A recursive theorem on matching extension

Chi-i Chan

Kogasaki 3-3387, Matsudo 271, JAPAN

Tsuyoshi Nishimura

Department of Mathematics, Shibaura Institute of Technology, Fukasaku, Omiya 330, JAPAN

Abstract

A graph G having a perfect matching (or 1-factor) is called n-extendable if every matching of size n is extended to a 1 -factor. Further, G is said to be $\langle r: m, n\rangle$-extendable if, for every connected subgraph S of order $2 r$ for which $G \backslash V(S)$ is connected, S is m-extendable and $G \backslash V(S)$ is n extendable. We prove the following: Let p, r, m, and n be positive integers with $p-r>n$ and $r>m$. Then every 2 -connected $\langle r: m, n\rangle$-extendable graph of order $2 p$ is $\langle r+1: m+1, n-1\rangle$-extendable.

1. Introduction

We consider only finite simple graphs and follow Bondy and Murty [1] for general terminology and notation. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $A \subset V(G), G[A]$ denotes the subgraph of G induced by A and $G \backslash A$ is the subgraph of G induced by $V(G) \backslash A$. If $G[A]$ is connected, then a subset A is said to be connected (if A is a empty set, then it is considered to be connected). Further, we often identify $G[A]$ with A. If H is a subgraph and v is a vertex, we may write $G \backslash H$ or $G \backslash v$ instead of $G \backslash V(H)$ or $G \backslash\{v\}$, respectively. If A and B are disjoint subsets of $V(G)$, then $E(A, B)$ denotes the set of edges with one end in A and the other in B. For $e \in E(G), V(e)$ denotes the set of endvertices of e.

Let $n \geq 0$ and $p>0$ be integers with $n \leq p-1$ and G a graph with $2 p$ vertices having a 1 -factor (a perfect matching). Then G is said to be n-extendable if every matching of size n in G can be extended to a 1-factor. In particular, G is 0 -extendable if and only if G has a 1 -factor. Further, G is said to be (r, n)-extendable (resp. $[r, n]-$ extendable) if $G[S]$ (resp. $G \backslash S$) is n-extendable for every connected subset S of order $2 r$. Furthermore, a connected graph G is called $\langle r, n\rangle$-extendable if $G[S]$ is n-extendable for every connected subset S of order $2 r$ for which $G \backslash S$ is connected.

Theorem A(Nishimura and Saito [5]). Let p, r and n be integers with $p>r>n>0$. Then every (r, n)-extendable graph of order $2 p$ is $(r+1, n+1)$-extendable.

Theorem $\mathbf{B}([5])$. Let p, r and n be integers with $r>0$ and $p-r>n \geq 0$. Then every connected $[r, n]$-extendable graph of order $2 p$ is $[r-1, n]$-extendable.

Theorem \mathbf{C} (Nishimura[4]). Let p, r and n be positive integers with $p>r>n$. Then every 2 -connected $\langle r, n\rangle$-extendable graph of order $2 p$ is $\langle r+1, n\rangle$-extendable.

In this paper, we present an extended theorem which is similar to the theorems above. A connected graph G is called $\langle r: m, n\rangle$-extendable if, for every connected subset S of order $2 r$ for which $G \backslash S$ is connected, $G[S]$ is m-extendable and $G \backslash S$ is n-extendable. From this definition, if G is an $\langle r: m, n\rangle$-extendable graph of order $2 p$, then two inequalities $p>r+n$ and $r>m$ are required.

Theorem 1. Let p, r, m, and n be positive integers with $p-r>n$ and $r>m$. Then every 2-connected $\langle r: m, n\rangle$-extendable graph of order $2 p$ is $\langle r+1: m+1, n-1\rangle$ extendable.

Note that if a graph G is $\langle r: m, 0\rangle$-extendable, then G is $\langle r, m\rangle$-extendable. Furthermore, by Theorem C, if an even order graph G is 2-connected $\langle r, m\rangle$-extendable, then G is m-extendable. So, we have the following corollary immediately.

Corollary 2. If a graph G is 2 -connected and $\langle r: m, n\rangle$-extendable, then G is $(m+n)$-extendable.

From this corollary, we understand that if a graph G is 2 -connected and $\langle r, m\rangle$ extendable but not $(m+n)$-extendable, then there exists a connected subset T of order $2 r$ such that $G \backslash T$ is connected and not n-extendable.

