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Abstract 

There are five possible structures for a set of three lines of a Steiner triple 
system. Each of these three-line "configurations" gives rise to a colouring 
problem in which a partition of all the lines of an STS( v) is sought, the 
components of the partition each having the property of not containing 
any copy of the configuration in question. For a three-line configuration 
B, and STS ( v) S, the minimum number of classes required is denoted 
by X(B, S) and is called the B-chromatic index of S. This generalises 
the ordinary chromatic index X'(S) and the 2-parallel chromatic index 
X" (S). (For the latter see [7].) In this paper we obtain results concerning 
X(B, v) = min{x(B, S) : S is an STS(v)} for four of the five three-line 
configurations B. In three of the cases we give precise values for all 
sufficiently large v and in the fourth case we give an asymptotic result. 
The values of the four chromatic indices for v ::; 13 are also determined. 

1 Introduction. 

Considerable research activity has recently been seen on the topic of configurations in 
Steiner triple systems. Aspects which have received significant attention have been 
the counting of configurations in Steiner triple systems [12, 8, 15], the decomposi­
tion of Steiner triple systems into various n-line configurations [16, 13, 14], and the 
avoidance of certain configurations [3, 5, 17]. A general survey of all these aspects, 
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and others, is given in [11]. There are a variety of colouring problems related to the 
issues of decomposition and avoidance. In an earlier paper [7], the current authors 
together with P. Danziger introduced the notion of a generalised chromatic index 
associated with a given configuration in a Steiner triple system. That paper focused 
on the so-called 2-parallel chromatic index. In this paper we investigate four of the 
possible five 3-line chromatic indices. 

A Steiner triple system of order v is an ordered pair Cv, B), where V is a set of 
cardinality v (the points) and B is a collection of 3-element subsets of V (the lines 
or blocks) which has the property that every 2-element subset of V is contained in 
precisely one block. It is well-known that an STS( v) exists if and only if v == 1 or 3 
(mod 6); such values of v are called admissible. If S is an STS(v) then its chromatic 
index X' (S) is the smallest number of colours required to colour the blocks of S, each 
with a single colour, so that no two intersecting blocks receive the same colour. The 
generalisation of this concept given in [7] relates to colouring the blocks of an STS( v) 
so as to avoid monochromatic copies of a configuration C. By a configumtion C we 
simply mean a collection of lines of an STS( v). The resulting chromatic index is 
denoted by X(C, S). The possible 2-line configurations are: (a) two lines intersecting 
in a point, and (b) two parallel (i.e. non-intersecting) lines. In the former case 
X(C, S) is just the ordinary chromatic index X'(S). The latter case gives rise to the 
2-parallel chromatic index denoted by X"(S). 

It is generally difficult to determine the precise value of x( C, S) for given C and 
S. However, it is possible to obtain upper and lower bounds in some cases. For 
admissible v we may define 

x'{v) = max{x'(S) : S is an STS(v)} and 

X'(v) = min{x'(S) : S is an STS(v)}. 

(And we can make similar definitions for X"(S) and X(C, S).) It may be shown that 

I { (v - 1)/2 if v == 3 (mod 6), 
~(v) = (v + 1)/2 if v == 1 (mod 6) and v 2: 19. 

This follows from results of Ray-Chaudhuri and Wilson [20] on the existence of 
Kirkman triple systems for v == 3 (mod 6), and Vanstone et al [22] on the existence 
of Hanani triple systems for v == 1 (mod 6), v 2: 19. (A definition of these systems 
is given below.) It is also known that for v 2: 9, X'(v) ::; 3(v - 3)/2, [4], and that for 
sufficiently large v, X'(S) = v/2 + o(v) for any STS(v), S, [19]. 

In [7] it is shown that for v 2: 27 

"(v) = { (v - 1)/2 if v == 3 or 7 (mod 12), 
~ (v + 1)/2 if v == 1 or 9 (mod 12). 

and, using a,result of Phelps and Rodl [18], that X"(v) ~ v - cy!vlogv for some 
absolute constant c. 

There are five 3-line configurations (Bl' B2 , . .. , B5 ) for Steiner triple systems and 
these are shown in Figure 1 with their traditional names. 
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Bl 
(3-ppc) 

YZD 
B2 

(Hut) 
B3 

(3-star) 

B4 
(3-path) 

Figure 1: The five 3-line configurations. 

Bs 
(Triangle) 

We investigate below the generalised chromatic indices associated with the first 
four of these configurations. The fifth configuration (the triangle) gives rise to very 
different results and estimation of that chromatic index is connected with the par­
tition of projective spaces PG(n, 3) into caps; see [9] for definitions of these terms. 
We hope to make the triangle chromatic index the subject of a future paper. 

