Generalized Steiner triple systems with group size $g \equiv 1, 5 \pmod{6}^*$

G. Ge

Institute of Economics Suzhou University, Suzhou 215006 People's Republic of China

Abstract

Generalized Steiner triple systems, GS(2, 3, n, g) are equivalent to maximum constant weight codes over an alphabet of size g + 1 with distance 3 and weight 3 in which each codeword has length n. The existence of GS(2, 3, n, g) has been solved by several authors for $2 \le g \le 10$. The necessary conditions for the existence of a GS(2, 3, n, g) are $(n - 1)g \equiv 0 \pmod{2}$, $n(n - 1)g^2 \equiv 0 \pmod{6}$, and $n \ge g + 2$. Recently, D. Wu et al proved that for any given $g \ge 7$, if there exists a GS(2, 3, n, g) for all $n, g + 2 \le n \le 9g + 158$, satisfying the above two congruences, then the necessary conditions are also sufficient. In this paper, the result is partially improved. It is shown that for any given $g, g \equiv 1, 5 \pmod{6}$ and $g \ge 11$, if there exists a GS(2, 3, n, g) for all $n, n \equiv 1, 3 \pmod{6}$ and $g + 2 \le n \le 9g + 4$, then the necessary conditions are also sufficient. As an application, it is proved that the necessary conditions for the existence of a GS(2, 3, n, g) are also sufficient for g = 11.

1 Introduction

A (g+1)-ary constant weight code (n, w, d) is a code $C \subseteq (Z_{g+1})^n$ of length n and minimum distance d, such that every $c \in C$ has Hamming weight w. To construct a constant weight code (n, w, d) with w = 3, a group divisible design (GDD) will be used. A K-GDD is an ordered triple $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ where \mathcal{V} is a set of n elements, \mathcal{G} is a collection of subsets of \mathcal{V} called groups which partition \mathcal{V} , and \mathcal{B} is a set of some subsets of \mathcal{V} called blocks, such that each block intersects each group in at most one element and that each pair of elements from distinct groups occurs together in exactly one block in \mathcal{B} , where $|\mathcal{B}| \in K$ for any $\mathcal{B} \in \mathcal{B}$. The group type is the multiset $\{|\mathcal{G}| : \mathcal{G} \in \mathcal{G}\}$. A k-GDD (g^n) denotes a K-GDD with n groups

^{*}Research supported in part by NSFC Grant 19231060-2.

of size g and $K = \{k\}$. If all blocks of a GDD can be partitioned into parallel classes, then the GDD is called *resolvable* GDD and denoted by RGDD, where a parallel class is a set of blocks partitioning the element set \mathcal{V} . In a 3-GDD (g^n) , let $\mathcal{V} = (Z_{g+1} \setminus \{0\}) \times (Z_{n+1} \setminus \{0\})$ with n groups $G_i \in \mathcal{G}$, $G_i = (Z_{g+1} \setminus \{0\}) \times \{i\}$, $1 \leq i \leq n$ and blocks $\{(a, i), (b, j), (c, k)\} \in \mathcal{B}$. One can construct a constant weight code (n, 3, d) as stated in [5], [7]. From each block we form a codeword of length n by putting an a, b and c in positions i, j and k respectively and zeros elsewhere. This gives a constant weight code over Z_{g+1} with minimum distance 2 or 3. If the minimum distance is 3, then the code is a (g+1)-ary maximum constant weight code (MCWC) (n, 3, 3) and the 3-GDD (g^n) is called generalized Steiner triple system, denoted by GS(2, 3, n, g). It is easy to see that a 3-GDD (g^n) is a GS(2, 3, n, g) iff any two intersecting blocks meet at most two common groups of the GDD. The following result is known.

Lemma 1.1 ([5], [7]) The following are the necessary conditions for the existence of a GS(2,3,n,g): (1) $(n-1)g \equiv 0 \pmod{2}$; (2) $n(n-1)g^2 \equiv 0 \pmod{6}$; (3) $n \geq g+2$.

The necessary conditions are shown to be sufficient by several authors with one exception for $2 \le g \le 10$. Hence, we have the following lemma.

Lemma 1.2 ([5], [7], [8], [3], [4], [9], [6]) The necessary conditions for the existence of a GS(2, 3, n, g) are also sufficient for $2 \le g \le 10$ with one exception of (g, n) = (2, 6).

