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Abstract 

In this paper, we prove that all Cayley digraphs of valency 2 on non
abelian groups of odd square-free order are normal. 

For a given subset S of a finite group G without the identity element 1, the 
Cayley digraph on G with respect to S is denoted by r =Cay(G, S) where V(r) = 
G, E(r) = {(g, 8g) I 9 E G,8 E S}. It is clear that Aut (r), the automorphism group 
of r, contains the right regular representation G R of G as a subgroup. Moreover r 
is connected if and only if G = (S), and r is undirected if and only if S-l = S. 

r is called normal if G R is a normal subgroup of Aut (r). The concept of normality 
for Cayley digraphs is known to be important in the study of arc-transitive digraphs 
and half-tranisitive graphs. A natural problem is, for a given finite group G, to 
determine all normal or nonnormal Cayley digraphs of G. However this is a very 
difficult problem. The groups for which complete information about the normality 
of Cayley digraphs is available are cyclic groups of prime order (see [1]) and groups 
of order 2p (see [3]). Wang, Wang and Xu [9] determined all disconnected normal 
Cayley digraphs. Therefore we always suppose, in this paper, that the Cayley digraph 
Cay(G, S) is connected, that is, S is a generating subset of G. Xu [11, Problem 6] 
asked the following question: when S is a minimal generating set of G, are the 
corresponding Cayley digraph and graph normal? For abelian groups, Feng and Gao 
[5] proved that if the Sylow 2-subgroups of G are cyclic then the answers to the 
question are positive, and otherwise negative in general. 

About non abelian groups, Feng and XU [6J proved that there are only two non
normal connected Cayley digraphs of valency 2 on nonabelian groups of order p3 and 
p4. This also implies that there are few nonnormal connected Cayley digraphs. Feng 
[4] determined all nonnormal Cayley digraphs of valency 2 on nonabelian groups of 
order 2p2. Wang and Li [10] also proved that the Cayley graphs of nonabelian groups 
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of order 2pq and of degree 2 are normal. In this paper we discuss the normality of 
connected Cayley digraphs of valency 2 on nonabelian groups of odd square-free 
order. Our result is the following: 
Main Theorem Let G be a nonabelian group of odd square-free order and let 
lSI = 2. Then r =Cay(G, S) is norma1. 

To prove our result, we need the following lemmas: 
Lemma 1 ([11, Prop. 1.5]) Let A = Aut (r) be the automorphism group of the 
Cayley digraph r of a group G with respect to its generating subset S and let Al be 
the stabilizer subgroup of A fixing the identity element 1 of G. Then r is normal if 
and only if Al is contained in the automorphism group Aut (G) of G. 
Lemma 2 ([4]) Let S = {e, f} be a two-generating subset of G without the identity 
1 and let Ai be the subgroup of A which fixes the elements 1, e and f of G. Then r 
is normal if and only if Ai = 1. 

In this paper, we mainly discuss a normal subgroup A of the automorphism group 
of the Cayley digraph r = Cay( G, S) of valency 2 to determine whether r is normal. 
It is clear that IA : GI is a power of 2. To prove our theorem, we can assume that 
Cay(G, S) is not normal, where G is the smallest counterexample of odd square-free 
order. Let N be a smallest normal subgroup of A. Then N = TI X T2 X ... X Tk 
where Ti is isomorphic to Zp or a simple group. Since G is of odd square-free order, 
k = 1. When N is simple, since G is a Hall odd-subgroup of A, N n G is also a 
Hall odd-subgroup of N. Hence, by Corollary 5.6 of [2], N ~ PSL(2,p) where p is 
a Mersenne prime. Moreover, by Theorem II.8.27 of [7], G is the semidirect product 
of Zp by Z(p-I)/2' 

Now, we deal with the case when N is transitive on the set V(r) of the digraph 
r. 

Let (u, v) be a directed arc of r (the direction is from u to v). Then u and v are 
the tail and head of (u, v) respectively. If r has a circuit such that for every vertex 
u on this circuit, u is the tail of two incident arcs of the circuit or the head of two 
incident arcs, then the circuit is called an alternating circuit of r. Furthermore, if 
u is the tail of two incident arcs, then there exists at most one alternating circuit 
containing these two incident arcs; in which case we denote the circuit by O(u). 
Similarly if u is the head of two incident arcs of an alternating circuit we denote the 
circuit by J(u). 
Claim 3 In r, an alternating circuit must be an alternating cycle. 
Proof. When an alternating circuit A' of r is not an alternating cycle, there exist 
vertices which appear at least two times in A'. Since r is vertex-transitive and of 
valency 2, each vertex of A' must appear two times in AI. Hence, vertices not in A' 
are not adjacent to the vertices of A'. However, r is connected. Thus, all vertices 
appear in A'. Hence, the subgroup Ai, fixing A' pointwise, must fix all vertices of r. 
In other words, Ai = 1. By Lemma 2, r is normal. This is impossible. 

