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Abstract 

A graph G having a perfect matching (or I-factor) is called n-fextendable 
if every matching of size n is extended to a I-factor. Further, G is said 
to be (r : m, n }-extendable if, for every connected subgraph S of order 2r 
for which G \ V(S) is connected, S is m-extendable and G \ V(S) is n
extendable. We prove the following: Let p, r, m, and n be positive integers 
with p - r > nand r > m. Then every 2-connected (r : m, n}-extendable 
graph of order 2p is (r + 1 : m + 1, n - 1}-extendable. 

1. Introduction 

We consider only finite simple graphs and follow Bondy and Murty [1] for general 
terminology and notation. Let G be a graph with vertex set V (G) and edge set 
E(G). For A C V(G), G[A] denotes the subgraph of G induced by A and G \ A is 
the subgraph of G induced by V(G) \ A. If G[A] is connected, then a subset A is 
said to be connected (if A is a empty set, then it is considered to be connected). 
Further, we often identify G[A] with A. If H is a subgraph and v is a vertex, we 
may write G \ H or G \ v instead of G \ V(H) or G \ {v}, respectively. If A and B 
are disjoint subsets of V(G), then E(A, B) denotes the set of edges with one end in 
A and the other in B. For e E E(G), V(e) denotes the set of endvertices of e. 

Let n 2: 0 and p > 0 be integers with n :s; p - 1 and G a graph with 2p vertices 
having a 1-factor (a perfect matching). Then G is said to be n-extendable if every 
matching of size n in G can be extended to a 1-factor. In particular, Gis O-extendable 
if and only if G has a 1-factor. Further, G is said to be (r, n)-extendable (resp. [r, n]
extendable) if G[S] (resp. G \ S) is n-extendable for every connected subset S of 
order 2r. Furthermore, a connected graph G is called (r, n}-extendable if G[S] is 
n-extendable for every connected subset S of order 2r for which G \ S is connected. 

Theorem A(Nishimura and Saito [5]). Let p, rand n be integers with p > r > n > O. 
Then every (r, n)-extendable graph of order 2p is (r + 1, n + I)-extendable. 0 
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Theorem B([5)). Let p, rand n be integers with r > 0 and p - r > n ~ O. Then 
every connected [r, n]-extendable graph of order 2p is [r - 1, n]-extendable. 0 

Theorem C(Nishimura[4]). Let p, rand n be positive integers with p > r > n. 
Then every 2-connected (r, n}-extendable graph of order 2p is (r + 1, n)-extendable. 

o 

In this paper, we present an extended theorem which is similar to the theorems 
above. A connected graph G is called (r : m, n}-extendable if, for every connected 
subset 8 of order 2r for which G \ 8 is connected, G[8] is m-extendable and G \ 8 
is n-extendable. From this definition, if G is an (r : m, n)-extendable graph of order 
2p, then two inequalities p > r + nand r > m are required. 

Theorem 1. Let p, r, m, and n be positive integers with p - r > nand r > m. Then 
every 2-connected (r : m, n}-extendable graph of order 2p is (r + 1 : m + 1, n - 1)
extendable. 

Note that if a graph G is (r : m,O)-extendable, then G is (r, m}-extendable. Fur
thermore, by Theorem C, if an even order graph G is 2-connected (r, m)-extendable, 
then G is m-extendable. So, we have the following corollary immediately. 

Corollary 2. If a graph G is 2-connected and (r : m, n}-extendable, then G is 
(m + n )-extendable. 

From this corollary, we understand that if a graph G is 2-connected and (r, m)
extendable but not (m + n )-extendable, then there exists a connected subset T of 
order 2r such that G \ T is connected and not n-extendable. 

If p = 2r, then the connectedness condition of Theorem 1 cannot be weakened. 
For example, let K 2n+2 and K~n+2 be two disjoint complete graphs with order 2n + 2. 
Let U E V(K2n+2) and v E V(K~n+2)' Add an edge uv between K 2n+2 and K~n+2' 
Let G be the resulting graph. Now we can easily check that 8 and G \ 8 are n
extendable for every connected subset 8 of order 2n + 2 for which G \ 8 is connected. 
It is obvious however that G is not 2n-extendable since G cannot have a I-factor 
which contains uv. 

