A few more incomplete self-orthogonal Latin squares and related designs*

R. J. R. Abel
School of Mathematics, University of New South Wales
Kensington, NSW 2033, Australia
F. E. Bennett
Department of Mathematics, Mount Saint Vincent University
Halifax, Nova Scotia B3M 2J6, Canada
H. Zhang
Computer Science Department, The University of Iowa Iowa City, IA 52242 , U. S. A.
L. Zhu
Department of Mathematics, Suzhou University
Suzhou 215006, China

Abstract

An incomplete self-orthogonal Latin square of order v with an empty subarray of order n, an $\operatorname{ISOLS}(v, n)$, can exist only if $v \geq 3 n+1$. This necessary condition is known to be sufficient apart from 2 known exceptions $(v, n)=(6,1)$ and $(8,2)$ plus 14 possible exceptions (v, n) with $v=3 n+2$. In this paper, we construct eleven new $\operatorname{ISOLS}(3 n+2, n)$ reducing unknown n to $6,8,10$ only. This result is then used to improve the existence of HSOLS of type $3^{n} u^{1}$. To do this, two newly found unipotent SOLSSOMs, $\operatorname{SOLSSOM}(66)$ and $\operatorname{SOLSSOM}(70)$ are also useful.

[^0]
1 Introduction

Let S be a set and $\mathcal{H}=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$ be a set of disjoint subsets of S. A holey Latin square having hole set \mathcal{H} is an $|S| \times|S|$ array L, indexed by S, satisfying the following properties:
(1) every cell of L either contains an element of S or is empty,
(2) every element of S occurs at most once in any row or column of L,
(3) the subarrays indexed by $S_{i} \times S_{i}$ are empty for $1 \leq i \leq n$ (these subarrays are referred to as holes),
(4) element $s \in S$ occurs in row or column t if and only if $(s, t) \in(S \times$ $S) \backslash \bigcup_{1 \leq i \leq n}\left(S_{i} \times S_{i}\right)$.
The order of L is $|S|$. Two holey Latin squares on symbol set S and hole set \mathcal{H}, say L_{1} and L_{2}, are said to be orthogonal if their superposition yields every ordered pair in $(S \times S) \backslash \bigcup_{1 \leq i \leq n}\left(S_{i} \times S_{i}\right)$. We shall use the notation $\operatorname{IMOLS}\left(s ; s_{1}, \cdots, s_{n}\right)$ to denote a pair of orthogonal holey Latin squares on symbol set S and hole set $\mathcal{H}=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$, where $s=|S|$ and $s_{i}=\left|S_{i}\right|$ for $1 \leq i \leq n$. If $\mathcal{H}=\emptyset$, we obtain a $\operatorname{MOLS}(s)$. If $\mathcal{H}=\left\{S_{1}\right\}$, we simply write $\operatorname{IMOLS}\left(s, s_{1}\right)$ for the orthogonal pair of holey Latin squares.

If $\mathcal{H}=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$ is a partition of S, then a holey Latin square is called a partitioned incomplete Latin square, denoted by PILS. The type of the PILS is defined to be the multiset $\left\{\left|S_{i}\right|: 1 \leq i \leq n\right\}$. We shall use an "exponential" notation to describe types: so type $t_{1}^{u_{1}} \cdots t_{k}^{u_{k}}$ denotes u_{i} occurrences of $t_{i}, 1 \leq i \leq k$, in the multiset. Two orthogonal PILSs of type T will be denoted by HMOLS (T).

A holey Latin square is called self-orthogonal if it is orthogonal to its transpose. For self-orthogonal holey Latin squares we use the notations $\operatorname{SOLS}(s), \operatorname{ISOLS}\left(s, s_{1}\right)$ and $\operatorname{HSOLS}(\mathrm{T})$ for the cases of $\mathcal{H}=\emptyset,\left\{S_{1}\right\}$ and a partition $\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$, respectively. An HSOLS(T) is also denoted frame SOLS or FSOLS of type T. If $\mathcal{H}=\left\{S_{1}, S_{2}, \cdots, S_{n}, H\right\}$, where $\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$ is a partition of S, then the holey SOLS is called incomplete frame SOLS or an I-frame SOLS. The type of the I-frame SOLS is defined to be the multiset $\left\{\left(\left|S_{i}\right|,\left|S_{i} \cap H\right|\right): 1 \leq i \leq n\right\}$. We may also use an "exponential" notation to describe types of I-frame SOLS.

