On the normality of Cayley digraphs of valency 2 on nonabelian groups of odd square free order^{*}

Jiong-Sheng Li and Ping Wang

Department of Mathematics University of Science and Technology of China Hefei 230026, People's Republic of China

Abstract

In this paper, we prove that all Cayley digraphs of valency 2 on nonabelian groups of odd square-free order are normal.

For a given subset S of a finite group G without the identity element 1, the Cayley digraph on G with respect to S is denoted by $\Gamma = \text{Cay}(G, S)$ where $V(\Gamma) =$ $G, \quad E(\Gamma) = \{(g, sg) \mid g \in G, s \in S\}$. It is clear that Aut (Γ), the automorphism group of Γ , contains the right regular representation G_R of G as a subgroup. Moreover Γ is connected if and only if $G = \langle S \rangle$, and Γ is undirected if and only if $S^{-1} = S$.

 Γ is called normal if G_R is a normal subgroup of Aut (Γ). The concept of normality for Cayley digraphs is known to be important in the study of arc-transitive digraphs and half-tranisitive graphs. A natural problem is, for a given finite group G, to determine all normal or nonnormal Cayley digraphs of G. However this is a very difficult problem. The groups for which complete information about the normality of Cayley digraphs is available are cyclic groups of prime order (see [1]) and groups of order 2p (see [3]). Wang, Wang and Xu [9] determined all disconnected normal Cayley digraphs. Therefore we always suppose, in this paper, that the Cayley digraph Cay(G, S) is connected, that is, S is a generating subset of G. Xu [11, Problem 6] asked the following question: when S is a minimal generating set of G, are the corresponding Cayley digraph and graph normal? For abelian groups, Feng and Gao [5] proved that if the Sylow 2-subgroups of G are cyclic then the answers to the question are positive, and otherwise negative in general.

About nonabelian groups, Feng and Xu [6] proved that there are only two nonnormal connected Cayley digraphs of valency 2 on nonabelian groups of order p^3 and p^4 . This also implies that there are few nonnormal connected Cayley digraphs. Feng [4] determined all nonnormal Cayley digraphs of valency 2 on nonabelian groups of order $2p^2$. Wang and Li [10] also proved that the Cayley graphs of nonabelian groups

^{*}Supported by the National Natural Science Foundation of China (Grant no. 19671077) and Doctoral Program Foundation of the National Education Department of China

of order 2pq and of degree 2 are normal. In this paper we discuss the normality of connected Cayley digraphs of valency 2 on nonabelian groups of odd square-free order. Our result is the following:

Main Theorem Let G be a nonabelian group of odd square-free order and let |S| = 2. Then $\Gamma = Cay(G, S)$ is normal.

To prove our result, we need the following lemmas:

Lemma 1 ([11, Prop. 1.5]) Let $A = \operatorname{Aut}(\Gamma)$ be the automorphism group of the Cayley digraph Γ of a group G with respect to its generating subset S and let A_1 be the stabilizer subgroup of A fixing the identity element 1 of G. Then Γ is normal if and only if A_1 is contained in the automorphism group $\operatorname{Aut}(G)$ of G.

Lemma 2 ([4]) Let $S = \{e, f\}$ be a two-generating subset of G without the identity 1 and let A_1^* be the subgroup of A which fixes the elements 1, e and f of G. Then Γ is normal if and only if $A_1^* = 1$.

In this paper, we mainly discuss a normal subgroup A of the automorphism group of the Cayley digraph $\Gamma = \operatorname{Cay}(G, S)$ of valency 2 to determine whether Γ is normal. It is clear that |A:G| is a power of 2. To prove our theorem, we can assume that $\operatorname{Cay}(G, S)$ is not normal, where G is the smallest counterexample of odd square-free order. Let N be a smallest normal subgroup of A. Then $N = T_1 \times T_2 \times \cdots \times T_k$ where T_i is isomorphic to Z_p or a simple group. Since G is of odd square-free order, k = 1. When N is simple, since G is a Hall odd-subgroup of A, $N \cap G$ is also a Hall odd-subgroup of N. Hence, by Corollary 5.6 of [2], $N \cong PSL(2, p)$ where p is a Mersenne prime. Moreover, by Theorem II.8.27 of [7], G is the semidirect product of Z_p by $Z_{(p-1)/2}$.

Now, we deal with the case when N is transitive on the set $V(\Gamma)$ of the digraph Γ .