2. Preliminary Lemmas. 

Our proof of Theorem 1 depends heavily on the following two theorems. vVe 
denote the number of odd components of a graph G by o( G). 

Lemma 1 (Tutte [7]). 
(I) A graph G has a I-factor iff o(G \ 8) :::; 181 for all 8 c V(G). 

(II) o(G \ 8) -181 == 0 (mod 2) if G has even order. 
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Lemma 2 (Plummer [6]). 
(I) If G is n-extendable, then G is (n - 1 )-extendable. 

(II) If G is connected and n-extendable, then G is (n + 1 )-connected. 
o 

Next, the following two lemmas are easily deduced from the definitions of varia
tions of extend ability. 

Lemma 3 . Let m, n, and r be positive integers with r > m. If G is 2-connected 
and (r : m, n)-extendable, then G is (r + 1, m)-extendable. 

Proof. Let G be a graph satisfying the hypothesis. By the definitions and Lemma 
2 (I), if G is (r : m, n)-extendable, then G is (r : m, n - I)-extendable. So, we have 
G is (r, m, D}-extendable, inductively. Then G is also (r, m)-extendable. Since G is 
2-connected, G becomes (r + 1, m)-extendable by Theorem C. 0 

Lemma 4 . Let m, n, and r be positive integers with r > m. If G is 2-connected 
(r : m, n)-extendable, then, for every connected subset T of order 2(r + 1) for which 
G \ T is connected, G \ T is (n - 1 )-extendable. 

Proof. Let G be a graph satisfying the hypothesis, T a connected subset of order 
2(r + 1) for which G \ T is connected. Then we may assume that T is m-extendable 
by Lemma 3 and that T is (m + 1)(:::: 2)-connected by Lemma 2 (II). So, since G 
is connected, there exists an edge uv in E(T) such that T \ {u, v} is connected and 
E( u, G \ T) -:f: 0. Let M be an arbitrary matching of G \ T with size n - 1. Set 
S = T \ { u, v}. Clearly, G \ S is connected. Therefore, S is m-extendable and G \ S is 
n-extendable by hypothesis. Then MU{uv} can be extended to a I-factor F ofG\S. 
Thus G\T has a I-factor F\ {uv} which contains M, or G\T is (n-l)-extendable. 

o 

3. Proof of Theorem 1. 
Let p, r, m, n, and G be as in the theorem. Suppose, to the contrary of the 

conclusion, G is not (r + 1 : m + 1, n - I)-extendable. So, there exists a connected 
subset T of order 2(r + 1) for which G \ T is connected, and which satisfies the 
following: 

(i) T is not (m + I)-extendable or (ii) G \ T is not (n - I)-extendable. 

Now, for such a subset T, G\T is (n-I)-extendable by Lemma 4. Therefore we may 
assume that T is not (m + I)-extendable. Let M = {el' e2, ... , em+l} be a matching 
of T which is not extended to a I-factor of T. And we set B = U~11 V(eJ Then, 
by Lemma 1 (I), there exists a set A c T\B such that o((T\B) \A) > IAI. Clearly 
since G is even order, for this set A there exists a positive integer k such that 

o(T \ B \ A) = o( (T \ B) \ A) = IAI + 2k 

by Lemma 1 (II). Throughout our proof of Theorem 1, we consider that such a set 
A is fixed. By the way, we may assume that T is m-extendable by Lemma 3. So, 
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for every edge ei E M, T must have a I-factor which contains M \ {ei}. Again, by 
Lemma 1 (I), we have 

o((T \ (B \ V(ei)) \ A) ~ IAI. 

Thus every V(ei) must join at least 2k odd components in T \ B \ A. 