In the course of our investigations we need to mention certain specific configura­
tions and designs of various types. A set of n lines of an STS (v) intersecting in a 
common point is called an (n- )star; it is sometimes convenient to include the cases 
n = 0 and n = 1. A set of n parallel (Le. mutually disjoint) lines of an STS( v) is 
called an (n- )partial parallel class, abbreviated to (n- )ppc. Again, it is sometimes 
convenient to include the values n = 0 and n = 1. If n = v /3, the maximum possible 
value, then an n-ppc is called a (full) parallel class. An STS( v) whose lines may be 
partitioned into full parallel classes is said to be resolvable. Such a design together 
with its partition is called a Kirkman triple system, KTS(v). These exist if and 
only if v == 3 (mod 6) [20]. For v == 1 (mod 6) and v 2: 19 there exists an STS(v) 
whose lines may be partitioned into (v - 1)/2 ((v - 1)/3)-ppcs together with one 
((v - 1)/6)-ppc. Such a design together with its partition is called a Hanani triple 
system, HATS(v) [22]. 

The STS(7) is unique up to isomorphism and is called a Fano plane. We will refer 
to a Fano plane itself and those configurations which are not stars and are obtained 
from it by deleting lines as Fano derivatives. The isomorphism classes for these are 
illustrated in Figure 2 with their traditional names. 

Fano Semihead Mia Sail Pasch Triangle 

Figure 2: The six Fano derivatives. 

The STS(9) is also unique up to isomorphism and, in fact, forms a KTS(9) re-
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solvable into four parallel classes each containing three lines. 
If in the definition of an STS(v) we replace the 2-element and 3-element subsets 

respectively by t-element and k-element subsets (t < k) then we obtain the definition 
of a Steiner system S(t,k,v). An S(2,3,v) is just an STS(v). Concepts such as 
parallel classes and resolvability are easily extended from STS(v) to S(t,k,v). 

An m-GDD (Group Divisible Design) of type gU is an ordered triple (V, g, B) 
with the following properties. 

(i) 9 is a partition of the set V of points into u subsets each of cardinality g (so 
that IVI = gu). These subsets are called the groups. 

(ii) B is a collection of m-element subsets of V (the blocks) with the property that 
each group intersects each block in at most one point. 

(iii) Every pair of points from distinct groups occurs in a unique block. 

A partial parallel class of blocks of an m-GDD of type gU is simply a collection of 
non-intersecting blocks. Such a partial parallel class is said to be a (full) parallel 
class if the union of all its blocks contains all the points of the design. The GDD is 
said to be resolvable if its blocks may be partitioned into full parallel classes. 

A transversal design TD (k, v) is a k-G D D of type vk • It is well-known that the 
existence of transversal designs and resolvable transversal designs is related to that 
of mutually orthogonal latin squares (MOLS) (see, e.g., [1]). 

2 The 3-ppc (HI). 

Our first result gives an upper bound for K(Bb v). 

Theorem 2.1 

{
(v + 1) /4 if v == 3 or 

X(B1 , v) ::; (v + 3)/4 if v == 1 or 
7 (mod 12), 
9 (mod 12). 

Proof From [7] we have 

"(v) < { (v - 1)/2 if v == 3 or 
K.- - (v + 1) /2 if v == 1 or 

7 (mod 12), 
9 (mod 12). 

By combining these 2-parallel-free classes together in pairs (with one class unpaired) 
we obtain the desired result. 0 

We shall now prove that, for sufficiently large v, the bound given by the Theorem 
above cannot be improved. As a first step we prove the following Lemma. In essence, 
and for large v, this enables us to deal only with colourings whose classes are stars 
or unions of two stars. 
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Lemma 2.1 Suppose that S is a set of lines of an STS(v), no three of these lines 
being parallel. Then, if lSI;::: 23, S may be partitioned into two disjoint subsets, S1 
and S2, neither of which contains two parallel lines and one of which is a star. 
Proof If S itself does not contain a pair of parallel lines then we can take 8 1 = 8 
and 82 = 0. Note that 81 is then either a Fano derivative or a star; however it cannot 
be the former since 181 > 7. We may therefore assume that S has a pair of parallel 
lines, hand l2 say. Put A = {l E S : 1 n h = 0} and B = {l E 8 : 1 n it = 0}. If A 
contained two parallel lines, say l3 and l4 then {l2' h, l4} would form a set of three 
parallel lines in S. Hence neither A nor, similarly, B can contain two parallel lines. 
Thus A and B are either stars or Fano derivatives. 

Next put C = {l E S : 1 n h f:. 0 and 1 n l2 f:. 0}. Then, clearly, ICI ::; 9. But 
actually, ICI ::; 8. To see this, assume ICI = 9, and let it = {a, b, c} and l2 = {d, e, fl. 
Then C contains three lines through a, say {a, d, x}, {a, e, y} and {a, f, z}, and three 
lines through b which, without loss of generality may be taken as one of the following 
four alternatives. 

Case 1: {b,d,y},{b,e,z},{b,f,x}, 

Case 2: {b, d, y}, {b, e, z}, {b, f, u}, 

Case 3: {b, d, v}, {b, e, z}, {b, f, u}, 

Case 4: {b, d, v}, {b, e, w}, {b, f, u}, 

(where x, y, z, u, v, ware pairwise distinct points). Consider the third point a of the 
line containing c and e. In Cases 1 and 2, a cannot be y or z. But then {a, f, z}, 
{b, d, y} and {c, e, a} are three parallel lines, a contradiction. In Cases 3 and 4, 
because {a, d, x} and {b, f, u} are parallel, we must have a = x or u. At the same 
time, because {a, f, z} and {b, d, v} are parallel, we must also have a = z or v, again a 
contradiction. Thus, indeed, ICI ::; 8. (This cannot be improved as the following set 
of eight lines shows: {{a, d, x}, {a, e, y}, {a, f, z}, {b, d, y}, {b, e, z}, {b, f, u}, {c, d, u}, 
{c, f,x} }.) 