Blake-Wilson and Phelps [2] proved that the necessary conditions for the existence of a GS(2, 3, n, g) are also asymptotically sufficient for any g. Recently, D. Wu et al [9] proved that for any given $g \ge 7$, if there exists a GS(2, 3, n, g) for all n, $g+2 \le n \le 9g+158$, satisfying $(n-1)g \equiv 0 \pmod{2}$ and $n(n-1)g^2 \equiv 0 \pmod{6}$, then the necessary conditions for the existence of a GS(2, 3, n, g) are also sufficient.

Since the existence of GS(2, 3, n, g) has been solved for $g \leq 10$, we need only to consider the case $g \geq 11$. For $g \equiv 1, 5 \pmod{6}$ and $g \geq 11$, let $T_g = \{n: \text{ there exists} a \text{ GS}(2, 3, n, g)\}$, $B_g = \{n: n \text{ satisfying the necessary conditions listed in Lemma 1.1} \}$, $M_g = \{n: n \in B_g, n \leq 9g + 4\}$. In this paper, the results of [9] will be partially improved and the following results are obtained.

Theorem 1.3 For any $g \equiv 1,5 \pmod{6}$ and $g \geq 11$, if $M_g \subset T_g$, then $B_g = T_g$. That is, the necessary conditions for the existence of a GS(2,3,n,g) are also sufficient.

Theorem 1.4 $B_{11} = T_{11}$, that is, the necessary conditions for the existence of a GS(2,3,n,g) are also sufficient for g = 11.

Combining Lemma 1.2 and Theorem 1.4 shows that the existence of a GS(2, 3, n, g) is completely determined for any $g \leq 11$.

2 Product Constructions

In product constructions, we will need the concept of both holey generalized Steiner triple systems and disjoint incomplete Latin squares.

A holey group divisible design, K - HGDD, is a fourtuple $(\mathcal{V}, \mathcal{G}, \mathcal{H}, \mathcal{B})$, where \mathcal{V} is a set of points, \mathcal{G} is a partition of \mathcal{V} into subsets called groups, $\mathcal{H} \subset \mathcal{G}$, \mathcal{B} is a set of blocks such that a group and a block contain at most one common point and every pair of points from distinct groups, not both in \mathcal{H} , occurs in a unique block in \mathcal{B} , where $|\mathcal{B}| \in K$ for any $\mathcal{B} \in \mathcal{B}$. A k-HGDD $(g^{(n,u)})$ denotes a K-HGDD with n groups of size g in \mathcal{G} , u groups in \mathcal{H} and $K = \{k\}$. A holey generalized Steiner triple system, HGS(2, 3, (n, u), g), is a 3-HGDD $(g^{(n,u)})$ with the property that any two intersecting blocks meet at most two common groups.

It is easy to see that if u = 0 or u = 1, then a HGS(2, 3, (n + u, u), g) is just a GS(2, 3, n, g) or a GS(2, 3, n + 1, g) respectively.

A Latin square of side n, LS(n), is an $n \times n$ array based on some set S of n symbols with the property that every row and every column contains every symbol exactly once. An *incomplete Latin square*, ILS(n + a, a), denotes a LS(n + a) "missing" a sub LS(a). Without loss of generality, we may assume that the missing subsquare, or *hole*, is at the lower right corner. We say $(i, j, s) \in ILS(n + a, a)$ if the entry in the cell (i, j) is s. Let A_1 , A_2 be two ILS(n + a, a)s on the same symbol set. If $(i, j, s_1) \neq (i, j, s_2)$ for any $(i, j, s_1) \in A_1$, $(i, j, s_2) \in A_2$, then we say that A_1 and A_2 are *disjoint*. We use r DILS(n + a, a) to denote r pairwise disjoint ILS(n + a, a)s.

For the existence of r DILS(n + a, a), we have the following two lemmas.

Lemma 2.1 ([3]) There exist $\delta(a)$ DILS(n+a, a), where $\delta(0) = n$ and $\delta(a) = a$ for $1 \le a \le n$.

Lemma 2.2 ([9]) There exist n DILS(n+a, a) for all $n \equiv 0 \pmod{4}$ and $0 \le a \le n$.

The following singular indirect product construction for GS(2, 3, n, g)s is first stated in [3].

Lemma 2.3 (Singular Indirect Product (SIP)) Let m, n, t, u and a be integers such that $0 \le a \le u < n$. Suppose the following designs exist: (1) t DILS(n + a, a); (2) $a 3 - GDD(g^m)$ with the property that all blocks of the design can be partitioned into t sets S_0, S_1, \dots, S_{t-1} , such that the minimum distance in $S_r, 0 \le r \le t - 1$, is 3; (3) a HGS(2, 3, (n + u, u), g). Then there exists a HGS(2, 3, (c, d), g), where c = m(n + a) + u - a, d = ma + u - a. Further, if there exists (4) a GS(2, 3, ma + u - a, g), then there exists a GS(2, 3, m(n + a) + u - a, g).