If A, B, C are 3 MOLS such that $B=A^{T}$ and $C=C^{T}$, then A is a self-orthogonal Latin square (SOLS) with C a symmetric orthogonal mate (SOM). The set of A, B, C is denoted SOLSSOM. If C has constant diagonal, the SOLSSOM is called unipotent.

The existence problem for $\operatorname{ISOLS}(v, n)$ has been almost completely solved. The following is known (see [5],[6],[10]).

Theorem 1.1 There exists an $\operatorname{ISOLS}(v, n)$ for all values of v and n satisfying $v \geq$ $3 n+1$, except for $(v, n)=(6,1),(8,2)$ and possibly for $v=3 n+2, n \in\{4,6,8,10,14$, $16,18,20,22,26,28,32,34,46\}$.

In Section 2, we shall first give a direct construction for $\operatorname{ISOLS}(14,4)$ and then use it to solve ten other cases. This leaves only $n=6,8,10$ undecided. To do this some known results on HSOLS of certain types are useful. We collect them in the following.

Theorem 1.2 ([2], [7], [8]) For $h \geq 1$, there exists an $H S O L S\left(h^{n}\right)$ if and only if $n \geq 4,(h, n) \neq(1,6)$.

Theorem 1.3 ([9]) There exists an $\operatorname{HSOLS}\left(3^{n} u^{1}\right)$ if and only if $n \geq 4$ and $n \geq$ $1+\frac{2 u}{3}$, with seventeen possible exceptions $(n, u)=(5,1)$ and $(n, u)=\left(n, \frac{3 n}{2}-2\right)$ for $n \in\{6,10,14,18,22,30,34,38,42,46,54,58,62,66,70,94\}$.

In Section 4, we use the updated Theorem 1.1 to further improve Theorem 1.3. We solve twelve of the seventeen cases leaving five numbers between 6 and 22 undecided. To do this, two unipotent SOLSSOMs, SOLSSOM(66) and SOLSSOM(70) are useful; they are newly constructed in Section 3.

2 New ISOLS

The following $\operatorname{ISOLS}(14,4)$ is found by an exhaustive search using a computer.

0	6	w	7	z	3	8	x	9	y	5	4	2	1
x	1	7	z	5	y	2	4	w	3	9	6	8	0
8	y	2	9	7	w	x	6	z	1	4	5	0	3
w	7	x	3	6	4	9	1	y	z	8	0	5	2
9	z	0	y	4	6	3	2	x	w	7	8	1	5
6	8	1	x	w	5	z	y	7	2	0	3	9	4
z	9	8	w	y	0	6	5	3	x	2	1	4	7
5	w	z	8	x	2	y	7	4	0	1	9	3	6
y	5	3	0	1	x	w	z	8	4	6	2	7	9
4	x	y	1	2	z	0	w	5	9	3	7	6	8
7	0	6	2	9	8	4	3	1	5				
1	2	9	4	3	7	5	8	0	6				
3	4	5	6	0	1	7	9	2	8				
2	3	4	5	8	9	1	0	6	7				

Lemma 2.1 There exists an $\operatorname{ISOLS}(14,4)$.
We shall use this ISOLS and some recursive constructions to solve other ten cases listed unknown in Theorem 1.1. We describe some known constructions below (see [10]).

Construction 2.2 Suppose a frame SOLS of type $t_{1}^{u_{1}} \cdots t_{k}^{u_{k}}$, and an $\operatorname{IMOLS}(m+$ $a, a)$ both exist. Then there exists an I-frame SOLS of type $\Pi_{1 \leq i \leq k}\left(t_{i}(m+a), t_{i} a\right)^{u_{i}}$.

