Doubly dependent sets in graphs

David G. C. Horrocks
Department of Mathematics and Computer Science
University of Prince Edward Island Charlottetown, PEI, Canada, C1A 4P3.

Abstract

Let G be a graph. A subset X of $V(G)$ is said to be dependent if X is not independent. We say that X is doubly dependent if both X and $V(G) \backslash X$ are dependent.

Let $d_{k}(G)$ denote the number of doubly dependent sets in G of cardinality k. In this paper, we show that the sequence $\left\{d_{k}(G)\right\}$ is unimodal and, in particular, if G has r vertices then $\max _{k}\left\{d_{k}(G)\right\}=d_{\lfloor r / 2\rfloor}(G)$. We also show that the partially ordered set D_{G} consisting of all doubly dependent sets of G ordered by inclusion does not, in general, have the Sperner property.

1 Introduction

Let G be a graph and let the vertex set of G be denoted by $V(G)$. A subset X of $V(G)$ is called an independent set if no two vertices in X are adjacent in G. We will say that a subset X of $V(G)$ is dependent if it is not independent. Further, let us define $X \subseteq V(G)$ to be doubly dependent if both X and $V(G) \backslash X$ are dependent. Finally, $X \subseteq V(G)$ is said to be singly dependent if X is dependent and $V(G) \backslash X$ is independent.

Let $p_{k}(G)$ be the number of dependent sets in G of cardinality k. Moreover, let $s_{k}(G)$ and $d_{k}(G)$ respectively denote the number of singly dependent and doubly dependent sets in G of cardinality k.

The poset consisting of all dependent sets of G ordered by inclusion has $\left\{p_{k}(G)\right\}$ as its sequence of Whitney numbers. Sperner-type results for this poset have been obtained, and several properties of the sequence $\left\{p_{k}(G)\right\}$ have been discovered as we shall see in Section 3. The purpose of this paper is to study the poset of doubly dependent sets and to investigate the sequence $\left\{d_{k}(G)\right\}$.

2 Terminology

Let P be a finite partially ordered set (poset). A subset C of elements of P is called a chain if any two elements of C are comparable. The length of the chain C is $|C|-1$.

If every maximal chain in P has the same length then P is said to be graded. We say that y covers x if $x<y$ and there does not exist $z \in P$ such that $x<z<y$. A rank function for P is a function $r: P \rightarrow\{0,1,2, \ldots$,$\} such that r(y)=r(x)+1$ whenever y covers x in P. A ranked poset consists of a poset together with a rank function.

Let P be a ranked poset with rank function r. The set $P_{k}=\{x \in P \mid r(x)=k\}$ is called the k-th rank of P. The sequence of rank numbers or Whitney numbers of P is $\left\{\left|P_{k}\right|\right\}_{k \geq 0}$. The sequence $a_{0}, a_{1}, \ldots, a_{n}$ of real numbers is said to be unimodal if there is an integer k such that

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{k-1} \leq a_{k} \geq a_{k+1} \geq \cdots \geq a_{n-1} \geq a_{n}
$$

The ranked poset P is called rank unimodal if its Whitney numbers form a unimodal sequence. Furthermore, the sequence $a_{0}, a_{1}, \ldots, a_{n}$ is symmetric if $a_{i}=a_{n-i}$ for all i. We say that P is rank symmetric if the sequence of its Whitney numbers is symmetric.

An antichain is a set of elements of P, no two of which are comparable. A ranked poset P has the Sperner property if the maximum size of an antichain in P equals the maximum size of a rank of P. Further terminology regarding the combinatorics of partially ordered sets may be found in [1].

We will also require some basic terminology of graph theory which may be found in [2]. In particular, a graph G is said to be nontrivial if its edge set is not empty. For $n \geq 2$, we define the n-star S_{n} to be the complete bipartite graph $K_{1, n-1}$. Let P_{n} denote the path on n vertices, and let Z_{m} denote the graph consisting of m vertices and no edges. Finally, for graphs G_{1} and G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, let $G_{1}+G_{2}$ denote the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

3 Posets from Graphs

3.1 The poset of dependent sets

Let G be a nontrivial graph. We denote by P_{G} the poset consisting of all dependent sets in G, ordered by set-theoretic inclusion. The poset P_{G} is graded and also ranked since $r: X \rightarrow|X|$ serves as a rank function for P_{G}. This is a convenient rank function to use even though the minimal elements in P_{G} have rank 2. Indeed, with this rank function, the Whitney numbers of P_{G} are $p_{2}(G), p_{3}(G), \ldots, p_{r}(G)$ where $r=|V(G)|$.