Since Au B u C = 8 and (A U B) n C = 0, we have IA U BI ~ 15. Thus either 
IAI ;::: 8 or IBI ~ 8. Without loss of generality we can assume that IAI ;::: 8, so that 
A is necessarily a star with a star-centre of degree at least 8. Let the star-centre be 
a. 

Put 8 1 = {l E 8 : a E l} and 82 = {l E 8 : a rf. l}. Then 8 1 is a star centred 
on a and therefore has no pair of parallel lines. Also, A ~ S1 and so 1811 ;::: 8. Now 
suppose that 8 2 has pair of parallel lines, Al and A2 say. Neither Al nor A2 contain a. 
Since there are more than six lines through a which lie in 8, there must be at least 
one line of 8 through a which does not meet Al or A2' But this is a contradiction 
and consequently we see that S2 cannot contain a pair of parallel lines. 0 

Theorem 2.2 Suppose that 8 is an STS(v). Then 

(i) if v ;::: 63 and v == 3 or 7 (mod 12), X(B1, 8) ;::: (v + 1)/4, 
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(ii) if v 2:: 133 and v == 1 or 9 (mod 12), X(B1, S) 2:: (v + 3)/4. 

Proof Suppose that S is an STS(v) with X(B1 , S) = k where 

and 

k {( v + 1) /4 if v == 3 or 
< (v + 3) /4 if v == 1 or 

7 (mod 12), 
9 (mod 12), 

> { 63 if v == 3 or 7 (mod 12), 
v - 133 if v == 1 or 9 (mod 12). 

We will prove that there is a B1-free colouring of S in at most k colours in which 
every colour class is either a star or the union of two stars. From this we will deduce 
a contradiction. 

Firstly, take the original colouring and consider those colour classes n with In I 2::: 
23 which are neither a single star nor the union of two stars. By the previous Lemma 
we may partition such a class Ci into Ct and C: where Ct is a star and C: is a Fano 
derivative. The stars C; may then be combined in pairs (including with them any 
of the original colour classes which were single stars) and the Fano derivatives C: 
may also be combined in pairs. If there is an even number of the configurations C i 

as described then we obtain a colouring of S in at most k colours. If there is an odd 
number then we may need one additional colour class and, if we do need k + 1 colours, 
one of the colour classes will be a single star and one will be a Fano derivative. In 
either circumstance each colour class now comprises one of the following: 

(a) A union of two stars (not being a single star), or 

(b) A single star (at most one of these), or 

(c) A class of cardinality less than or equal to 22 and not of the forms described 
in (a) or (b). 

We may further assume that none of the blocks lying in any of the classes of type 
(c) contains a star centre from any of the classes of types (a) or (b). (If it did then 
it could be transferred to an appropriate star. This might create a new class of type 
(a) or (b) and the process might have to be repeated; however it will eventually 
terminate. ) 

In the revised colouring obtained by the process described above, let t denote the 
number of colour classes of type (a) and let 8 be the number of star centres from 
classes of types ( a) and (b), so that either 8 = 2t or 8 = 2t + 1. Each such star centre 
is incident with (v 1) /2 blocks, none of which lies in the category (c) classes. If a 
blocks contain two star centres and b blocks contain three star centres then 

a+3b= -.:.....-~ 
2 

Hence the total number of blocks in the classes of types (a) and (b) is 

8(v-1) -a-2b= 8(v-1) _ 8(8-1) _~. 
2 233 
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The total number of blocks, say l, in the classes of type (c) is therefore 

l_v(v-1)_8(v-1) 8(8-1) ~ 
- 6 2 + 3 +3 

(v - 8)(V - 1- 28) a 
= 6 +3" 

(v - 8)(V - 1 - 28) 
2 6 . (1) 

The argument now splits into two cases. 

Case 1. If the colouring has k + 1 classes then, necessarily, 8 = 2t + 1 and the 
number of type (c) colour classes is k + 1 - (t + 1) = k - t. Also, there is at least 
one such class and so k - t 2 1. The total number of blocks contained in the type 
(c) classes is at most 22(k - t). Therefore 

22(k _ t) 2 (v - 1 - 2t~ v - 3 - 4t) 

It follows that 

k> (v - l)(v - 3) + (142 - 6v)t + 8t2 = get) say. 
- 132 132' 

But g'(x) = 142 - 6v + 16x :::; 122 - 2v if x :::; (v - 5)/4. Thus, for v 2 61, the 
function g is strictly decreasing on the interval (-00, (v - 5)/4]. 