Construction 2.3 Suppose there exists a frame SOLS of type $\left\{s_{i}: 1 \leq i \leq n\right\}$, and let $a \geq 0$ be an integer. For $1 \leq i \leq n-1$, suppose an $I S O L S\left(s_{i}+a, a\right)$ exists. Then there exists an $\operatorname{ISOLS}\left(s+a, s_{n}+a\right)$, where $s=\sum_{1 \leq i \leq n} s_{i}$.

Construction 2.4 Suppose an I-frame SOLS of type $\left\{\left(s_{i}, t_{i}\right): 1 \leq i \leq n\right\}$ exists, and let $a \geq 0$ be an integer. For $1 \leq i \leq n-1$, suppose there exists an $\operatorname{ISOLS}\left(s_{i}+\right.$ $\left.a ; t_{i}, a\right)$. Also, suppose an $\operatorname{ISOLS}\left(s_{n}+a, t_{n}\right)$ exists. Then there exists an $\operatorname{ISOLS}(s+$ $a, t)$, where $s=\sum s_{i}$ and $t=\sum t_{i}$.

The following known result is also needed.
Theorem 2.5 ([4]) There exists an $\operatorname{IMOLS}(v, n)$ for all values of v and n satisfying $v \geq 3 n$, except for $(v, n)=(6,1)$.
Lemma 2.6 There exists an $\operatorname{ISOLS}(44,14)$.
Proof. Start with an $\operatorname{HSOLS}\left(10^{4}\right)$ which exists from Theorem 1.2. Applying Construction 2.3 with $a=4$ gives an $\operatorname{ISOLS}(44,14)$. The required $\operatorname{ISOLS}(14,4)$ comes from Lemma 2.1.

The remaining nine cases can be treated uniformly.
Lemma 2.7 There exists an $\operatorname{ISOLS}(3 u+2 ; u, 2)$ for $u=3,4$.
Proof. An $\operatorname{ISOLS}(11 ; 3,2)$ is known, see [10, Table 4.1]. An $\operatorname{ISOLS}(14 ; 4,2)$ is shown below. The square is based on $\{0,1, \cdots, 9, a, b, x, y\}$ with two holes based on $\{8,9, a, b\}$ and $\{x, y\}$.

1	8	0	b	6	9	4	a	x	7	3	y	2	5
x	2	b	7	9	3	y	5	1	0	6	4	8	a
9	6	4	a	1	8	0	b	3	x	y	7	5	2
3	9	x	5	y	2	b	7	6	4	1	0	a	8
a	5	3	9	7	b	2	8	4	y	x	1	0	6
4	a	y	6	x	0	8	1	5	3	7	2	b	9
7	b	8	2	a	5	3	9	y	1	4	x	6	0
y	0	1	8	4	a	x	6	7	2	5	3	9	b
2	x	7	0	3	6	5	y					1	4
6	3	5	x	2	y	7	0					4	1
5	4	6	y	0	x	1	2					7	3
0	y	2	1	5	4	6	x					3	7
8	1	a	4	b	7	9	3	2	5	0	6		
b	7	9	3	8	1	a	4	0	6	2	5		

Lemma 2.8 If there is an $\operatorname{HSOLS}\left(3^{b} 4^{c} h^{1}\right)$ for $h=1,3,4,5$, then there exists an $\operatorname{ISOLS}(3 u+2, u)$ for $u=3 b+4 c+h$.
Proof. Start with an $\operatorname{HSOLS}\left(3^{b} 4^{c} h^{1}\right)$ and apply Construction 2.2 with $m=2$ and $a=$ 1 to obtain an I-frame SOLS of type $(9,3)^{b}(12,4)^{c}(3 h, h)^{1}$. The required $\operatorname{IMOLS}(3,1)$ comes from Theorem 2.5. Further apply Construction 2.4 with $a=2$. The required $\operatorname{ISOLS}(11 ; 3,2)$ and $\operatorname{ISOLS}(14 ; 4,2)$ come from Lemma 2.7; also ISOLS $(3 h+2, h)$ for $h=1,3,4,5$ come from Theorem 1.1 and Lemma 2.1. This gives an $\operatorname{ISOLS}(3 u+2, u)$ for $u=3 b+4 c+h$.