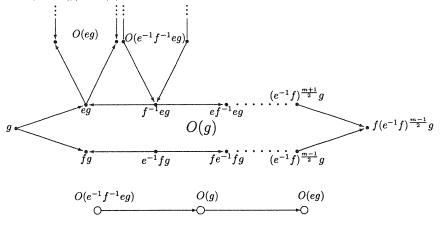
Let (u, v) be a directed arc of Γ (the direction is from u to v). Then u and v are the tail and head of (u, v) respectively. If Γ has a circuit such that for every vertex u on this circuit, u is the tail of two incident arcs of the circuit or the head of two incident arcs, then the circuit is called an alternating circuit of Γ . Furthermore, if u is the tail of two incident arcs, then there exists at most one alternating circuit containing these two incident arcs; in which case we denote the circuit by O(u). Similarly if u is the head of two incident arcs of an alternating circuit we denote the circuit by I(u).

Claim 3 In Γ , an alternating circuit must be an alternating cycle.

Proof. When an alternating circuit A' of Γ is not an alternating cycle, there exist vertices which appear at least two times in A'. Since Γ is vertex-transitive and of valency 2, each vertex of A' must appear two times in A'. Hence, vertices not in A' are not adjacent to the vertices of A'. However, Γ is connected. Thus, all vertices appear in A'. Hence, the subgroup A_1^* , fixing A' pointwise, must fix all vertices of Γ . In other words, $A_1^* = 1$. By Lemma 2, Γ is normal. This is impossible.

Now, we consider the alternating cycle construction of Γ . Since A is transitive, the length of the alternating cycles is a constant 2m where m is the number of vertices of valency 2 in an alternating cycle. Since A_1^* fixes the alternating cycle O(1) pointwise, it must fix the set $I((e^{-1}f)^i)$ for $0 \le i < m$ (see Figure 1 for m odd). If $|O(1) \cap I((e^{-1}f)^i)| > 2$ for some i, A_1^* fixes all vertices in $I((e^{-1}f)^i)$. Since Γ is transitive and connected, A_1^* fixes all alternating cycles and all vertices. Hence, $A_1^* = 1$, which is impossible. Similarly, $|O(1) \cap O(f(e^{-1}f)^i)| \leq 2$. Since Γ is transitive, $|O(g) \cap O(h)| \leq 2$, where O(g) and O(h) are distinct alternating cycles. Let k be the number of alternating cycles. Then, km = |G| by calculating the number of vertices of valency 2 in the alternating circuits. If $m \geq k$, then there are i, j with $i \neq j$ such that $I((e^{-1}f)^i) = I((e^{-1}f)^j)$. Moreover, there is a vertex $f((e^{-1}f)^l)$ or $(e^{-1}f)^l(l \neq i, j)$ contained in $O(1) \cap I((e^{-1}f)^i)$, which is impossible. Hence, m < k.

We define a new digraph $A(\Gamma)$ as follows (see Figure 1 for m odd): $V(A(\Gamma))$ is the set of different alternating cycles; for $O(g), O(h) \in V(A(\Gamma)), (O(g), O(h)) \in E(A(\Gamma))$ if and only if $O(g) \cap O(h)$ contains vertices which are of valency 2 in O(h).



It is clear that there are no loops in $A(\Gamma)$, and that $A(\Gamma)$ is of order k and of out-degree m or m/2. Further, we have the following:

Lemma 4 Two alternating cycles O(g) and O(h) of Γ have at most two common vertices. If O(g) and O(h) have a common vertex, or have two common vertices that have different valencies in the same alternating cycle, then $A \leq Aut(A(\Gamma))$ and $Aut(A(\Gamma))$ has a regular arc-transitive subgroup isomorphic to G.

Proof. The first conclusion comes from the previous discussion. Since $A = \operatorname{Aut}(\Gamma)$ preserves the alternating cycle construction of Γ , there is a homomorphism from Ato $\operatorname{Aut}(A(\Gamma))$ such that the image of A permutes the vertices of $A(\Gamma)$ (that are the alternating cycles of Γ). Let K be the kernel of this homomorphism. When two alternating cycles have only one common vertex or have two common vertices that have different valencies in the same alternating cycle, since K fixes all alternating cycles, K must fix all vertices in Γ . Hence, K = 1. So, $A \leq \operatorname{Aut}(A(\Gamma))$. Moreover, as a subgroup of A, G permutes transitively the arcs of the digraph $A(\Gamma)$. It is clear that the action of G on $A(\Gamma)$ is regular arc-transitive.