If $p=2 r$, then the connectedness condition of Theorem 1 cannot be weakened. For example, let $K_{2 n+2}$ and $K_{2 n+2}^{\prime}$ be two disjoint complete graphs with order $2 n+2$. Let $u \in V\left(K_{2 n+2}\right)$ and $v \in V\left(K_{2 n+2}^{\prime}\right)$. Add an edge $u v$ between $K_{2 n+2}$ and $K_{2 n+2}^{\prime}$. Let G be the resulting graph. Now we can easily check that S and $G \backslash S$ are n extendable for every connected subset S of order $2 n+2$ for which $G \backslash S$ is connected. It is obvious however that G is not $2 n$-extendable since G cannot have a 1-factor which contains $u v$.

2. Preliminary Lemmas.

Our proof of Theorem 1 depends heavily on the following two theorems. We denote the number of odd components of a graph G by $o(G)$.

Lemma 1 (Tutte [7]).
(I) A graph G has a 1-factor iff $o(G \backslash S) \leq|S|$ for all $S \subset V(G)$.
(II) $o(G \backslash S)-|S| \equiv 0(\bmod 2)$ if G has even order.

Lemma 2 (Plummer [6]).
(I) If G is n-extendable, then G is $(n-1)$-extendable.
(II) If G is connected and n-extendable, then G is $(n+1)$-connected.

Next, the following two lemmas are easily deduced from the definitions of variations of extendability.

Lemma 3. Let m, n, and r be positive integers with $r>m$. If G is 2 -connected and $\langle r: m, n\rangle$-extendable, then G is $\langle r+1, m\rangle$-extendable.

Proof. Let G be a graph satisfying the hypothesis. By the definitions and Lemma 2 (I), if G is $\langle r: m, n\rangle$-extendable, then G is $\langle r: m, n-1\rangle$-extendable. So, we have G is $\langle r, m, 0\rangle$-extendable, inductively. Then G is also $\langle r, m\rangle$-extendable. Since G is 2 -connected, G becomes $\langle r+1, m\rangle$-extendable by Theorem C.

Lemma 4. Let m, n, and r be positive integers with $r>m$. If G is 2 -connected $\langle r: m, n\rangle$-extendable, then, for every connected subset T of order $2(r+1)$ for which $G \backslash T$ is connected, $G \backslash T$ is ($n-1$)-extendable.

Proof. Let G be a graph satisfying the hypothesis, T a connected subset of order $2(r+1)$ for which $G \backslash T$ is connected. Then we may assume that T is m-extendable by Lemma 3 and that T is $(m+1)(\geq 2)$-connected by Lemma 2 (II). So, since G is connected, there exists an edge $u v$ in $E(T)$ such that $T \backslash\{u, v\}$ is connected and $E(u, G \backslash T) \neq \emptyset$. Let M be an arbitrary matching of $G \backslash T$ with size $n-1$. Set $S=T \backslash\{u, v\}$. Clearly, $G \backslash S$ is connected. Therefore, S is m-extendable and $G \backslash S$ is n-extendable by hypothesis. Then $M \cup\{u v\}$ can be extended to a 1-factor F of $G \backslash S$. Thus $G \backslash T$ has a 1-factor $F \backslash\{u v\}$ which contains M, or $G \backslash T$ is ($n-1$)-extendable.

3. Proof of Theorem 1.

Let p, r, m, n, and G be as in the theorem. Suppose, to the contrary of the conclusion, G is not $\langle r+1: m+1, n-1\rangle$-extendable. So, there exists a connected subset T of order $2(r+1)$ for which $G \backslash T$ is connected, and which satisfies the following:
(i) T is not ($m+1$)-extendable or (ii) $G \backslash T$ is not ($n-1$)-extendable.