However, if v == 3 or 7 (mod 12), then t :::; k - 1 :::; (v - 7)/4. Therefore 
get) 2 g((v - 7)/4). This reduces to get) 2 35v - 221. Hence k 2 (35v - 221)/132. 
But k :::; (v - 3)/4, and so 

v - 3 35v - 221 
-->---

4 - 132 
This gives v :::; 61, which contradicts the initial assumption that v 2 63. 

Similarly, if v == 1 or 9 (mod 12), then t :::; k - 1 :::; (v - 5)/4. Therefore 
get) 2 g((v - 5)/4). This reduces to get) 2 34v -162. Hence k 2 (34v - 162)/132. 
But k :::; (v - 1)/4, and so 

v-I 34v - 162 
-->---

4 - 132 
This gives v :::; 129, which contradicts the initial assumption that v 2 133. 

It follows that, for all possible residue classes for v, Case 1 cannot apply. 

Case 2. If the colouring has k classes then either there are no classes of type (c) 
(which is what we are trying to prove) or there is at least one. So suppose that there 
is at least one class of type (c) and then either 

(i) 8 = 2t and k 2 t + 1, or 

(ii) 8 = 2t + 1 and k 2 t + 2. 
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In either case 8 ::; 2t + 1 and t ::; k - 1 ::; (v - 5)/4, and so 8 ::; (v - 3)/2. It follows 
that v - 3 - 28 ~ 0 and hence that v - 3 - 4t > O. Consequently 

(v - 8)(V - 1 - 28) ~ (v - 1 - 2t)(v - 3 - 4t). 

The total number of blocks contained in the classes of type (c) is at most 22(k - t) 
and so 

(v - 1 - 2t) (v - 3 - 4t) 
22(k - t) ~ 6 . 

As before, this gives a contradiction. Hence our colouring in k colours can contain 
no colour classes of type (c). 

From the conclusions of Cases 1 and 2 it follows that our revised colouring has 
at most k colour classes and that every colour class is either a star or the union of 
two stars. By splitting those classes which are the union of two stars into the two 
constituent stars, we obtain a partition of the blocks of 8 into at most 2k stars and 
so X"(8) ::; 2k. Hence 

"(8) < { (v - 3)/2 if v == 3 or 7 (mod 12), 
X - (v-1)/2 if v==l or 9 (mod 12). 

However, it is shown in [7] that this is impossible for v ~ 39. 

Corollary 2.1 

{
(v + 1)/4 if v ~ 63 and v == 3 or 7 (mod 12), 

X(B1, v) = (v + 3)/4 if v ~ 133 and v == 1 or 9 (mod 12). 

We start with an upper bound for X(B2 , v). 

Theorem 3.1 If v =I- 13 then X(B2 , v) ::; (v - 1)/2. 

o 

o 

Proof A colouring of lines which avoids monochromatic intersecting line pairs will 
provide a B2-free colouring of an STS(v). Thus X(B2' v) ::; X'(v). This deals with the 
cases v == 3 and 9 (mod 12). A colouring of lines ~hich avoids monochromatic parallel 
line pairs also provides a B2-free colouring of an STS(v). Thus X(B2,v) ::; X"(v). 
This deals with the case v == 7 (mod 12). If v == 1 (mod 12) and -:;; =I- 13 thenthere 
exists a nearly-Kirkman triple system of order v-I, i.e. a resolvable 3-GDD of 
type 2(v-l)!2 [21]. By adjoining a single additional point, say 00, to each group and 
taking these extended groups together with the existing blocks we obtain an STS(v) 
whose blocks may be partitioned into a single star (through (0) and (v - 3) /2 partial 
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parallel classes. This partition provides a B2-free colouring of the system in (v -1) /2 
colours. 0 

We shall now prove that, for sufficiently large v, the bound given by the Theorem 
above cannot be improved. As a first step we prove the following Lemma. In essence, 
and for large v, this enables us to deal only with colourings whose classes are stars 
or partial parallel classes. 

Lemma 3.1 Suppose that S is a set of lines of an STS(v), not containing a B2 (hut) 
configuration. Then either S is a partial parallel class, or a star.. or S contains at 
most 12 lines. 
Proof We start by assuming that 8 is not a partial parallel class or a star. Consider 
the points lying at the intersections of the lines of 8. From amongst these points, 
select one of maximum degree, 8 (8 2:: 2). 

If 8 2: 5 then take an intersection point, say a, of maximum degree. At least 
five lines of 8 pass through a. Take a line of 8 not passing through a; this line can 
intersect at most three of these five lines and we therefore have a B2-configuration 
in 8. This is a contradiction and we therefore conclude that 8 ~ 4. 

If 8 = 2 then consider two of the intersecting lines of 8, say {a, b, c} and {a, d, e}. 
Each additional line of 8 must intersect one of these two lines. However, since 8 = 2, 
we can have at most one further line of 8 through each of the points b, c, d, e. Thus 
181 S 6. 

If 8 = 3 then consider three of the lines of 8 through a common point of inter­
section, say {a, b, c}, {a, d, e} and {a, f, g}. Each additional line of 8 must intersect 
two of these three lines. Since 8 = 3, we can have at most six further lines in 8, 
giving 181 S 9. 