By the above lemma, we know that N is isomorphic to a subgroup of $\operatorname{Aut}(A(\Gamma))$. When N is transitive on $V(\Gamma)$, it is also transitive on $V(A(\Gamma))$. Hence, the order of its stabilizer subgroup is (p+1)p(p-1)/(2k). However, by Theorem II.8.27 of [7], PSL(2,p) has no subgroup of order (p+1)p(p-1)/(2k). Hence N is not transitive on $V(\Gamma)$. We consider the graph Γ_N , where $V(\Gamma_N)$ is the set of all N-orbits on $V(\Gamma)$, and two vertices $U, V \in V\Gamma_N$ are adjacent in Γ_N if and only if there exit $\beta \in U$ and $\alpha \in V$ which are adjacent in Γ . In our case, Γ_N is also a Cayley digraph $\operatorname{Cay}(\overline{G}, \overline{S})$ where $\overline{G} = GN/N$, $\overline{S} = SN/N$. Hence, by Lemma 2.5 of [8], Γ_N is a dicycle. We denote the orbits of N by $\{V_0, V_1, \dots, V_l\}$ where the out-neighbors of vertices in V_i are in V_{i+1} and $l = |G|/|G \cap N|$. Assume that N is isomorphic to PSL(2,p). Let N_{α} be the stabilizer subgroup of N fixing the vertex $\alpha \in V\Gamma$. Then, by Theorem II.8.27 of [7], N_{α} is the dihedral group of order p + 1. Let M be its cyclic subgroup of order (p+1)/2. Since M is cyclic, it has an orbit C of order (p+1)/2 in some set V_i . Hence, the out-neighbors and in-neighbors of C are of order p+1, (p+1)/2or (p+1)/4. If its out-neighbors or in-neighbors are of order (p+1)/4 or (p+1)/2, the length 2|H| of the alternating cycle is a divisor of (p+1), where $H = \langle e^{-1}f \rangle$ is a subgroup of G. This is impossible. Hence, the out-neighbors and in-neighbors of Care of order p+1 and consist of two orbits of M of order (p+1)/2. Thus, Cay(G,S)is not connected. Hence, $G > N = N \cap G \cong Z_p$. Then, by Lemma 2.5 of [8], Γ_N is a dicycle or G/N-arc transitive of valency 2. If Γ_N is a dicycle, there are 2p arcs between V_i and V_{i+1} and the number of arcs also is 2|H|. Since Γ is connected, A_1^* fixes all vertices. Thus Cay(G, S) is normal. So, we assume that Γ_N is G/N-arc transitive of valency 2. Let K be the kernel of A acting on the set $\{V_1, V_2, \dots, V_l\}$ and h an element in K fixing a vertex $\alpha \in V_1$. Then, since K fixes all V_i , h fixes the in-neighbors and out-neighbors of α and so fixes all vertices. Hence, K must be regular and be N. Then, since G is the smallest counterexample, $G/N \triangleleft A/N$. Hence, $G \triangleleft A$ and Γ is normal. The proof of our main Theorem is completed.

Acknowledgement

We would like to thank the referee for useful comments on our paper.

References

- [1] B. Alspach, Point-symmetric graphs of prime order and transitive permutation groups of prime degree, J. Combin. Theory, 15(1973), 12-17.
- [2] Z. Arad, E. Fisman, On finite factorization groups J. of Algebra 86(1984), 522-548.
- [3] S. F. Du, R. J. Wang, M. X. Xu, On the normality Cayley digraphs of groups of twice a prime, Preprint. Peking University, 1997.
- [4] Y. Q. Feng, A family of nonnormal Cayley digraphs. in preparation.

- [5] Y. Q. Feng, T. P. Gao, Automorphism groups and isomorphisms of Cayley digraphs of abelian groups, Australasian Journal of Combinatorics, 16(1997), 183-187.
- [6] Y. Q. Feng, M. Y. Xu, The Normality on a Family of Cayley Digraphs, Preprint. Peking University, 1997.
- [7] B. Huppert, Finite Groups (I), Springer-Verlag, Berlin, 1967.
- [8] C. H. Li, On isomorphism of connected Cayley graphs, III, Bull of Austral. Math. Soc., 58, (1998), 137-145.
- [9] C. Q. Wang, D. J. Wang, M. Y. Xu, On normal Cayley graphs of finite groups, Science in China, Ser. A, Vol. 28(2)(1998), 131-139.
- [10] P. Wang, J. S. Li, On the normality of Cayley digraphs of degree 2 on nonabelian group of order 2pq, submitted.
- M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, *Discrete Math.* 182(1998), 309-319.

(Received 21/1/99; revised 23/6/99)