Now, for such a subset $T, G \backslash T$ is ($n-1$)-extendable by Lemma 4 . Therefore we may assume that T is not $(m+1)$-extendable. Let $M=\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}$ be a matching of T which is not extended to a 1-factor of T. And we set $B=\bigcup_{i=1}^{m+1} V\left(e_{i}\right)$. Then, by Lemma 1 (I), there exists a set $A \subset T \backslash B$ such that $o((T \backslash B) \backslash A)>|A|$. Clearly since G is even order, for this set A there exists a positive integer k such that

$$
o(T \backslash B \backslash A)=o((T \backslash B) \backslash A)=|A|+2 k
$$

by Lemma 1 (II). Throughout our proof of Theorem 1, we consider that such a set A is fixed. By the way, we may assume that T is m-extendable by Lemma 3 . So,
for every edge $e_{i} \in M, T$ must have a 1 -factor which contains $M \backslash\left\{e_{i}\right\}$. Again, by Lemma 1 (I), we have

$$
o\left(\left(T \backslash\left(B \backslash V\left(e_{i}\right)\right) \backslash A\right) \leq|A|\right.
$$

Thus every $V\left(e_{i}\right)$ must join at least $2 k$ odd components in $T \backslash B \backslash A$.
Since T is connected m-extendable and $m>0, T$ is $(m+1)(\geq 2)$-connected by Lemma 2 (II). Therefore, we can decompose T into $V\left(O_{1}\right) \cup V\left(P_{2}\right) \cup \ldots \cup V\left(P_{l}\right)$ satisfying the following:
(i) O_{1} is a longest cycle of T and
(ii) $\quad P_{i}(2 \leq i \leq l)$ is a longest path of $T \backslash\left(V\left(O_{1}\right) \cup\left(\cup_{j=2}^{i-1} V\left(P_{j}\right)\right)\right)$
with end vertices a_{i}, b_{i} such that $a_{i} x_{i}, b_{i} y_{i} \in E(T)$, where x_{i}, y_{i} $\in V\left(O_{1}\right) \cup\left(\cup_{j=2}^{i-1} V\left(P_{j}\right)\right)$ and $x_{i} \neq y_{i}$.

If $P_{i}=w_{1} w_{2} \ldots w_{c}\left(w_{1}=a_{i}\right.$ and $\left.w_{c}=b_{i}\right)$, then $x_{i} P_{i} y_{i}$ denotes the path $x_{i} w_{1} w_{2} \ldots w_{c} y_{i}$. For O_{1} and $x_{i} P_{i} y_{i}(2 \leq i \leq k)$, we define an orientation, respectively. And we denote by x^{+}, x^{-}the succesor and the predecessor of a vertex x on O_{1} (or P_{i}) according to the orientation, respectively. Since G is connected, there exists a vertex v of $T=V\left(O_{1}\right) \cup V\left(\cup_{j=2}^{l} P_{j}\right)$ which is adjacent to a vertex of $G \backslash T$. Then, by the property of $P_{i}, T \backslash\left\{v, v^{+}\right\}$is connected. Obviously $G \backslash\left(T \backslash\left\{v, v^{+}\right\}\right)$is also connected. Hence $T \backslash\left\{v, v^{+}\right\}$and $G \backslash\left(T \backslash\left\{v, v^{+}\right\}\right)$are m-extendable and n-extendable, respectively. Now since $G \backslash\left(T \backslash\left\{v, v^{+}\right\}\right)$is $(n+1)(\geq 2)$-connected by Lemma 2 (II), $E\left(v^{+}, G \backslash T\right) \neq \emptyset$. Applying the same argument but replacing v^{+}to v, we have $E\left(v^{++}, G \backslash T\right) \neq \emptyset$. Similarly, we have $\left.E\left(v^{-}, G \backslash T\right)\right), E\left(v^{--}, G \backslash T\right) \neq \emptyset$, etc. Consequently we can prove that each vertex of T is adjacent to a vertex of $G \backslash T$. In particular, we have the following:
$T \backslash\{u, v\}$ and $G \backslash(T \backslash\{u, v\})$ are connected for each edge $u v$ on $O_{1} \cup\left(\bigcup_{i=2}^{l} x_{i} P_{i} y_{i}\right)$.

Let $\{u, v\}$ be a set of distinct two vertices of T such that $T \backslash\{u, v\}$ is connected. Here notice that u might be non-adjacent to v and that $G \backslash(T \backslash\{u, v\})$ is connected. Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{\alpha}\right\}\left(\right.$ resp. $\left.\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{\beta}\right\}\right)$ be the set of odd components (resp. even components) of $(T \backslash B) \backslash A$. Then $T=A \cup B \cup\left(\cup_{i=1}^{\alpha} V\left(C_{i}\right)\right) \cup\left(\cup_{j=1}^{\beta} V\left(D_{j}\right)\right)$. We consider nine cases.