Lemma 2.9 There is an $\operatorname{ISOLS}(3 u+2, u)$ for $u \in\{16,18,20,22,26,28,32,34,46\}$. Proof. For each u, we have an $\operatorname{HSOLS}\left(3^{b} 4^{c} h^{1}\right)$ such that $u=3 b+4 c+h$. The HSOLS comes from either Theorem 1.2 or Theorem 1.3. The parameters are listed in Table 2.1. Then the conclusion follows from Lemma 2.8.

u	b	c	h	HSOLS
16	0	3	4	$\operatorname{HSOLS}\left(4^{3} 4^{1}\right)$
18	5	0	3	$\operatorname{HSOLS}\left(3^{3} 3^{1}\right)$
20	0	4	4	$\operatorname{HSOLS}\left(4^{4} 4^{1}\right)$
22	6	0	4	$\operatorname{HSOLS}\left(3^{6} 4^{1}\right)$
26	7	0	5	$\operatorname{HSOLS}\left(3^{7} 5^{1}\right)$
28	8	0	4	$\operatorname{HSOLS}\left(3^{8} 4^{1}\right)$
32	0	7	4	$\operatorname{HSOLS}\left(4^{7} 4^{1}\right)$
34	10	0	4	$\operatorname{HSOLS}\left(3^{10} 4^{1}\right)$
46	15	0	1	$\operatorname{HSOLS}\left(3^{15} 1^{1}\right)$

Table 2.1

We can now update Theorem 1.1 as follows.
Theorem 2.10 There exists an $\operatorname{ISOLS}(v, n)$ for all values of v and n satisfying $v \geq 3 n+1$, except for $(v, n)=(6,1),(8,2)$ and possibly for $v=3 n+2, n \in\{6,8,10\}$.

3 New SOLSSOMs

It is known that a unipotent SOLSSOM of order n exists if and only if n is even and $n \geq 4$ with one exception of $n=6$ and four possible exceptions of $n=10,14,66,70$ (see [3], [1]). In this section, we shall construct two new SOLSSOMs of orders 66 and 70 , which are also unipotent. They are useful in the next section.

The following direct construction is based on difference methods, which is a modification of Lemma 2.1 in [8].

Lemma 3.1 Let $G=Z_{g}$ with g even, and let X be any set disjoint from $G,|X|=h$ is even. Suppose there exists a set of 5 -tuples $\mathcal{B} \subseteq(G \cup X)^{5}$ which satisfies the following properties:

1. for each $i, 1 \leq i \leq 5$, and each $x \in X$, there is a unique $B \in \mathcal{B}$ with $b_{i}=x$ (b_{i} denotes the i-th co-ordinate of B);
2. no $B \in \mathcal{B}$ has two co-ordinates in X;
3. for each $i, j(1 \leq i<j \leq 5)$ and each $d \in G$, there is a unique $B \in \mathcal{B}$ with $b_{i}, b_{j} \in G$ and $b_{i}-b_{j}=d(\bmod g) ;$
4. for $b_{5} \in G,\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right) \in \mathcal{B}$ if and only if $\left(b_{2}, b_{1}, b_{4}, b_{3}, b_{5}\right) \in \mathcal{B}$;
5. the differences $b_{1}-b_{2}, b_{3}-b_{4}(\bmod g)$ are both odd if $\left(b_{1}, b_{2}, b_{3}, b_{4}, x\right)$ and $\left(b_{2}, b_{1}, b_{4}, b_{3}, y\right)$ are both in \mathcal{B} for any $x, y \in X, x \neq y$;
6. $(0,0,0,0, x) \in \mathcal{B}$ for some $x \in X$ and $\left(0, \frac{g}{2}, a, a+\frac{g}{2}, y\right) \in \mathcal{B}$ for some $a \in G$ and some $y \in X$.
Then there exists an $\operatorname{ISOLSSOM}(g+h, h)$. If further a unipotent $\operatorname{SOLSSOM}(h)$, exists, then so does a unipotent SOLSSOM $(g+h)$.