Since T is connected m-extendable and m > 0, T is (m + 1)(2:: 2)-connected 
by Lemma 2 (II). Therefore, we can decompose T into V(Ol) U V(P2) u ... U V(Pl ) 

satisfying the following: 

(i) 0 1 is a longest cycle of T and 

(ii) Pi (2 ~ i ~ l) is a longest path of T \ (V(Od U (U ~::1 V(Pj ))) 

with end vertices ai, bi such that aiXi, biYi E E(T), where Xi, Yi 
E V(Ol) U (U ;::1 V(Pj )) and Xi -# Yi· 

If Pi = WI W2 ... We (WI = ai and We = bi), then XiP"Yi denotes the path XiWl W2 ... WeYi. 
For 0 1 and XiPiYi (2 ~ i s k), we define an orientation, respectively. And we denote 
by x+, X- the succesor and the predecessor of a vertex X on 0 1 (or Pi) accord
ing to the orientation, respectively. Since G is connected, there exists a vertex v 
of T = V (Od U V (U;=2 Pj ) which is adjacent to a vertex of G \ T. Then, by the 
property of Pi, T \ {v, v+} is connected. Obviously G \ (T \ {v, v+ }) is also con
nected. Hence T \ {v, v+} and G \ (T \ {v, v+}) are m-extendable and n-extendable, 
respectively. Now since G \ (T \ {v, v+}) is (n + 1)(2:: 2)-connected by Lemma 2 
(II), E(v+, G \ T) -# 0. Applying the same argument but replacing v+ to v, we 
have E(v++, G \ T) -# 0. Similarly, we have E(v-, G \ T)), E(v--, G \ T) -# 0, etc. 
Consequently we can prove that each vertex of T is adjacent to a vertex of G \ T. In 
particular, we have the following: 

T \ {u, v} and G \ (T \ {u, v}) are connected for each edge uv on 0 1 U (U~=2 XiPiYi). 

Let {u, v} be a set of distinct two vertices of T such that T \ {u, v} is connected. 
Here notice that u might be non-adjacent to v and that G \ (T \ {u, v}) is connected. 
Let C = {G1, G2 , ... , Ga } (resp. D = {Db D2 , ... , D,B}) be the set of odd components 
(resp. even components) of (T\B)\A. Then T = AUBU(Uf=l V(Gi ))U(U1=1 V(Dj )). 

We consider nine cases. 

Set 5 T \ {u, v}. Note that 5 is m-extendable and k is positive. 

Case 1. u, v E A. 
Let e E M and set A' = (A \ {u, v}) U V(e). Since 5 \ (B \ V(e)) has a I-factor, 

we have 

IAI = IA'I 2 0(5 \ (B \ V(e)) \ A') = o(T \ B \ A) = IAI + 2k, 
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or k :s; 0, which contradicts that k is positive. 

Case 2. u E A and v E B. 
Let vy EM and set A' = (A \ {u}) u {y}. Then we have 

IAI = IA'I 2: 0(5 \ (B \ {v, y}) \ A') = o(T \ B \ A) = IAI + 2k, 

which is a contradiction. 

Case 3. u E A and v E D i . 

Let e E M and set A' = (A \ {u}) U 'V(e). Then we have 

IAI + 1 IA'I 2: 0(8 \ (B \ V(e)) \ A') 2: o(T \ B \ A) + 1 IA! + 2k + I; 

which is a contradiction. 

Case 4. u, v E Band uv E AI. 
We have 

IAI 2: 0(8 \ (B \ {u, v}) \ A) = o(T \ B \ A) = IAI + 2k, 

which is a contradiction. 

Case 5. u E B and v E Di . 

Let ux E M and set A' = A U {x}. Then we have 

IAI + 1 IA'I 2: 0(8 \ (B \ {u, x}) \ A') 2: o(T \ B \ A) + 1 IAI + 2k + 1, 

which is a contradiction. 

Case 6. u E A and v E Ci . 

Let e E M and set A' = (A \ {u}) U V(e). Then we have 

IAI + 1 IA'I 2: 0(8 \ (B \ V(e)) \ A') 2: o(T \ B \ A) - 1 = IAI + 2k - 1, 

or k :s; 1. Then we have k = 1 since k is positive. 

Case 7. u,v E Band uv ~ M. 
Note that 8 has a I-factor even if 8 is a-extendable. Let ux, vy E Af and set 

A' = A U {x, y}. Since 8 is (m - I)-extendable by Lemma 2 (I), we have 

IAI + 2 2: IA'I 2: 0(8 \ (B \ {x, y}) \ A') = o(T \ B \ A) = IAI + 2k, 

which implies k 1. 
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Case 8. u E B and v E Ci . 