Taking a = 0 in Lemma 2.3, we get the singular direct product construction, which first appeared in [8].

Lemma 2.4 (Singular Direct Product (SDP)) Let m, n, t, and u be integers such that $0 \le u < n$. Suppose $t \le n$ and the following designs exist:

(1) a $3 - GDD(g^m)$ with the property that all blocks of the design can be partitioned into t sets S_0, S_1, \dots, S_{t-1} , such that the minimum distance in $S_r, 0 \le r \le t-1$, is 3;

(2) a HGS(2, 3, (n + u, u), g).

Then there exists a HGS(2, 3, (mn + u, u), g). Further, if there exists a GS(2, 3, u, g), then there exists a GS(2, 3, mn + u, g).

Taking u=0 or 1 in Lemma 2.4, we get the Construction C or D of Etzion in [5] respectively.

Lemma 2.5 (Direct Product (DP)) Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a $3\text{-}GDD(g^m)$, and suppose there exists a GS(2, 3, n, g). Then there exists a GS(2, 3, mn, g) if \mathcal{B} can be partitioned into t sets S_0, \dots, S_{t-1} , such that the minimum distance in $S_r, 0 \leq r \leq t-1$, is 3 and $t \leq n$.

Lemma 2.6 ([5]) Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a 3-GDD (g^m) , and suppose there exists a GS(2, 3, n, g). Then there exists a GS(2, 3, m(n-1) + 1, g) if \mathcal{B} can be partitioned into t sets S_0, \dots, S_{t-1} , such that the minimum distance in $S_r, 0 \leq r \leq t-1$, is 3 and $t \leq n-1$.

It is easy to notice that the derived generalized Steiner triple system in Lemma 2.5 and Lemma 2.6 has a sub GS(2, 3, n, g). Hence, we have the following.

Lemma 2.7 Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a 3-GDD (g^m) . Suppose there exists a GS(2, 3, n, g). Then there exists a HGS(2, 3, (mn, n), g) or a HGS(2, 3, (m(n-1)+1, n), g) if \mathcal{B} can be partitioned into t sets S_0, \dots, S_{t-1} , such that the minimum distance in $S_r, 0 \leq r \leq$ t-1, is 3 and $t \leq n$ or $t \leq n-1$ respectively.

If one uses a 3-RGDD(g^m) in the constructions, then each parallel class becomes an S_r and there are $t = \frac{g(m-1)}{2}$ such classes. The following is stated in [3].

Lemma 2.8 If there exists a GS(2,3,n,g) and a 3- $RGDD(g^m)$ with $t = \frac{g(m-1)}{2} \le n$ or n-1, then there exists a GS(2,3,mn,g) or a GS(2,3,m(n-1)+1,g) respectively.

For the existence of a 3-RGDD (g^m) , we have the following.

Lemma 2.9 ([1]) A 3-RGDD(g^m) exists iff $(m-1)g \equiv 0 \pmod{2}$, $mg \equiv 0 \pmod{3}$ and $g^m \neq 2^3, 2^6$ and 6^3 .

By combining Lemmas 2.7-2.9, we have the following.

Lemma 2.10 For any $g \ge 11$, if there exists a GS(2,3,n,g), then there exists a GS(2,3,3n,g) and a GS(2,3,3(n-1)+1,g). Consequently, there exists a HGS(2,3,(3n,n),g) and a HGS(2,3,(3(n-1)+1,n),g).

3 Proof of Theorem 1.3

In this section, we will show the proof of Theorem 1.3. First, we need the following lemmas.

Lemma 3.1 For $g \equiv 1, 5 \pmod{6}$ and $g \geq 11$, suppose v = 18p + j, $j \in \{1, 3, 7, 9\}$. If $6p + \lfloor \frac{j}{3} \rfloor + \delta(j) \in T_g$, where $\delta(j) = 0$ or 1, and $\delta(j) \equiv j \pmod{3}$, then $v \in T_g$.

Proof. Apply Lemma 2.10 with $n = 6p + \lfloor \frac{j}{3} \rfloor + \delta(j)$, the conclusion then follows.

Lemma 3.2 For $g \equiv 1, 5 \pmod{6}$ and $g \geq 11$, suppose v = 54p + j, j = 13 or 15. If $6p + 3 \in T_g$, $18p + j - 12 \in T_g$, and $p \geq \lfloor \frac{15-j}{12} \rfloor$, then $v \in T_g$.