If 8 = 4 then consider four lines of 8 through a common point of intersection, say 
{a, b, c}, {a, d, e}, {a, f, g} and {a, h, i}. In order to avoid a B 2-configuration, each 
additional line of 8 must intersect three of these four lines. Hence the additional 
lines of S induce a partial Steiner triple system of order 8 on {b, c, d, e, f,g, h, i}. It 
is well-known that such a system can contain at most eight lines [6]. It follows that 
181 S 12. 0 

We note here that an STS(9) is a 12-line B2-free configuration which is neither a 
star nor a partial parallel class (and so X(B2 , 9) = X(B2 , 9) = 1). 

Theorem 3.2 If S is any STS(v) with v 2:: 49 then X(B2 , 8) 2: (v -1)/2. 
Proof Suppose that we have a B2-free colouring of 8 in k colours in which there are 
s colour classes which are stars, p colour classes which are partial parallel classes, 
and q other colour classes having neither of the preceding forms and (in consequence 
of the previous Lemma) having at most 12 lines. We may assume that none of the 
classes of the latter two types contains a block incident with any of the star-centres. 
(If there were such a block then it could be transferred to an appropriate star. This 
might create a new star or partial parallel class and the process might have to be 
repeated; however it will eventually terminate.) 
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We have s + p + q = k and, as before, the number of blocks in the non-star colour 
classes is 

(v - s) (v - 1 - 2s) a 
6 + 3' 

where a is the number of blocks of S containing two star-centres. The maximum 
possible number of lines in one of the ppc colour classes is L(v - s)/3J. It follows 
that 

Hence 

(V-S) (v-s)(v-1-2s) a 
P -- + 12q > + -. 

3 - 6 3 

72q 2:: (v - s)(v - 1 - 2s) - 2p(v - s) + 2a 

= (v - s) (v - 1 - 2k + 2q) + 2a (2) 

If k < (v -1)/2 then (v -1- 2k) 2:: 2. Noting s ~ k - q, equation (2) gives 
72q 2:: (v - (v - 3)/2 + q)(2 + 2q) = (v + 3 + 2q)(1 + q). If v > 47 this gives 
72q > (50 + 2q) (1 + q), which reduces to (q - 5)2 < O. Plainly this is impossible, and 
so for v 2:: 49 we must have k 2:: (v - 1)/2. 0 

Corollary 3.1 If v 2:: 49 then X(B2 , v) = (v - 1)/2. o 

Let us remark that if k = (v - 1) /2 then for v 2:: 73, the inequalities obtained in 
the proof of the Theorem give q = 0, a = 0, and either 31(v - s) or p = O. Also if 
s > 0 then a = 0 implies that the star centres form an STS( s). Observe also that it 
is possible to have a B2-free colouring of an STS(v) with (v - 1)/2 colour classes in 
which some colour classes are stars and some are partial parallel classes: take three 
copies of an STS(2u + 1) intersecting in a common STS(u), to form an STS(4u + 3) 
with the cross-system blocks from a resolvable TD(3,u) (such a TD exists for suitably 
large u). We get u+1 classes of parallel blocks from the TD, plus u stars through the 
points of the STS( u). If v = 4u + 3 then the number of classes is 2u + 1 = (v - 1) /2. 

4 The 3-star (B3). 

We start with an upper bound for X(B3 , v). 

Theorem 4.1 If v#-7 then 

{

(v - 1) /4 if v == 9 ( mod 12) , 
X(B3, v) ~ (v + 1)/4 if v == 3 or 7 (mod 12), 

(v + 3)/4 if v == 1 (mod 12). 

Proof For v == 3 (mod 6) take a Kirkman triple system of order v. This is resolvable 
into (v - 1) /2 parallel classes. By combining these classes in pairs (with one class left 
unpaired if v == 3 (mod 12)) we obtain a B3-free colouring of the system in (v - 1)/4 
colours for v == 9 (mod 12) and (v + 1)/4 colours for v == 3 (mod 12). 
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For v == 1 (mod 6) take a Ranani triple system of order v; such a system exists for 
v 2:: 19 and is resolvable into (v + 1)/2 partial parallel classes. By combining these 
classes in pairs (with one class left unpaired if v == 1 (mod 12)) we obtain a B3-free 

colouring of the system in (v + 1) /4 colours for v == 7 (mod 12) and (v + 3) /4 colours 
for v == 1 (mod 12), v#-7 or 13. Finally, we observe that the chromatic index of 
both STS(13)s is 8 [6], and thus in this case as well we can combine partial parallel 
classes in pairs to obtain X(B3 , 13) ::; 4. 0 

Our next result shows that the upper bounds given by the previous Theorem 
cannot be improved. 

Theorem 4.2 

{

(v - 1)/4 if v == 9 (mod 12), 
X(B3 , v) 2:: (v + 1)/4 if v == 3 or 7 (mod 12), 

(v + 3)/4 if v == 1 (mod 12). 