Let ux E M and set A' = A u {x}. Then we have 

IAI + 1 = IA'I ~ 0(8\ (B \ {x}) \ A') ~ o(T\B \A) -1 = IAI +2k-1. 

We have k = 1. 

Case 9. u,v E C i or u,v E Dj . 

Let e E M and set A' = Au V(e). Then 

IAI + 2 = IA'I ~ 0(8 \ (B \ V(e)) \ A') ~ o(T \ B \ A) = IAI + 2k. 

We have k = 1. 

Suppose that U and v are vertices satisfying one of the situations of Cases 1-5. 
Then T \ {u, v} is disconnected. In particular, T \ V(ei) is disconnected for every 
ei E M. Furthermore, if uv E E(T), then uv is not an edge on 0 1 U (U~=2 XiPiYi). 
Conversely, since uv on 0 1 U (Ui=2 XiPiYi) does not join two distinct components of 
(T \ A) \ B, every edge uv on 0 1 U (U~=2 XiPiYi) satisfies the one of Cases 6-9. Now 
since M is not empty, we have an edge e = WIW2 E M. Notice that WI is in B 
and that T \ V (e) is disconnected. By observation of the various cases, wi is in 
B U (Ui=1 Ci ), and wi is not W2' Similarly, wI E B U (Ui=l Ci ) and WI ::f. W2. Let Q 
be a component of T \ V (e) containing wi. Since T \ { WI, WI} is connected, it is m
extendable. Hence, it is also 2-connected by Lemma 2 (II). Then there exists a vertex 
z of Q (or Q \ {wI} if WI is in Q) which is adjacent to a vertex of (T \ {WI, W2}) \ Q. 
Therefore, Q is not a component of T \ { Wl, W2} = T \ V (e), which is a contradiction. 
This contradiction completes the proof of Theorem 1. 0 

The following property can be considerd as an extension of factor-criticality. A 
graph G is said to be 2n- factor-critical if the graph remaining after deletion of any 
2n vertices from G has a I-factor (a perfect matching). Clearly, this property is 
stronger than that of extendability, that is, if a graph G is 2n-factor-critical, then G 
is n-extendable. 

Now let f, m, and n be nonnegative integers. A connected graph G is called 
(r : m, n)- factor-critical if, for every connected subset 8 of order r for which G \ 8 
is connected, G[8] is m-factor-critical and G \ 8 is n-factor-critical. Similarly, we 
can also define that a graph becomes (r, n)- factor-critical (or (r, n)- factor-critical 
or [r, n]- factor-critical). Then, by the argument quite similar to that in the proof 
of Theorem 1, we have the following results. 

Theorem 3. Let p, f, m, and n be positive integers with p - r > nand r > m. 
Then every 2-connected (2r : 2m, 2n}-factor-critical graph of order 2p is (2(r + 1) : 
2(m + 1), 2{n - l))-factor-critical. 

Corollary 4. If a graph G is 2-connected and (2r : 2m,2n}-factor-critical, then G 
is 2(m + n)-factor-critical. 
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Finally, we conjecture the following: 

Conjecture. Let n, p, and r be integers such that 1 ~ n < rand p - r > n, 
and let G be an (n + 1 )-connected graph of order 2p. If for every connected subset 
S c V(G) with lSI = 2r (for which G \ S is connected), S or G \ Sis n-extendable, 
then G is also n-extendable. 

In [4], we proved that for 2-connected graphs, Theorem C contains the following 
theorems: 

Theorem D (Nishimura [2]). Let G be a connected graph of order 2p (p 2: 3), and 
let rand n be integers such that 1 ~ n < r < p. If for some integer r, every induced 
connected subgraph of order 2r is n-extendable, then G is n-extendable. 

Theorem E (Nishimura [3]). Let G be a connected graph of order 2p. Let rand 
n be positive integers such that p - r 2: n + 1. If G \ S is n-extendable for every 
connected subset S of order 2r, then G is n-extendable. 

If the conjecture above is correct, then this will be 'another' extension of these 
theorems. 
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