Set $S=T \backslash\{u, v\}$. Note that S is m-extendable and k is positive.
Case 1. $u, v \in A$.
Let $e \in M$ and set $A^{\prime}=(A \backslash\{u, v\}) \cup V(e)$. Since $S \backslash(B \backslash V(e))$ has a 1-factor, we have

$$
|A|=\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash V(e)) \backslash A^{\prime}\right)=o(T \backslash B \backslash A)=|A|+2 k
$$

or $k \leq 0$, which contradicts that k is positive.
Case 2. $u \in A$ and $v \in B$.
Let $v y \in M$ and set $A^{\prime}=(A \backslash\{u\}) \cup\{y\}$. Then we have

$$
|A|=\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash\{v, y\}) \backslash A^{\prime}\right)=o(T \backslash B \backslash A)=|A|+2 k,
$$

which is a contradiction.
Case 3. $u \in A$ and $v \in D_{i}$.
Let $e \in M$ and set $A^{\prime}=(A \backslash\{u\}) \cup V(e)$. Then we have

$$
|A|+1=\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash V(e)) \backslash A^{\prime}\right) \geq o(T \backslash B \backslash A)+1=|A|+2 k+1,
$$

which is a contradiction.
Case 4. $u, v \in B$ and $u v \in M$.
We have

$$
|A| \geq o(S \backslash(B \backslash\{u, v\}) \backslash A)=o(T \backslash B \backslash A)=|A|+2 k,
$$

which is a contradiction.
Case 5. $u \in B$ and $v \in D_{i}$.
Let $u x \in M$ and set $A^{\prime}=A \cup\{x\}$. Then we have

$$
|A|+1=\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash\{u, x\}) \backslash A^{\prime}\right) \geq o(T \backslash B \backslash A)+1=|A|+2 k+1,
$$

which is a contradiction.
Case 6. $u \in A$ and $v \in C_{i}$.
Let $e \in M$ and set $A^{\prime}=(A \backslash\{u\}) \cup V(e)$. Then we have

$$
|A|+1=\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash V(e)) \backslash A^{\prime}\right) \geq o(T \backslash B \backslash A)-1=|A|+2 k-1,
$$

or $k \leq 1$. Then we have $k=1$ since k is positive.
Case 7. $u, v \in B$ and $u v \notin M$.
Note that S has a 1 -factor even if S is 0 -extendable. Let $u x, v y \in M$ and set $A^{\prime}=A \cup\{x, y\}$. Since S is $(m-1)$-extendable by Lemma 2 (I), we have

$$
|A|+2 \geq\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash\{x, y\}) \backslash A^{\prime}\right)=o(T \backslash B \backslash A)=|A|+2 k,
$$

which implies $k=1$.

Case 8. $u \in B$ and $v \in C_{i}$.
Let $u x \in M$ and set $A^{\prime}=A \cup\{x\}$. Then we have

$$
|A|+1=\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash\{x\}) \backslash A^{\prime}\right) \geq o(T \backslash B \backslash A)-1=|A|+2 k-1
$$

We have $k=1$.
Case 9. $u, v \in C_{i}$ or $u, v \in D_{j}$.
Let $e \in M$ and set $A^{\prime}=A \cup V(e)$. Then

$$
|A|+2=\left|A^{\prime}\right| \geq o\left(S \backslash(B \backslash V(e)) \backslash A^{\prime}\right) \geq o(T \backslash B \backslash A)=|A|+2 k
$$