Proof Any B3-free configuration of lines of an STS( v) cannot have a point of degree 
greater than 2. Thus the largest possible configuration of this type has at most 
l2v /3 J lines. It follows that 

X(B3 ,v)? r v(v; 1) / l2v/3Jl. 
Examining the residue classes for v modulo 12 we obtain the desired result. 0 

Corollary 4.1 If v#-7 then 

{

(v - 1)/4 if v == 9 (mod 12), 
X(B3 , v) = (v + 1)/4 if v == 3 or 7 (mod 12), 

(v + 3)/4 if v == 1 (mod 12). 

o 

The value omitted in the Corollary above is easily dealt with. If F denotes the 
unique STS(7) then X(B3 , F) > 2 because the complement of a Pasch configuration 
in F is a 3-star. On the other hand it is trivial to obtain a B3-free colouring of F in 
three colours. Therefore X(B3 , F) = 3. 

5 The 3-path (B4). 
Our results concerning the 3-path rely on the following Lemma. 

Lemma 5.1 If C is a set of lines of an STS(v) and ICI 2:: v + 1 then C contains a 
B4 configuration. 
Proof Suppose that C contains at least v + 1 lines of an STS( v) but does not contain 
a B4 configuration. If the lines of C span p points then the average degree (in C) of 
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these points is at least (3v + 3)/p ~ (3v + 3)/v > 3. Thus there is a point of degree 
at least four. Now take a point of maximum degree m ~ 4, and consider all the 
lines of G which are incident with it. If any other point on these lines had degree (in 
G) greater than one then G would contain a B4 configuration. Hence all the other 
points on these m lines have degree one and the m lines form an m-star component 
of G. Now delete this m-star from G to form G'. 

We have IG'I ~ v + 1 - m and G' spans p - (2m + 1) points. Note that p -
(2m + 1) -:j:. 0 because if m = (p - 1)/2 then IG'I > 0 and clearly G' cannot have 
lines without spanning points. The average degree (in G') of these points is at least 
3( v + 1 - m) / (p - 2m - 1) > 3. Thus there is a point of degree at least four. We 
may now iterate the earlier process; at each stage we remove more points from C 
than lines, eventually arriving at the contradiction of a non-empty set of lines C* 
spanning no points. The result follows. 0 

Theorem 5.1 X(B4 , v) ~ (v - 1)/6. 
Proof From the previous lemma we have that the maximum cardinality of a colour 
class in a B4-free colouring of an STS(v) is v. 0 

We shall now prove that the bound given in the Theorem above is attained for 
an infinite number of values v. 

Theorem 5.2 If there exists a resolvable Steiner system S(2,7,v) then 
X(B4 , v) = (v - 1)/6. In particular, X{B4 ,7n ) = (7n - 1)/6 for all n ~ 1. 
Proof Replace each 7-block of the-resolvable S(2,7,v) by an STS(7) to form an 
STS(v). Each original parallel class now gives v/7 disjoint STS(7)s which we may 
take as a B4-free colour class. Therefore there are (v - 1)/6 colour classes. This, to­
gether with Theorem 5.1 and the fact that an S(2,7,7n

) (an affine geometry AG(n,7)) 
exists for all n ~ 1, (see, e.g.,[2]) implies the result. 0 

Although we are unable to prove that the bound discussed in the preceding The­
orems is attained for all (or almost all) admissible v, we can establish an asymptotic 
result (Theorem 5.3). Note also that the method of Theorem 3.1 gives an upper 
bound for 'KJB4 , v) of (v - 1)/2. 

Theorem 5.3 As v -+ 00, X(B4 , v) = (v - 1)/6 + o(v). 
Proof There exists Vo such that for all v > vo, the number of MOLS of side v, say 
N(v), satisfies N(v) ~ vll.8 [1]. Hence, for v > Vo and m ::; v11. S , there exists a 
resolvable transversal design TD(m, v) [1]. We will assume that Vo is so large that 

14.810g( Vo + 4) < 15. 
logvo 

Take U ~ max{(vo+4)M, 716
} and admissible. Define k = llog7u/16J so that k ~ 1, 

k ::; log7 u/16 < k + 1, and 716k ::; U < 716
(k+1). We may write U = Lf=o Ui7i, where 

o ::; Ui < 7 and Un -:j:. O. 
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Next choose a E {O, 1,2, 3} so that w = a7k + Uk_17k-1 + Uk_27k-2 + ... + Uo is 
admissible. Put v = Un 7n- k + un_17n-k-l + ... + Uk - a so that U = t kv + w. Note 
that 

v + W == (un + Un-l + .. , + Uk - a) + (a + Uk-1 + Uk-2 + ... + uo) == U (mod 6), 

so that v + w is admissible. 
By our choice of a, we have 0 ::; w < 4.7k. Hence (v + 4)7k > t kv + w = U and 

so v + 4 > u7-k ~ u~ ~ Vo + 4, giving v > Vo. Also, 7k ::; ufg < (7k(v + 4))ft and 
so 7k < (v + 4) h. But v > Vo and so (v + 4) h < V 1i.8, giving 7k < v 1i.8. It follows 
that there is a resolvable TD(7k, v). 