The poset P_{G} has been studied extensively in connection with a conjecture of Lih (see, for example, [6], [8], [7], and [4]). The following theorem was proved in the case that G has an odd number of vertices by Zhu [8], and for the case of an even number of vertices by Horrocks [4].

Theorem 3.1 For every nontrivial graph G, the poset P_{G} has the Sperner property.

3.2 Matchings in posets

Let P_{i} and P_{j} be two ranks in the ranked poset P. We say that there is a matching from P_{i} to P_{j} if there exists an injection $f: P_{i} \rightarrow P_{j}$ such that $f(x)$ and x are comparable for all $x \in P_{i}$. Further, there is a matching between two ranks of a ranked poset if there is a matching from the smaller sized rank to the larger one.

The following theorem which shows, in particular, that the rank numbers of P_{G} are unimodal was obtained by Zha [7].

Theorem 3.2 Let G be a nontrivial graph on r vertices and let $P_{2}(G), \ldots, P_{r}(G)$ be the ranks of P_{G}. Then P_{G} is rank unimodal with largest rank $P_{n+1}(G)$ if $r=2 n+1$, and $P_{n}(G)$ or $P_{n+1}(G)$ if $r=2 n$. Moreover, a matching exists between every pair of adjacent ranks in P_{G}, except possibly in the case $\left(P_{n}(G), P_{n+1}(G)\right)$ when $r=2 n$.

Using the fact that P_{G} has the Sperner property for any nontrivial graph G, we may show that, in fact, a matching exists between every pair of adjacent ranks of P_{G}. To do this will require the classical matching theorem of P . Hall [3].

Theorem 3.3 Let G be a nontrivial graph. Then there is a matching between every pair of adjacent ranks of P_{G}.

Proof: By virtue of Theorem 3.2, we need only consider the ranks $P_{n}(G)$ and $P_{n+1}(G)$ in P_{G} where G is a nontrivial graph on $2 n$ vertices.

Suppose that $p_{n}(G) \geq p_{n+1}(G)$. If a matching does not exist between $P_{n}(G)$ and $P_{n+1}(G)$ then by Hall's theorem there is $S \subseteq P_{n+1}(G)$ such that $|S|>|N(S)|$ where $N(S)=\left\{X \in P_{n}(G) \mid X \subseteq Y\right.$ for some $\left.Y \in S\right\}$. Now $A=S \cup\left(P_{n}(G) \backslash N(S)\right)$ is an antichain and

$$
|A|=|S|+\left|P_{n}(G)\right|-|N(S)|>\left|P_{n}(G)\right|
$$

But this contradicts the fact that P_{G} has the Sperner property since $P_{n}(G)$ is the largest rank of P_{G}. The proof for the case $p_{n+1}(G) \geq p_{n}(G)$ is similar.

3.3 The poset of doubly dependent sets

Let D_{G} be the poset consisting of all doubly dependent sets in G, ordered by inclusion. Like P_{G}, D_{G} is graded and ranked. Once again, we use $r: X \rightarrow|X|$ as a rank function so the sequence of Whitney numbers of D_{G} is $\left\{d_{k}(G)\right\}$. In Sections 4 and 5 , we prove that this sequence is unimodal and symmetric, and determine the largest Whitney number of D_{G}. Finally, in Section 6, we show that the poset D_{G} need not have the Sperner property.

4 Rank Unimodality and Symmetry of D_{G}

The purpose of this section is to show that the poset D_{G} is rank unimodal and rank symmetric.

4.1 Rank symmetry

First, we observe that $X \in V(G)$ is doubly dependent if and only if $V(G) \backslash X$ is doubly dependent so D_{G} is rank symmetric. This fact is recorded in the following theorem.

Theorem 4.1 Let G be a nontrivial graph on r vertices. Then $d_{i}(G)=d_{r-i}(G)$ for all $2 \leq i \leq r-2$.

4.2 Rank unimodality

Theorem 4.2 Let G be a nontrivial graph on r vertices and let $D_{2}(G), \ldots, D_{r-2}(G)$ be the ranks of D_{G}. Then D_{G} is rank unimodal and the largest rank is $D_{n}(G)$ (and $\left.D_{n+1}(G)\right)$ if $r=2 n+1$, and $D_{n}(G)$ if $r=2 n$.

In order to prove Theorem 4.2, we will use the following lemma which states that a matching in P_{G} from any rank to the one immediately below it induces a matching between the corresponding ranks in D_{G}.

Lemma 4.3 Suppose that $P_{i+1}(G)$ may be matched to $P_{i}(G)$ in the poset P_{G}. Then $d_{i}(G) \geq d_{i+1}(G)$.