Proof. From the first four properties, we can obtain an $\operatorname{ISOLS}(g+h, h)$ with an orthogonal mate. In fact, by developing \mathcal{B} through G and using the first two coordinates as row and column indices, the squares from the last three co-ordinates are orthogonal to each other. The first square has the second square as its transpose and therefore is an ISOLS.

The third square is almost symmetric except when cell $\left(b_{1}, b_{2}\right)$ contains $x \in X$ while cell $\left(b_{2}, b_{1}\right)$ contains $y \in X, x \neq y$. Since the difference $b_{1}-b_{2}$ is odd, we can make the following adjustment to obtain a symmetric square: replace x by y for cells $\left(b_{1}+t, b_{2}+t\right)$ when t is odd; and also replace y by x for cells $\left(b_{2}+t, b_{1}+t\right)$ when t is even. Since the difference $b_{3}-b_{4}$ is also odd, such adjustment will not damage the orthogonality between the first and the third squares.

If we construct a unipotent $\operatorname{SOLSSOM}(h)$ based on X and fill it in the size h hole, we obtain a SOLSSOM $(g+h)$. Since \mathcal{B} contains $(0,0,0,0, x)$ for some $x \in X$, we may suppose that the third square of $\operatorname{SOLSSOM}(h)$ has constant diagonal x so that the third square of $\operatorname{SOLSSOM}(g+h)$ also has constant diagonal x.

In what follows, we take $h=16$. As mentioned above, there exists a unipotent SOLSSOM(16).

Lemma 3.2 There is a unipotent SOLSSOM(66).
Proof. Let $G=Z_{50}$ and let $X=\left\{x_{1}, \cdots, x_{8}, y_{1}, \cdots, y_{8}\right\}$. We use the above direct construction and list about half the members of \mathcal{B} as follows. For $e \in G$, each column (a, b, c, d, e) generates another column (b, a, d, c, e). For $e=x_{i}, i=2, \cdots, 8$, each column (a, b, c, d, x_{i}) generates another column (b, a, d, c, y_{i}). The last two columns do not generate another one. We thus obtain 82 columns forming the set \mathcal{B}. It is readily checked that the conditions in Lemma 3.1 are satisfied; hence a unipotent SOLSSOM(66) exists.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}
39	47	37	32	43	36	19	14	11	28	34	9	46	2	4	13
33	39	25	17	45	46	6	5	20	1	49	4	28	16	12	37
36	48	44	38	27	0	22	13	32	21	23	40	34	18	2	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	23	6	12	20	30	40	7	48	1	3	18	16	17	10	41
35	29	26	24	44	33	27	38	25	22	45	8	0	15	42	5
11	9	10	7	43	8	31	24	3	41	35	14	29	42	47	26
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0		21		0	0				
17	7	5	11	9	15	1		49		0	25				
33	19	27	18	22	12	44		30	0	26					
46	18	20	3	17	39	11	19	0	1						
x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}		0		x_{1}	y_{1}				\square

Lemma 3.3 There is a unipotent SOLSSOM(70).
Proof. Let $G=Z_{54}$ and let X be as in the previous lemma. We list about half of the members of \mathcal{B} similar to the previous lemma. We obtain 86 columns forming the set \mathcal{B}. The conditions in Lemma 3.1 are again satisfied; hence a unipotent SOLSSOM(70) exists.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}
23	32	25	0	51	36	37	31	48	19	30	28	38	49	47	3
11	21	1	15	47	20	0	25	4	32	51	46	35	53	12	17
24	19	29	45	41	28	10	37	44	16	33	26	40	2	5	38
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
44	20	4	13	18	39	11	8	10	22	6	29	15	5	27	46
52	40	34	41	21	2	26	33	14	16	50	17	1	43	45	24
14	49	36	34	48	8	31	13	43	6	22	39	9	42	52	3
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0						35			
45	19	5	21	11	31	1		12	9	42		0	0		
15	47	17	19	36	14	40		7	50	23		0	28		
40	32	36	20	45	3	23		30	18	27		0	1		
x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}		0	0	0		x_{1}	y_{1}		\square

Regarding the existence of unipotent SOLSSOMs, we can now update the known results in the following.