• 15 k 1 16 15 Smce v + 4 > U 16 , W < 4.7 ::; 4. U 16 and U ~ 7 ,we have v > U 16 - 4 > 
4u fg + 1 > w + 1. Consequently by [10] there exists an STS( v + w) containing an 
STS( w) subsystem. We now take 7k copies of this STS( v + w) intersecting in a 
common STS( w) subsystem; we may take the points of the ith copy to be 

Altogether there are t k v + w = U points and we may form an STS(u) on these 
points by taking as blocks all the blocks of all the STS(v + w)s (the horizontal 
blocks) together with certain other blocks which we describe below (the vertical 
blocks). The horizontal blocks cover all pairs of the forms {a, b}, { a, Ci}, { Ci, di } for 
a, b = 1,2, ... , w, c, d = 1,2, ... , v and i = 1,2, ... , 7k • The vertical blocks must 
cover every pair of the form {Ci' dj } for c, d = 1,2, ... , v, i,j = 1,2, ... , 7k and i ::f. j. 
To form the vertical blocks we take a resolvable TD(7k, v) with groups {Ii, 2i , ... , Vi} 
for i = 1,2, ... , 7k . We then replace each block of size 7k with an STS(7k ) (on the 
same points) having (7k - 1)/6 B4-free colour classes (see the previous Theorem). 

An original parallel class of the TD(7k, v) will contain v 7k -blocks and will give 
rise to v copies of each of the (7k - 1)/6 colour classes. The v copies of each such 
class are pointwise disjoint and may therefore be combined to form a single class of 
3-blocks not containing any B4 configurations. Since there are v parallel classes in 
the TD(7k, v) we obtain a partition of the vertical blocks into (7k - l)v/6 B4-free 
colour classes. 

It remains to deal with the horizontal blocks. We do this using stars, some of 
which may be empty and, therefore, redundant. We firstly take w stars on the points 
1,2, ... , w; these give w B4-free colour classes and cover all blocks of the form {a, b, c} 
for a, b, C = 1, 2, ... , w, as well as certain other horizontal blocks. (A block {a, b, c} 
may be assigned to anyone of the three stars centred on a, b or c.) However blocks 
of the form {di , ei, fd (if any) remain uncovered. To deal with these we take each 
point di for i = 1,2, ... , 7k and d = 1,2, ... , v, and we form a star on each of these 
points using the blocks {di , ei, Ii}' Such a block may be assigned to anyone of the 
three stars centred on di, ei or Ii. For each d = 1,2, ... , v, we may combine the stars 
centred on the points di for i = 1,2, ... , 7k into a single B4-free colour class. A total 
of v classes therefore suffices to deal with the remaining horizontal blocks. 

The total number (say X) of B4-free colour classes in our partition of the blocks 
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of the STS(u) satisfies 

X ( 
7k - 1) u - 1 5v + 5w + 1 < -- v+w+v=--+----- 6 6 

But v > wand v < u.7-k = 7u.7-(k+l) ~ 7uii. Hence v + w = o(u) as u -t 00. It 
follows that 

u-1 
X(B4 , u) ::; -6- + o(u) as u -t 00 

o 

6 The chromatic indices for v == 7, 9 and 13. 

We give below the values of X(Bi' S) for i = 1,2,3,4 when S is, in turn, the STS(7) 
(87), the STS(9) (89), and each of the two non-isomorphic STS(13)s. Here we denote 
by C the STS(13) which has a cyclic automorphism group of order 13. We use the 
realisation of C which is generated by the blocks {O, 1, 4} and {O, 2, 7} under the 
action of the mapping i -t i + 1 (mod 13). We denote by N the STS(13) which is 
non-cyclic. A realisation of this system may be obtained by taking C and replacing 
any Pasch configuration with the opposite Pasch configuration, i.e. replacing four 
blocks of C which have the structure {a,b,c},{a,y,z},{x,b,z},{x,y,c} with the 
four blocks {x,y,z},{x,b,c},{a,y,c},{a,b,z}. 

Case 1, the 3-ppc. 
The STS(7) has no parallel line pairs, so X(B1 , 87) = 1. The STS(9) does have 
B1-configurations, so X(B1 , 89) > 1. On the other hand, 89 has a 2-colouring with 
one class comprising any 4-star and the other class comprising the remaining blocks. 
Therefore X(B1, 89 ) = 2. As shown in [7], X"(C) = X"(N) = 6. By combining the 
corresponding colour classes in pairs we have X(B1 , C) ~ 3 and X(BI, N) ~ 3. A 
computer search has shown that the largest 3-ppc-free subsets of lines from C and 
from N have cardinality 12. Thus neither C nor N has a 2-colouring. Consequently 
X(B1, C) = X(B1 , N) = 3. 