Proof: We will show that $D_{i+1}(G)$ may be matched to $D_{i}(G)$ from which the result follows immediately.

Accordingly, let $X \in D_{i+1}(G)$. Since $D_{i+1}(G) \subseteq P_{i+1}(G), X$ may be matched to $X \backslash\{s\} \in P_{i}(G)$ for some $s \in X$. As X is doubly dependent, so also is $V(G) \backslash X$. Thus $V(G) \backslash X \cup\{s\}$ is dependent so $X \backslash\{s\}$ is, in fact, doubly dependent.

Therefore, the matching from $P_{i+1}(G)$ to $P_{i}(G)$ induces a matching from $D_{i+1}(G)$ to $D_{i}(G)$ and so $d_{i}(G) \geq d_{i+1}(G)$.

4.2.1 Odd number of vertices

We now prove Theorem 4.2 in the case that G is a nontrivial graph on $2 n+1$ vertices for some n.

By Theorem 3.2, there is a matching in P_{G} from $P_{i+1}(G)$ to $P_{i}(G)$ for, in particular, all $n+1 \leq i \leq 2 n-2$. Therefore,

$$
d_{n+1}(G) \geq d_{n+2}(G) \geq \cdots \geq d_{2 n-2}(G) \geq d_{2 n-1}(G)
$$

by Lemma 4.3. This, together with the rank symmetry, establishes Theorem 4.2.

4.2.2 Even number of vertices

Suppose that G is a nontrivial graph on $2 n$ vertices for some n.
As above, by Theorem 3.2, there is a matching in P_{G} from $P_{i+1}(G)$ to $P_{i}(G)$ for, in particular, all $n+1 \leq i \leq 2 n-3$. Thus

$$
d_{n+1}(G) \geq d_{n+2}(G) \geq \cdots \geq d_{2 n-3}(G) \geq d_{2 n-2}(G)
$$

and therefore, by Theorem 4.1,

$$
d_{2}(G) \leq d_{3}(G) \leq \cdots \leq d_{n-2}(G) \leq d_{n-1}(G)
$$

In order to establish Theorem 4.2 it remains to show that $d_{n}(G) \geq d_{n-1}(G)$ which is the purpose of Section 5.

5 The Largest Rank in D_{G} when $|V(G)|$ is even

This section is devoted to proving the following result.
Theorem 5.1 Let G be a nontrivial graph on $2 n$ vertices. Then

$$
d_{n}(G) \geq d_{n-1}(G)
$$

The proof of Theorem 5.1, the details of which are presented in Section 5.4, proceeds as follows. First, in Section 5.1, we show that if G contains a component of a particular form then $d_{n}(G) \geq d_{n-1}(G)$. Otherwise, we claim that G is either connected or that each component of G is "large". In either case, it is shown (Sections 5.2 and 5.3 respectively) that $p_{n}(G) \geq p_{n+1}(G)$ from which Theorem 5.1 follows.

5.1 Some Direct Sums

Let G be a nontrivial graph on $2 n$ vertices. In this section, we show that $d_{n}(G) \geq$ $d_{n-1}(G)$ provided that G has a component having a particular form. The particular forms that we consider are a single vertex, a triangle, an edge, and a star graph.

5.1.1 An Isolated Vertex

Lemma 5.2 Let G be a graph on $2 n$ vertices. If $G=K_{1}+H$ and H has at least one edge then $d_{n}(G) \geq d_{n-1}(G)$.

Proof: Let x be an isolated vertex in G. The number of sets X in $D_{k}(G)$ which contain x is $d_{k-1}(H)$ since $X \backslash x$ is a doubly dependent $(k-1)$-set in H. Similarly, the number of sets in $D_{k}(G)$ which do not contain x is $d_{k}(H)$.

Thus $d_{k}(G)=d_{k-1}(H)+d_{k}(H)$ so

$$
\begin{aligned}
d_{n}(G)-d_{n-1}(G) & =d_{n-1}(H)+d_{n}(H)-\left(d_{n-2}(H)+d_{n-1}(H)\right) \\
& =d_{n}(H)-d_{n-2}(H) \\
& =d_{n}(H)-d_{n+1}(H) \geq 0
\end{aligned}
$$

by Lemma 4.3, since $P_{n+1}(H)$ may be matched to $P_{n}(H)$ in the poset P_{H} by Theorem 3.2.

5.1.2 A Disjoint Triangle

Lemma 5.3 Let G be a graph on $2 n$ vertices. If $G=K_{3}+H$ and H has at least one edge then $d_{n}(G) \geq d_{n-1}(G)$.