Now, we consider the alternating cycle construction of r. Since A is transitive, 
the length of the alternating cycles is a constant 2m where m is the number of 
vertices of valency 2 in an alternating cycle. Since Ai fixes the alternating cycle 
0(1) pointwise, it must fix the set J((e- I J)i) for 0 ~ i < m (see Figure 1 for m 
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odd). If 10(1) n J((e-1J)i) I > 2 for some i, Ai fixes all vertices in J((e- 1 J)i). Since 
r is transitive and connected, Ai fixes all alternating cycles and all vertices. Hence, 
Ai = 1, which is impossible. Similarly, 10(I)nO(f(e-1 J)i)1 ~ 2. Since r is transitive, 
10(g) n O(h)1 ~ 2, where O(g) and O(h) are distinct alternating cycles. Let k be 
the number of alternating cycles. Then, km = IGI by calculating the number of 
vertices of valency 2 in the alternating circuits. If m 2: k, then there are i, j with 
i =1= j such that J((e-1 J)i) = J((e-1 J)j). Moreover, there is a vertex f((e- 1 J)l) or 
(e-1 J)l(l =1= i, j) contained in 0(1) n J((e-1 J)i), which is impossible. Hence, m < k. 

We define a new digraph A(r) as follows (see Figure 1 for m odd): V(A(r)) is the 
set of different alternating cycles; for O(g), O(h) E V(A(r)), (O(g), O(h)) E E(A(f)) 
if and only if O(g) n O(h) contains vertices which are of valency 2 in O(h). 

O(e-1 j-leg) O(g) O(eg) 
O----------~·O~----------~·O 

Figure 1 

It is clear that there are no loops in A(r), and that A(r) is of order k and of 
out-degree m or m/2. Further, we have the following: 
Lemma 4 Two alternating cycles O(g) and O(h) of r have at most two common 
vertices. If O(g) and O(h) have a common vertex, or have two common vertices 
that have different valencies in the same alternating cycle, then A ~Aut(A(r)) and 
Aut(A(r)) has a regular arc-transitive subgroup isomorphic to G. 
Proof. The first conclusion comes from the previous discussion. Since A = Aut (r) 
preserves the alternating cycle construction of r, there is a homomorphism from A 
to Aut(A(r)) such that the image of A permutes the vertices of A(r) (that are the 
alternating cycles of r). Let K be the kernel of this homomorphism. When two 
alternating cycles have only one common vertex or have two common vertices that 
have different valencies in the same alternating cycle, since K fixes all alternating 
cycles, K must fix all vertices in f. Hence, K = 1. So, A ~Aut(A(r)). Moreover, 
as a subgroup of A, G permutes transitively the arcs of the digraph A(r). It is clear 
that the action of G on A(r) is regular arc-transitive. 

By the above lemma, we know that N is isomorphic to a subgroup of Aut(A(f)). 
When N is transitive on V(r), it is also transitive on V(A(r)). Hence, the order of 
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its stabilizer subgroup is (p + l)p(p - 1)/(2k). However, by Theorem II.8.27 of [7], 
PSL(2,p) has no subgroup of order (p + l)p(p - 1)/(2k). Hence N is not transitive 
on V(r). We consider the graph r N , where V(r N ) is the set of all N-orbits on V(r), 
and two vertices U, V E vr N are adjacent in r N if and only if there exit j3 E U and 
a E V which are adjacent in r. In our case, rN is also a Cayley digraph Cay(G, S) 
where G = GN/N, S = SN/N. Hence, by Lemma 2.5 of [8], rN is a dicycle. We 
denote the orbits of N by {Yo, Vi, "', Vt} where the out-neighbors of vertices in Vi 
are in Vi+l and 1 = IGI/IG n NI. Assume that N is isomorphic to PSL(2,p). Let 
No. be the stabilizer subgroup of N fixing the vertex a E yr. Then, by Theorem 
II.8.27 of [7], No. is the dihedral group of order p + 1. Let M be its cyclic subgroup 
of order (p + 1) /2. Since M is cyclic, it has an orbit C of order (p + 1) /2 in some 
set Vi. Hence, the out-neighbors and in-neighbors of C are of order p + 1, (p + 1)/2 
or (p + 1)/4. If its out-neighbors or in-neighbors are of order (p + 1)/4 or (p + 1)/2, 
the length 21HI of the alternating cycle is a divisor of (p+ 1), where H = (e-1J) is a 
subgroup of G. This is impossible. Hence, the out-neighbors and in-neighbors of C 
are of order p + 1 and consist of two orbits of M of order (p + 1)/2. Thus, Cay(G, S) 
is not connected. Hence, G > N = N n G ~ Zp. Then, by Lemma 2.5 of [8], r N 

is a dicycle or G / N -arc transitive of valency 2. If r N is a dicycle, there are 2p arcs 
between Vi and Vi+l and the number of arcs also is 21HI. Since r is connected, Ai 
fixes all vertices. Thus Cay(G, S) is normal. So, we assume that rN is GIN-arc 
transitive of valency 2. Let K be the kernel of A acting on the set {VI, V2 ," " Vt} 
and h an element in K fixing a vertex a E VI. Then, since K fixes all Vi, h fixes 
the in-neighbors and out-neighbors of a and so fixes all vertices. Hence, K must be 
regular and be N. Then, since G is the smallest counterexample, GIN <JA/N. Hence, 
G <l A and r is normal. The proof of our main Theorem is completed. 
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