} h_{2}^{-1} h_{3} h_{4}^{-1} \cdots h_{m}^{(-1)^{m-1}}$. We claim that each vertex of T is assigned a different label by this scheme. For suppose two vertices u and v get the same label. Let x be the label on the vertex of T farthest from v_{0} that is on both the path from v_{0} to u and

T_{1}
$(3,2,1)(2,2,0)(2,3,1)$

$(4,2,1)(2,2,1)(2,4,1)$

$$
T_{1}+(3,2,1)
$$

Figure 1: The tree T_{1} and one of its translates
the path from v_{0} to v. Then the common label on u and v has the form

$$
x g_{1}^{j_{1}} g_{2}^{j_{2}} \cdots g_{m}^{j_{m}}=x h_{1}^{k_{1}} h_{2}^{k_{2}} \cdots h_{n}^{k_{n}}
$$

where $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n}$ are elements of Δ, distinct except that perhaps $g_{1}=$ $h_{1} \in \Delta^{+}$and $j_{1}=-k_{1}= \pm 1, j_{i}$ (respectively $\left.k_{i}\right) \in\{-1,0,1\}$ if g_{i} (respectively h_{i}) $\in \Delta_{2}$, and j_{i} (respectively k_{i}) $\{-2,-1,0,1,2\}$ if g_{i} (respectively $\left.h_{i}\right) \in \Delta^{+}$. But then

$$
g_{m}^{-j_{m}} g_{m-1}^{-j_{m-1}} \cdots g_{1}^{-j_{1}} h_{1}^{k_{1}} h_{2}^{k_{2}} \cdots h_{n}^{k_{n}}=1
$$

contradicting the assumption that Δ is square-independent.
Now we can use the vertex labels of T to identify it with an isomorphic subgraph T_{1} in G because the labels of the endpoints of each edge of T are of the form $g, g d$, where $d \in \Delta$. We claim that the subgraphs $h T_{1}, h \in \Theta$ form a decomposition of G. Note that these subgraphs account for $(2 r+s)|\Theta| / 2$ edges, which is the number of edges in G. Thus it suffices to show that if g and h are distinct elements of Θ, then $g T_{1}$ and $h T_{1}$ have no common edge. Suppose that $g\{x, x d\}=h\{y, y e\}$ with d and e in Δ.

Case $1 g x=h y$ and $g x d=h y e$
Then $d=e$. Now the edges $\{x, x d\}$ and $\{y, y d\}$ of T_{1} are either identical or at least have a common vertex. Since $x=y$ implies $g=h$ we assume $x d=y$. Then $g x=h y=h x d$, so $d=x^{-1} h^{-1} g x$. This is a contradiction because Θ, with index 2 , is a normal subgroup of Γ, and so the latter element is in Θ.

Case $2 g x=h y e$ and $g x d=h y$
Then $g x=h y e=g x d e$ and so $d e=1$. Thus $d=e \in \Delta_{2}$. But there is only one edge in T with label d, so $\{x, x d\}=\{y, y d\}$. If $x=y$, then $g x=h x d$, and again $d=x^{-1} h^{-1} g x \in \Theta$. But $x=y d$ leads to $g x=h y d=h x$, and $g=h$.

An example of the above proof is shown in Figure 1. Here we have taken $\Gamma=$ $Z_{6} \times Z_{8} \times Z_{2}, \Theta=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \Gamma: x_{1}+x_{2}+x_{3} \equiv 0(\bmod 2)\right\}$, and $\Delta=\left\{u_{1}=\right.$
$\left.(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)\right\}$. Note that u_{1} and u_{2} are in Δ^{+}, while $u_{3} \in \Delta_{2}$. On the left is shown a labeling leading to the tree T_{1} embedded in $G(\Gamma, \Delta)$. On the right is shown the translation of T_{1} by $(3,2,1) \in \Theta$.

3 An application to product graphs

Let G_{1} and G_{2} be graphs. We define the product of G_{1} and G_{2}, denoted $G_{1} \times G_{2}$, to be the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and with vertices (u, v) and (x, y) adjacent exactly when $u=x$ and v and y are adjacent in G_{2} or u and x are adjacent in G_{1} and $v=y$. Graph products provide an alternate definition of the cube, since Q_{n} is the product of K_{2} with itself n times.

Theorem 4 Let $C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{r}}$ be cycles with an even number of edges, let s be a nonnegative integer, and set $G=C_{m_{1}} \times C_{m_{2}} \times \cdots \times C_{m_{r}} \times Q_{s}$. Then if T is any tree with $2 r+s$ edges, T divides G.

Proof. Let Γ be the group $Z_{m_{1}} \times Z_{m_{2}} \times \cdots \times Z_{m_{r}} \times Z_{2}^{s}$. Let Θ be the kernal of the natural homomorphism from Γ onto Z_{2} given by $\left(x_{1}, x_{2}, \ldots, x_{r+s}\right) \rightarrow x_{1}+x_{2}+\ldots x_{r+s}$. Let u_{i} be the element of Γ has i th component 1 and zeros otherwise, and take $\Delta^{+}=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $\Delta_{2}=\left\{u_{r+1}, u_{r+2}, \ldots, u_{r+s}\right\}$. It may be checked that Δ is square-independent. Then G is the Cayley graph $G(\Gamma, \Delta)$ and the previous theorem applies.

Figure 1 illustrates part of a tree decomposition of $C_{6} \times C_{8} \times Q_{1}$.

References

[1] J. Bosák, Decompositions of graphs, Kluwer Academic Publishers, Boston, MA, 1990.
[2] J. F. Fink, On the decomposition of n-cubes into isomorphic trees, J. Graph Theory 14 (1990), 405-411.
[3] J. F. Fink, On the decomposition of Cayley color graphs into isomorphic oriented trees, J. Comb. Theory, Ser. B 61 (1994), 71-82.
[4] R. Häggkvist, Decompositions of complete bipartite graphs, London Math. Soc. Lect. Notes Ser. C. U. P., Cambridge 141 (1989), 115-147.
[5] P. Horak, J. Šiŕañ, and W. Wallis, Decomposing Cubes, J. Austral. Math. Soc. (Series A) 61 (1996), 119-128.
[6] M. S. Jacobson, M. Truszczyński, and Z. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991), 17-27.
[7] M. Ramras, Symmetric edge-decompositions of hypercubes, Graphs and Combinatorics 7 (1991), 65-87.
[8] M. Ramras, Fundamental subsets of edges of hypercubes, Ars Combinatoria 46 (1997), 3-24.
[9] G. Ringel, Problem 25, in Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963, Prague (1964), 162.
(Received 20/3/99)