Proof: We enumerate the number of sets in $D_{k}(G)$ by considering the cardinality of $X \cap V\left(K_{3}\right)$ for each $X \in D_{k}(G)$.

First, suppose that $X \in D_{k}(G)$ is such that $X \cap V\left(K_{3}\right)=\emptyset$. Then X is a dependent k-set in H, the number of which is $p_{k}(H)$.

Secondly, suppose that $\left|X \cap V\left(K_{3}\right)\right|=1$. Then $X \cap V\left(K_{3}\right)$ is a dependent $(k-1)$ set in H. Since $\left|X \cap V\left(K_{3}\right)\right|=1$ may occur in 3 ways, the number of possibilities for X is $3 p_{k-1}(H)$.

Thirdly, suppose that $\left|X \cap V\left(K_{3}\right)\right|=2$. Then $(V(G) \backslash X) \cap V(H)$ is a dependent $(2 n-k-1)$-set in H. Since $\left|X \cap V\left(K_{3}\right)\right|=2$ may occur in 3 ways, the number of possibilities in this case is $3 p_{2 n-k-1}(H)$.

Finally, if $\left|X \cap V\left(K_{3}\right)\right|=3$ then we must select a dependent $(2 n-k)$-set in H for $V(G) \backslash X$ which may be done in $p_{2 n-k}(H)$ ways.

Thus

$$
d_{k}(G)=p_{k}(H)+3 p_{k-1}(H)+3 p_{2 n-k-1}(H)+p_{2 n-k}(H)
$$

so after routine simplification

$$
d_{n}(G)-d_{n-1}(G)=-p_{n+1}(H)-p_{n}(H)+5 p_{n-1}(H)-3 p_{n-2}(H) \geq 0
$$

since, by Theorem 3.2 and the fact that H has $2 n-3$ vertices, $P_{n-1}(H)$ is the rank of largest size in P_{H}.

5.1.3 A Disjoint Edge

In this section, we show that Theorem 5.1 holds if G contains a disjoint edge. We will require the following two lemmas.

Lemma 5.4 Suppose that G is a graph on $2 n$ vertices which has at least one edge. Then, in the poset $P_{G}, p_{n} \geq p_{n+2}$ and $2 p_{n+1} \geq p_{n}+p_{n+2}$ where $p_{i}=p_{i}(G)$.

Proof: In the poset P_{G}, let $E_{i}=\left\{(X, Y) \mid X \in P_{i}(G), Y \in P_{i+1}(G), X<Y\right\}$. We now enumerate $\left|E_{i}\right|$ in two different ways. First, as each $X \in P_{i}(G)$ is covered by $2 n-i$ elements of $P_{i+1}(G)$, we have $\left|E_{i}\right|=(2 n-i) p_{i}$. On the other hand, each $Y \in P_{i+1}(G)$ covers $i+1, i$, or $i-1$ elements of $P_{i}(G)$ so $(i-1) p_{i+1} \leq\left|E_{i}\right| \leq(i+1) p_{i+1}$. Therefore,

$$
\begin{equation*}
(i-1) p_{i+1} \leq(2 n-i) p_{i} \leq(i+1) p_{i+1} \tag{1}
\end{equation*}
$$

Setting $i=n$ in (1), we obtain, in particular, $n p_{n} \geq(n-1) p_{n+1}$. For $i=n+1$, we have, in particular, $(n-1) p_{n+1} \geq n p_{n+2}$. Combining these inequalities gives $p_{n} \geq p_{n+2}$.

Furthermore, $n p_{n} \leq(n+1) p_{n+1}$ is obtained by taking $i=n$ in (1). Adding this inequality to $(n-1) p_{n+1} \geq n p_{n+2}$ yields $2 p_{n+1} \geq p_{n}+p_{n+2}$.

Lemma 5.5 Suppose that $P_{i-1}(G)$ may be matched to $P_{i}(G)$ in the poset P_{G}. Then $s_{i}(G) \geq s_{i-1}(G)$.
Proof: Let $X \in P_{i-1}(G)$ be singly dependent. Since $P_{i-1}(G)$ may be matched to $P_{i}(G), X$ may be matched to $X \cup\{s\}$ for some $s \in V(G) \backslash X$. The result now follows upon showing that $X \cup\{s\}$ is also singly dependent.

Since X is singly dependent, $V(G) \backslash X$ is independent. Therefore, $V(G) \backslash(X \cup\{s\})$ is also independent so $X \cup\{s\}$ is singly dependent.