We have $k=1$.
Suppose that u and v are vertices satisfying one of the situations of Cases 1-5. Then $T \backslash\{u, v\}$ is disconnected. In particular, $T \backslash V\left(e_{i}\right)$ is disconnected for every $e_{i} \in M$. Furthermore, if $u v \in E(T)$, then $u v$ is not an edge on $O_{1} \cup\left(\cup_{i=2}^{l} x_{i} P_{i} y_{i}\right)$. Conversely, since $u v$ on $O_{1} \cup\left(\bigcup_{i=2}^{l} x_{i} P_{i} y_{i}\right)$ does not join two distinct components of $(T \backslash A) \backslash B$, every edge $u v$ on $O_{1} \cup\left(\cup_{i=2}^{l} x_{i} P_{i} y_{i}\right)$ satisfies the one of Cases 6-9. Now since M is not empty, we have an edge $e=w_{1} w_{2} \in M$. Notice that w_{1} is in B and that $T \backslash V(e)$ is disconnected. By observation of the various cases, w_{1}^{+}is in $B \cup\left(\cup_{i=1}^{\alpha} C_{i}\right)$, and w_{1}^{+}is not w_{2}. Similarly, $w_{1}^{-} \in B \cup\left(\cup_{i=1}^{\alpha} C_{i}\right)$ and $w_{1}^{-} \neq w_{2}$. Let Q be a component of $T \backslash V(e)$ containing w_{1}^{+}. Since $T \backslash\left\{w_{1}, w_{1}^{-}\right\}$is connected, it is m extendable. Hence, it is also 2 -connected by Lemma 2 (II). Then there exists a vertex z of Q (or $Q \backslash\left\{w_{1}^{-}\right\}$if w_{1}^{-}is in Q) which is adjacent to a vertex of $\left(T \backslash\left\{w_{1}, w_{2}\right\}\right) \backslash Q$. Therefore, Q is not a component of $T \backslash\left\{w_{1}, w_{2}\right\}=T \backslash V(e)$, which is a contradiction. This contradiction completes the proof of Theorem 1.

The following property can be considerd as an extension of factor-criticality. A graph G is said to be $2 n$-factor-critical if the graph remaining after deletion of any $2 n$ vertices from G has a 1 -factor (a perfect matching). Clearly, this property is stronger than that of extendability, that is, if a graph G is $2 n$-factor-critical, then G is n-extendable.

Now let r, m, and n be nonnegative integers. A connected graph G is called $\langle r: m, n\rangle$-factor-critical if, for every connected subset S of order r for which $G \backslash S$ is connected, $G[S]$ is m-factor-critical and $G \backslash S$ is n-factor-critical. Similarly, we can also define that a graph becomes $\langle r, n\rangle$-factor-critical (or (r, n)-factor-critical or $[r, n]$-factor-critical). Then, by the argument quite similar to that in the proof of Theorem 1 , we have the following results.

Theorem 3. Let p, r, m, and n be positive integers with $p-r>n$ and $r>m$. Then every 2 -connected $\langle 2 r: 2 m, 2 n\rangle$-factor-critical graph of order $2 p$ is $\langle 2(r+1)$: $2(m+1), 2(n-1)\rangle$-factor-critical.

Corollary 4. If a graph G is 2 -connected and $\langle 2 r: 2 m, 2 n\rangle$-factor-critical, then G is $2(m+n)$-factor-critical.

Finally, we conjecture the following:
Conjecture. Let n, p, and r be integers such that $1 \leq n<r$ and $p-r>n$, and let G be an $(n+1)$-connected graph of order $2 p$. If for every connected subset $S \subset V(G)$ with $|S|=2 r$ (for which $G \backslash S$ is connected), S or $G \backslash S$ is n-extendable, then G is also n-extendable.

In [4], we proved that for 2-connected graphs, Theorem C contains the following theorems:

Theorem D (Nishimura [2]). Let G be a connected graph of order $2 p(p \geq 3)$, and let r and n be integers such that $1 \leq n<r<p$. If for some integer r, every induced connected subgraph of order $2 r$ is n-extendable, then G is n-extendable.

Theorem \mathbf{E} (Nishimura [3]). Let G be a connected graph of order $2 p$. Let r and n be positive integers such that $p-r \geq n+1$. If $G \backslash S$ is n-extendable for every connected subset S of order $2 r$, then G is n-extendable.

If the conjecture above is correct, then this will be 'another' extension of these theorems.

Acknowledgements. We would like to acknowledge the referees for their comments.

References

[1] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, Macmillan 1976.
[2] T.Nishimura, A theorem on n-extendable graphs. Ars Combin. 38 (1994) 3-5.
[3] T.Nishimura, Extendable graphs and induced subgraphs. SUT Jour. of Math. 30 (1994) 129-135.
[4] T.Nishimura, A new recursive theorem on extendability. Graphs Combin. 13 (1997) 79-83.
[5] T.Nishimura and A.Saito, Two recursive theorems of extendability. Discrete Math. 162 (1996) 319-323.
[6] M.D.Plummer, On n-extendable graphs . Discrete Math. 31 (1980) 201 -210
[7] W.T.Tutte, The factorization of linear graphs. J. London Math. Soc. 22 (1947) 107-111.