Theorem 3.4 A unipotent SOLSSOM(n) exists if and only if $n \geq 4$ is even, except for $n=6$ and possibly for $n=10,14$.

4 New HSOLS

In this section, we shall improve Theorem 1.3 by deleting twelve unknown cases. First we give an $\operatorname{HSOLS}\left(3^{5} 1^{1}\right)$ below, which is found by general computer search. The HSOLS is based on $\{0, \cdots, 14, x\}$ with holes $\{x\}$ and $\{i, 5+i, 10+i\}$ for $0 \leq i \leq 4$. We replace $10,11,12,13,14$ by a, b, c, d, e, respectively.

Lemma 4.1 There exists an $\operatorname{HSOLS}\left(3^{5} 1^{1}\right)$.
We can treat the remaining eleven cases uniformly. A transversal of a holey Latin square of order n is a set of n cells in which the n entries are all distinct. For a transversal T, suppose $(i, j) \in T$ if and only if $(j, i) \in T$, then T is called symmetric. For a pair of transversals T and T^{\prime}, suppose $(i, j) \in T$ if and only if $(j, i) \in T^{\prime}$, then the pair is called symmetric. We can now state a known construction, see [9 , Construction 2.5].

	3	6	e	b		9	d	2	x		8	4	7	1	c
c		9	4	3	x		a	7	0	8		5	e	2	d
9	5		1	x	b	8		6	d	3	4		a	0	e
7	a	4		6	9	2	e		c	1	5	x		b	0
8	2	5	0		c	7	6	x		d	a	3	b		1
	d	3	c	8		4	x	e	b		9	1	6	7	2
x		e	a	d	7		9	c	5	2		0	4	8	3
6	e		b	5	8	3		0	a	9	x		1	d	4
4	9	a		1	6	0	b		7	x	2	e		c	5
3	7	b	x		2	d	1	a		c	0	8	5		6
	4	1	9	2		e	8	b	6		3	d	c	x	7
2		0	7	c	d		4	9	3	e		a	x	5	8
b	8		6	a	e	x		5	1	4	d		0	3	9
1	0	x		7	4	c	5		2	b	e	9		6	a
d	x	8	5		3	a	0	1		7	c	6	2		b
e	c	d	2	0	1	5	3	4	8	6	7	b	9	a	

Construction 4.2 Suppose there is an $\operatorname{HSOLS}\left(t^{n}\right)$ which has $p+2 q$ disjoint transversals, p of them being symmetric and the rest being q symmetric pairs. For $1 \leq i \leq p$ and $1 \leq j \leq q$, let $v_{i} \geq 0$ and $w_{j} \geq 0$ be integers. Let s and h be positive integers, where sh$\neq 2$ or 6 if $p+2 q<t(n-1)$. Suppose there exist $\operatorname{HMOLS}\left(s^{h} v_{i}^{1}\right)$ for $1 \leq i \leq p$, HSOLS $\left(s^{h} w_{j}^{1}\right)$ for $1 \leq j \leq q$ and $\operatorname{HSOLS}\left(s^{t n} k^{1}\right)$. Then there exists an HSOLS $\left((t s h)^{n} u^{1}\right)$, where $u=k+\sum v_{i}+2 \sum w_{j}$.

For a unipotent SOLSSOM, each element in the symmetric orthogonal mate determines a symmetric transversal in the SOLS. Especially, the main diagonal is one of such symmetrical transversals. Thus, we have the following.

Lemma 4.3 If a unipotent SOLSSOM(n) exists, then an HSOLS $\left(1^{n}\right)$ having $n-1$ disjoint symmetric transversals also exists.