Lemma 5.6 Let G be a graph on $2 n$ vertices. If $G=K_{2}+H$ and H is a nontrivial graph then $d_{n}(G) \geq d_{n-1}(G)$.

Proof: Let (x, y) be a disjoint edge in G. As in Lemma 5.3, we enumerate the number of sets in $D_{k}(G)$ by considering the intersection of X with $\{x, y\}$ for each $X \in D_{k}(G)$.

First, if $X \cap\{x, y\}=\emptyset$ then X is a dependent k-set in H, the number of which is $p_{k}(H)$.

Secondly, if $X \cap\{x, y\}=\{x\}$ then $X \cap V(H)$ and $(V(G) \backslash X) \cap V(H)$ are both dependent sets in H. The number of such sets X is therefore $d_{k-1}(H)$. Similarly, if $X \cap\{x, y\}=\{y\}$ then there are $d_{k-1}(H)$ possibilities.

Finally, if $X \cap\{x, y\}=\{x, y\}$ then $V(G) \backslash X$ is a dependent $(2 n-k)$-set in H, the number of which is $p_{2 n-k}(H)$.

Therefore $d_{k}(G)=p_{k}(H)+p_{2 n-k}(H)+2 d_{k-1}(H)$ so

$$
\begin{equation*}
d_{n}(G)-d_{n-1}(G)=\left[2 p_{n}(H)-p_{n-1}(H)-p_{n+1}(H)\right]+2\left(d_{n-1}(H)-d_{n-2}(H)\right) \tag{2}
\end{equation*}
$$

As H has $2 n-2$ vertices, the largest rank in P_{H} is either $P_{n-1}(H)$ or $P_{n}(H)$, by Theorem 3.2. We consider two cases accordingly.

First, suppose that $p_{n-1}(H) \geq p_{n}(H)$. Then $P_{n}(H)$ may be matched to $P_{n-1}(H)$ by Theorem 3.3 and so $d_{n-1}(H) \geq d_{n}(H)=d_{n-2}(H)$ by Lemma 4.3 and Theorem 4.1. Moreover, by Lemma $5.4,2 p_{n}(H) \geq p_{n-1}(H)+p_{n+1}(H)$. Thus both terms on the right hand side of (2) are nonnegative and the result follows.

Conversely, suppose that $p_{n}(H)>p_{n-1}(H)$. By Lemma 5.4, $p_{n-1}(H) \geq p_{n+1}(H)$ and so from (2)

$$
\begin{aligned}
d_{n}(G)-d_{n-1}(G) & \geq 2 p_{n}(H)-2 p_{n-1}(H)+2\left(d_{n-1}(H)-d_{n-2}(H)\right) \\
& =2\left[\left(p_{n}(H)-d_{n}(H)\right)-\left(p_{n-1}(H)-d_{n-1}(H)\right)\right] \\
& =2\left[s_{n}(H)-s_{n-1}(H)\right] \geq 0
\end{aligned}
$$

by Lemma 5.5 , since $P_{n-1}(H)$ may be matched to $P_{n}(H)$ by Theorem 3.3.

5.1.4 A Disjoint Star

Recall that the n-star S_{n} is isomorphic to $K_{i, n-1}$. The following lemma may be shown to hold for all star graphs. A general proof, however, is complicated and, as we require the lemma only for 3 -stars and 4 -stars, we opt to prove it only in these special cases.

Lemma 5.7 Let G be a graph on $2 n$ vertices. If $G=S_{r+1}+H$ where $r=2$ or 3 then $d_{n}(G) \geq d_{n-1}(G)$.
Proof: In S_{r+1}, let x be the vertex of degree r and let $y_{1}, y_{2}, \ldots, y_{r}$ be the other vertices. We will obtain an expression for $d_{k}(G)$ by considering how $X \in D_{k}(G)$ intersects $\left\{x, y_{1}, \ldots, y_{r}\right\}$.

First, suppose that $x \in X$. If $X \cap\left\{y_{1}, \ldots, y_{r}\right\}=\emptyset$ then both $X \cap V(H)$ and $(V(G) \backslash X) \cap V(H)$ are dependent sets in H. The number of such sets X is $d_{k-1}(H)$. Otherwise, $\left|X \cap\left\{y_{1}, \ldots, y_{r}\right\}\right|=i$ for some $1 \leq i \leq r$. In this case, $V(G) \backslash X$ is a dependent $[2 n-k-(r-i)]$-set in H, the number of which is $p_{2 n-k-(r-i)}(H)$. Since $\left|X \cap\left\{y_{1}, \ldots, y_{r}\right\}\right|=i$ may occur in $\binom{r}{i}$ ways, the number of possibilities for X is $\binom{r}{i} p_{2 n-k-(r-i)}(H)$.