Case 2, the hut. 
The STS(7) has no parallel line pairs, so X(B2 , 8 7 ) = 1. For the STS(9), given any 
two parallel lines, any other line is either parallel to both or intersects both. Thus 8 9 

contains no B2-configurations and so X(B2 , 8 9 ) = 1. A 4-colouring of C is provided 
by the partition: 
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Class 1 Class 2 Class 3 Class 4 
{0,1,4} {2,3,6} {3,4,7} {4,5,8} 
{1,2,5} {6,7,10}* {8,9,12} {12,0,3} 
{5,6,9} {7,8,11} {10, 11, I} {3,5,10} 
{ll, 12, 2} {9,10,0} {1,3,8} {5,7,12} 
{2,4,9} {0,2,7}* {7,9,1} {l0, 12, 4} 
{4,6,1l} {6,8,0}* {9, 11, 3} 
{ll, 0, 5} {8,10,2}* 
{12,1,6} 

If the Pasch configuration indicated by the asterisks above is replaced by the opposite 
Pasch configuration then we obtain a 4-colouring of N. A computer search has shown 
that the largest hut-free subsets of lines from C and from N have cardinality 8. Thus 
neither C nor N has a 3-colouring. Consequently X(B2 , C) = X(B2 , N) = 4. 

Case 3, the 3-star. 
As remarked earlier, X(B3,87 ) = 3. From Corollary 4.1, X(B3 ,89 ) = 2. From 
Theorem 4.2, X(B3 , C) ::::: 4 and X(B3 , N) ::::: 4, whilst from the comment in the proof 
of Theorem 4.1, X(B3 , C) ::; 4 and X(B3 , N) ::; 4. Thus X(B3 , C) = X(B3 , N) = 4. 

Case 4, the 3-path. 
The STS(7) has no parallel line pairs, so X(B4 , 87) = 1. For the STS(9), a colouring 
in three classes is obtained by taking one class to be any 4-star and then partition­
ing the remaining blocks into two sails. Thus X(B4 ,89 ) ::; 3. On the other hand 
no colour class for 89 can contain more than four lines as this would require at 
least two lines from one parallel class together with at least one line from a dif­
ferent parallel class, thereby forming a B4-configuration. Consequently 89 has no 
2-colouring and so X(B4 , 89 ) = 3. From the comment following Theorem 5.2 we have 
X(B4 , C) ::; X"(C) = 6 and X(B4l N) ::; X"(N) = 6. A computer analysis has shown 
that the largest 3-path-free subsets of lines from C and from N are 6-stars. Since 
any pair of 6-stars from C (or from N) intersect in a common line, at most one 6-star 
can be employed in any colouring of C (or N). Thus, to provide a 5-colouring of C 
or N, the colour class sizes must be 6, 5, 5, 5, 5. We consider the two cases of C and 
N separately. 
(i) X(B4 , C). 
Further computer analysis shows that there are 572 possible colour classes of cardi­
nality 5 or 6, including the thirteen 6-stars. A computer search shows that no five 
of these partition the blocks of C. Thus X(B4 , C) = 6. 
(ii) X(B4 , N). 
Here the computer analysis shows that there are 607 possible colour classes of car­
dinality 5 or 6, including the thirteen 6-stars. A computer search gives precisely 
six collections of five classes which partition the blocks of N. An example of such a 
partition is given below. Here the system N is realised by switching the Pasch config­
uration from C which has the blocks {10, 11, I}, {12, 1, 6}, {4, 6, 11} and {10, 12, 4}. 
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Class 1 Class 2 Class 3 Class 4 Class 5 
{1,2,5} {0,1,4} {4,5,S} {6,7,10} {7,S,1l} 
{2,3,6} {3,4,7} {6,S,0} {1,3,S} {9, 10, O} 
{ll, 12, 2} {5,6,9} {7,9,1} {4,6,12} {12,0,3} 
{0,2,7} {S,9,12} {l0, 12, I} {5,7,12} {3,5,1O} 
{2,4,9} {10,1l,4} {ll, 0, 5} {9,11,3} {11, 1, 6} 
{S,10,2} 

It follows that X(B4 , N) ::; 5. Since there are no 3-path-free subsets of N having 
cardinality greater than 6, we must have X(B4 , N) = 5. 

The results of this section are summarised in the table below. 

B\5 57 59 C N 
Bl 1 2 3 3 
B2 1 1 4 4 
B3 3 2 4 4 
B4 1 3 6 5 

Table 1: Three-line chromatic indices for v = 7,9 and 13. 

7 Concluding remarks. 

Some of our results concerning the 3-ppc and 3-star may be extended to the n-ppc 
(Pn ) and n-star (5n ). Taking the result of [7] given in the proof of Theorem 2.1 and 
combining 2-ppc-free classes together in groups of up to (n-l) gives an upper bound 
for X(Pn , v) of order v/2n. Similarly, combining up to (n-1) (partial) parallel classes 
of ~Kirkman triple system (or Hanani triple system) in the manner described for 
n = 3 in Theorem 4.1 gives an upper bound for X(5n , v), also of order v/2n. 

Obtaining good estimates for the values of X(Bi , v) seems much more difficult 
than the corresponding problem for X(B i , v). The results of Phelps and Rodl [IS], 
and of Pippenger and Spencer [19] cited in our Introduction may be used, but the 
bounds obtained in this way do not seem at all tight. 

Finally, we note that for each of the four three-line configurations Bi considered 
in this paper, the lower bound X(B i , v) is of order CiV for an appropriate constant Ci. 

This is not the case for the fifth configuration Bs (the triangle), where a much lower 
growth rate pertains. We hope to deal with this remaining case in a future paper. 
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