Lemma 4.4 For even n, if there exist a unipotent $\operatorname{SOLSSOM}(n)$ and an ISOLS $\left(\frac{3 n}{2}-1, \frac{n}{2}-1\right)$, then there exists an HSOLS $\left(3^{n} u^{1}\right)$, where $u=\frac{3 n}{2}-2$.

Proof. From a unipotent $\operatorname{SOLSSOM}(n)$, we have by Lemma 4.3 an $\operatorname{HSOLS}\left(1^{n}\right)$ having $n-1$ disjoint symmetric transversals. Apply Construction 4.2 with $t=1, p=n-1$ and $q=0$. Let $s=1, h=3$ and $v_{i}=1$ for $1 \leq i \leq p$. A unipotent SOLSSOM(4) leads to an $\operatorname{HSOLS}\left(1^{4}\right)$, also an $\operatorname{HMOLS}\left(1^{4}\right)$. For $k=\frac{n}{2}-1$, an $\operatorname{HSOLS}\left(1^{n} k^{1}\right)$ exists from the given $\operatorname{ISOLS}(n+k, k)$. By Construction 4.2, we obtain an $\operatorname{HSOLS}\left(3^{n} u^{1}\right)$, where $u=k+\sum v_{i}=\frac{3 n}{2}-2$.

Lemma 4.5 There exists an $\operatorname{HSOLS}\left(3^{n}\left(\frac{3 n}{2}-2\right)^{1}\right)$ for $n \in\{30,34,38,42,46,54,58$, $62,66,70,94\}$.

Proof. For the given n, there exist a unipotent $\operatorname{SOLSSOM}(n)$ from Theorem 3.4 and an ISOLS $\left(\frac{3 n}{2}-1, \frac{n}{2}-1\right)$ from Theorem 2.10. The conclusion follows from Lemma 4.4. -

We can now update Theorem 1.3 as follows.
Theorem 4.6 There exists an $\operatorname{HSOLS}\left(3^{n} u^{1}\right)$ if and only if $n \geq 4$ and $n \geq 1+\frac{2 u}{3}$, with five possible exceptions $(n, u)=\left(n, \frac{3 n}{2}-2\right)$ for $n \in\{6,10,14,18,22\}$.

References

[1] F. Bennett and L. Zhu, Further results on the existence of $\operatorname{HSOLSSOM}\left(h^{n}\right)$, Austral. J. Combin. 14 (1996) 207-220.
[2] R. K. Brayton, D. Coppersmith and A. J. Hoffman, Self-orthogonal Latin squares, Teoric Combinatorie, Proc. Rome Conf., 1976, 509-517
[3] B. Du, A few more resolvable spouse-avoiding mixed-doubles round robin tournaments, Ars Combin. 36 (1993) 309-314.
[4] K. Heinrich and L. Zhu, Existence of orthogonal Latin squares with aligned subsquares, Discrete Math. 59 (1986) 69-87.
[5] K. Heinrich and L. Zhu, Incomplete self-orthogonal Latin squares, J. Austral. Math. Soc. Ser. A 42 (1987) 365-384.
[6] K. Heinrich, L. Wu and L. Zhu, Incomplete self-orthogonal Latin squares ISOLS $(6 m+6,2 m)$ exist for all m, Discrete Math. 87 (1991) 281-290.
[7] D. R. Stinson and L. Zhu, On the existence of MOLS with equal-sized holes, Aequationes Math. 33 (1987) 96-105.
[8] D. R. Stinson and L. Zhu, On the existence of certain SOLS with holes, JCMCC 15 (1994) 33-45.
[9] Xu Yunqing and Lu Qinglin, Existence of frame SOLS of type $3^{n} u^{1}$, JCMCC 24 (1997) 129-146.
[10] L. Zhu, Existence of self-orthogonal Latin squares $\operatorname{ISOLS}(6 m+2,2 m)$, Ars Combin. 39 (1995) 65-74.

[^0]: *Research supported in part by NSERC Grant OGP 0005320 for the second author; NSF Grants CCR-9504205 and CCR-9357851 for the third author; and NSFC Grant 19831050 for the last author.