Conversely, suppose that $x \notin X$. If $(V(G) \backslash X) \cap\left\{y_{1}, \ldots, y_{r}\right\}=\emptyset$ then there are $d_{k-r}(H)$ possibilities for X. Otherwise, $\left|(V(G) \backslash X) \cap\left\{y_{1}, \ldots, y_{r}\right\}\right|=i$ for some $1 \leq i \leq r$ and there are $\binom{r}{i} p_{k-(r-i)}(H)$ ways to select X.

Thus we have

$$
d_{k}(G)=d_{k-1}(H)+d_{k-r}(H)+\sum_{i=1}^{r}\binom{r}{i}\left[p_{2 n-k-(r-i)}(H)+p_{k-(r-i)}(H)\right]
$$

First, suppose that $r=2$. After routine simplification, we obtain

$$
d_{n}(G)-d_{n-1}(G)=\left(d_{n-1}(H)-d_{n-3}(H)\right)+\left(3 p_{n-1}(H)-2 p_{n-2}(H)-p_{n+1}(H)\right)
$$

Since H has $2 n-3$ vertices, by Theorem $3.2 P_{n-1}(H)$ is the largest rank in P_{H} so $3 p_{n-1}(H)-2 p_{n-2}(H)-p_{n+1}(H) \geq 0$. Moreover, $d_{n-3}(H)=d_{n}(H)$ so

$$
d_{n-1}(H)-d_{n-3}(H)=d_{n-1}(H)-d_{n}(H) \geq 0
$$

by Theorem 4.2. Therefore, $d_{n}(G)-d_{n-1}(G) \geq 0$.
Secondly, for $r=3$, we have

$$
\begin{aligned}
d_{n}(G)-d_{n-1}(G)= & d_{n-1}(H)+d_{n-3}(H)-d_{n-2}(H)-d_{n-4}(H) \\
& -3 p_{n-3}(H)+3 p_{n-2}(H)+2 p_{n-1}(H)-p_{n}(H)-p_{n+1}(H) \\
= & \left(d_{n-1}(H)-d_{n-4}(H)\right) \\
& +\left[\left(p_{n-2}(H)-d_{n-2}(H)\right)-\left(p_{n-3}(H)-d_{n-3}(H)\right)\right] \\
& +\left(-2 p_{n-3}(H)+2 p_{n-2}(H)+2 p_{n-1}(H)-p_{n}(H)-p_{n+1}(H)\right) .
\end{aligned}
$$

The largest rank in P_{H} is either $P_{n-2}(H)$ or $P_{n-1}(H)$. By the unimodality of the Whitney numbers in P_{H}, we have $-2 p_{n-3}(H)+2 p_{n-2}(H)+2 p_{n-1}(H)-p_{n}(H)-$ $p_{n+1}(H) \geq 0$. Moreover, as H has $2 n-4$ vertices,

$$
d_{n-1}(H)-d_{n-4}(H)=d_{n-1}(H)-d_{n}(H) \geq 0
$$

by Theorem 4.2. Finally,

$$
\left[\left(p_{n-2}(H)-d_{n-2}(H)\right)-\left(p_{n-3}(H)-d_{n-3}(H)\right)\right]=s_{n-2}(H)-s_{n-3}(H) \geq 0
$$

by Lemma 5.5, since $P_{n-3}(H)$ may be matched to $P_{n-2}(H)$ in P_{H}. For $r=3$ then, $d_{n}(G)-d_{n-1}(G) \geq 0$.

5.2 Connected Graphs

The following lemma, found in [5], will be used in Section 5.4 as part of the proof of Theorem 5.1 for connected graphs.

Lemma 5.8 Let $n \geq 3$ be a positive integer. If G is a connected graph on $2 n$ vertices then

$$
p_{n}(G) \geq p_{n+1}(G)
$$

5.3 Spanning Subgraphs

A graph G on $2 n$ vertices may contain a spanning subgraph H such that $p_{n}(H) \geq$ $p_{n+1}(H)$. The following lemma, found in [4], shows that provided H satisfies an additional condition then $p_{n}(G) \geq p_{n+1}(G)$. Therefore, should G contain such a subgraph H, it will be shown in Section 5.4 that Theorem 5.1 holds for G.

Lemma 5.9 Let G be a graph on $2 n$ vertices, and let H be a spanning subgraph of G. If

1. $p_{n}(H) \geq p_{n+1}(H)$, and
2. for any two isolated vertices x and y of $H, H \backslash\{x, y\}$ has no more than $\sum_{i=2}^{n-1}\binom{2 i-1}{i}$ independent sets of size $n-1$, and
3. P_{H} has the Sperner property,
then P_{G} has the Sperner property, and $p_{n}(G) \geq p_{n+1}(G)$.
There are three particular subgraphs of G that will be of interest in Section 5.4 and we now show that each of these subgraphs satisfies the hypotheses of Lemma 5.9. To do this will require the independent set generating function for the graph H which is defined to be the polynomial $f(H)=\sum_{i \geq 0} a_{i} x^{i}$ where a_{i} is the number of independent sets in H of cardinality i.

First, let $H_{1}=2 P_{4}+Z_{2 n-8}$. (Recall that P_{n} denotes the path on n vertices, S_{n} is the complete bipartite graph $K_{1, n-1}$, and Z_{n} denotes the graph consisting of n vertices and no edges.) The independent set generating function for H_{1} is

$$
\begin{aligned}
f\left(H_{1}\right) & =\left(1+4 x+3 x^{2}\right)^{2}(1+x)^{2 n-8} \\
& =\left(1+8 x+22 x^{2}+24 x^{3}+9 x^{4}\right)(1+x)^{2 n-8}
\end{aligned}
$$

and so
$p_{k}\left(H_{1}\right)=\binom{2 n}{k}-\binom{2 n-8}{k}-8\binom{2 n-8}{k-1}-22\binom{2 n-8}{k-2}-24\binom{2 n-8}{k-3}-9\binom{2 n-8}{k-4}$.
By expanding the binomial coefficients, it may be shown that the inequality $p_{n}\left(H_{1}\right) \geq$ $p_{n+1}\left(H_{1}\right)$ is equivalent to

$$
(2 n-7)(n-2) \geq 0
$$

which holds for $n \geq 4$.
If x and y are any two isolated vertices in H_{1} then

$$
\begin{aligned}
a_{n-1}\left(H_{1} \backslash\{x, y\}\right)= & {\left[x^{n-1}\right]\left(1+8 x+22 x^{2}+24 x^{3}+9 x^{4}\right)(1+x)^{2 n-10} } \\
= & \binom{2 n-10}{n-1}+8\binom{2 n-10}{n-2}+22\binom{2 n-10}{n-3}+24\binom{2 n-10}{n-4} \\
& +9\binom{2 n-10}{n-5} .
\end{aligned}
$$

We wish to show that $a_{n-1}\left(H_{1} \backslash\{x, y\}\right) \leq \sum_{i=2}^{n-1}\binom{2 i-1}{i}$. For $n=5$, we have

$$
a_{4}\left(H_{1} \backslash\{x, y\}\right)=9 \leq\binom{ 7}{4}
$$

and for $n=6$,

$$
a_{5}\left(H_{1} \backslash\{x, y\}\right)=24\binom{2}{0}+9\binom{2}{1} \leq\binom{ 9}{5}
$$

Finally, by the unimodality of the binomial coefficient,

$$
a_{n-1}\left(H_{1} \backslash\{x, y\}\right) \leq 64\binom{2 n-10}{n-5} \leq\binom{ 2 n-3}{n-1}
$$

for all $n \geq 7$.
By Theorem 3.1, $P_{H_{1}}$ has the Sperner property and thus H_{1} satisfies all three hypotheses of Lemma 5.9.

Secondly, consider $H_{2}=P_{4}+S_{5}+Z_{2 n-9}$. We have $f\left(H_{2}\right)=\left(1+4 x+3 x^{2}\right)\left[(1+x)^{4}+\right.$ $x](1+x)^{2 n-9}$ and the inequality $p_{n}\left(H_{2}\right) \geq p_{n+1}\left(H_{2}\right)$ may be seen to be equivalent to

$$
5 n^{3}+24 n^{2}-269 n+420 \geq 0
$$

which holds for $n \geq 5$.
To verify the second condition in Lemma 5.9 , we must show that

$$
\begin{aligned}
& \binom{2 n-11}{n-1}+9\binom{2 n-11}{n-2}+29\binom{2 n-11}{n-3}+ \\
& 43\binom{2 n-11}{n-4}+35\binom{n-11}{n-5}+16\binom{2 n-11}{n-6}+3\binom{2 n-11}{n-7} \leq \sum_{i=2}^{n-1}\binom{2 i-1}{i}
\end{aligned}
$$

for $n \geq 6$. This may be checked directly for $n=6$ and, for $n \geq 7$, it may be shown that

$$
136\binom{2 n-11}{n-5} \leq\binom{ 2 n-3}{n-1}
$$

which implies the desired inequality.
Like $P_{H_{1}}, P_{H_{2}}$ also has the Sperner property so H_{2} satisfies all three hypotheses of Lemma 5.9.

Finally, let $H_{3}=2 S_{5}+Z_{2 n-10}$. The independent set generating function for H_{3} is $f\left(H_{3}\right)=\left[(1+x)^{4}+x\right]^{2}(1+x)^{2 n-10}$ and, like H_{1} and H_{2}, H_{3} may be shown to satisfy the hypotheses of Lemma 5.9. The details are omitted.

5.4 Proof of Theorem 5.1

We are now ready to present a proof of Theorem 5.1. Let G be a nontrivial graph on $2 n$ vertices.

We note first of all that the result holds trivially if $n=1$ or 2 since, in either case, $d_{n-1}(G)=0$. We will therefore assume that $n \geq 3$.

First, if G is connected, then $p_{n}(G) \geq p_{n+1}(G)$ by Lemma 5.8. By Theorem 3.3, there is a matching from $P_{n+1}(G)$ to $P_{n}(G)$ in P_{G} and therefore, by Lemma 4.3, $d_{n}(G) \geq d_{n+1}(G)=d_{n-1}(G)$.

Otherwise, G has at least two components. If one of the components is K_{1}, K_{2}, K_{3}, or S_{3} then the result follows from Lemma $5.2,5.6,5.3$, or 5.7 respectively.

Otherwise, each component in G contains at least 4 vertices. Let C_{1} and C_{2} be two of the components. If either C_{1} or C_{2} is isomorphic to S_{4} then the result follows from Lemma 5.7.

Otherwise, both C_{1} and C_{2} contain either P_{4} (the path on 4 vertices), or S_{5} as a subgraph. Equivalently, G contains either H_{1}, H_{2}, or H_{3} as a subgraph where $H_{1}=2 P_{4}+Z_{2 n-8}, H_{2}=P_{4}+S_{5}+Z_{2 n-9}$, and $H_{3}=2 S_{5}+Z_{2 n-10}$. In any event, we have $p_{n}(G) \geq p_{n+1}(G)$ (by Lemma 5.9) and the result follows upon applying Theorem 3.3 and Lemma 4.3.

6 Spernerity and D_{G}

Let G be a nontrivial graph. The poset P_{G} is known to have the Sperner property. It is also rank unimodal but not, in general, rank symmmetric.

As D_{G} is both rank unimodal and rank symmetric, it is perhaps surprising to discover that D_{G} does not have the Sperner property in general. In fact, one need not search far to find a counterexample. Let $V(G)=\{1,2,3,4,5\}$ and $E(G)=$ $\{\{1,2\},\{2,3\},\{2,4\},\{2,5\},\{3,4\}\}$. Then $d_{2}(G)=d_{3}(G)=3$ but there is an antichain of size 4 , namely $\{\{1,2\},\{2,5\},\{1,3,4\},\{3,4,5\}\}$.

We have been unable, however, to find a counterexample with an even number of vertices. Indeed, that D_{G} has the Sperner property is trivially true if $|V(G)|=2$ or 4 , and may be verified to be true also when $|V(G)|=6$. Moreover, if $p_{n}(G) \geq p_{n+1}(G)$ then $P_{n+1}(G)$ may be matched to $P_{n}(G)$ in P_{G} by virtue of Theorem 3.3. This matching then induces a matching from $D_{n+1}(G)$ to $D_{n}(G)$ in D_{G} (by Lemma 4.3) and it follows that D_{G} has the Sperner property. In closing then, we make the following conjecture.

Conjecture 6.1 Let G be a nontrivial graph on $2 n$ vertices. Then D_{G} has the Sperner property.

Acknowledgements

I wish to thank the referee for offering many helpful suggestions. This research was supported by an NSERC Canada grant.

References

[1] I. Anderson, Combinatorics of Finite Sets, Oxford University Press, New York, 1987.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[3] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
[4] D. G. C. Horrocks, On Lih's Conjecture concerning Spernerity, Europ. J. Combinatorics 20 (1999), 131-148.
[5] D. G. C. Horrocks, On the Number of Dependent Sets in a Connected Graph, Ars Combinatoria 53 (1999), 239-247.
[6] K. W. Lih, Sperner families over a subset, J. Combinatorial Theory A 29 (1980), 182-185.
[7] X. Zha, On a Conjecture on the Sperner Property, Europ. J. Combinatorics 10 (1989), 603-607.
[8] Ying-xian Zhu, A note on a conjecture of Sperner property, J. Math. Res. Exposition (China) 4 (1984), 148.