Proof. Apply Lemma 2.3 with m = 3, n = 12p + 4, t = g, u = 6p + 3 and $a = 6p - \frac{15-j}{2}$. It is easy to check that $a \le u < n$. Since $p \ge \lceil \frac{15-j}{12} \rceil$, it is easy to see that $a \ge 0$. From Lemma 2.2, there exist n DILS(n+a, a) for $0 \le a \le n$. We further have t DILS(n+a, a) since $t \le u-2 < n$. Thus the condition (1) of Lemma 2.3 is satisfied. For $g \ge 11$, a 3-RGDD (g^3) always exists by Lemma 2.9, which has g parallel classes. So, condition (2) is also satisfied. From $u \in T_g$, we apply Lemma 2.10 to obtain a HGS(2, 3, (n + u, u), g), providing the design in condition (3). Finally, we have $ma + u - a = 18p - 12 + j \in T_g$, the condition (4) is satisfied. Therefore, we have $v \in T_g$. This completes the proof.

Lemma 3.3 For $g \equiv 1, 5 \pmod{6}$ and $g \geq 11$, suppose v = 54p + j, $j \in \{31, 33, 49, 51\}$. If $6p + 7 \in T_g$, $18p + j - 36 \in T_g$, and $p \geq \lceil \frac{43-j}{12} \rceil$, then $v \in T_g$.

Proof. Apply Lemma 2.3 with m = 3, n = 12p + 12, t = g, u = 6p + 7 and $a = 6p - \frac{43-j}{2}$. Then the proof is completed analogously to that of Lemma 3.2.

Now, we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We need to show that $M_g \subset T_g$ implies that $B_g \subset T_g$. The proof is by induction on n. Suppose $n \in B_g$. If $n \in M_g$, then $n \in T_g$. Otherwise, we have $n \ge 9g + 6$ and distinguish between the following cases:

Case 1: $n = 18p+j \ge 9g+6$, $j \in \{1, 3, 7, 9\}$. It is easy to see that $n \ge 9g+6$ implies $\alpha = 6p + \lfloor \frac{j}{3} \rfloor + \delta(j) \ge 3g+2 > g+2$. It is also easy to verify that $\alpha \in B_g$. If $\alpha \in M_g$, then Lemma 3.1 guarantees that $n \in T_g$ and the proof is complete. Otherwise, we can repeat the induction process taking α as n'.

Case 2: $n = 54p + j \ge 9g + 6$, j = 13 or 15. We first claim that $p \ge \lfloor \frac{15-j}{12} \rfloor$. If not so, then $p < \lfloor \frac{15-j}{12} \rfloor \le 1$. Thus n < 54 + j. Since $g \ge 11$ and j = 13 or 15, we have n < 69 < 9g + 6, a contradiction.

Next, it is easy to see that $n \ge 9g + 6$ implies $6p \ge g + \frac{6-j}{9}$. Then it is easily checked that $\alpha = 6p + 3 \ge g + 2$ and $\beta = 18p + j - 12 \ge g + 2$ for $g \ge 11$. Since $\beta \equiv 1$ or 3 (mod 6), we see that $\alpha \in B_g$ and $\beta \in B_g$. If we have both $\alpha \in M_g$ and $\beta \in M_g$, then Lemma 3.2 guarantees that $n \in T_g$ and the proof is complete. If at

least one of α and β is not in M_g , then we can repeat the induction process taking the number α , β not in M_g as n'.

Case 3: $n = 54p + j \ge 9g + 6$, $j \in \{31, 33, 49, 51\}$. Apply Lemma 3.3, the proof of this case is similar to that of Case 2. We need only to check that $p \ge \lceil \frac{43-j}{12} \rceil$, $6p + 7 \ge g + 2$ and $18p + j - 36 \ge g + 2$. We first claim that $p \ge \lceil \frac{43-j}{12} \rceil$. If not so, then $p < \lceil \frac{43-j}{12} \rceil \le 1$. Thus n < 54 + j. Since $g \ge 11$ and $j \in \{31, 33, 49, 51\}$, we have $n < 54 + 51 \le 9g + 6$, a contradiction.

Next, it is easy to check that $n \ge 9g + 6$ implies $6p + 7 \ge g + 2$ and $18p + j - 36 \ge g + 2$ for $g \ge 11$.

After certain steps of induction on n, n' will be small enough so that n' is in M_g , consequently, $n \in T_g$. Case 1 implies the solution for $n \equiv 1, 3, 7$ or 9 (mod 18); Cases 2 and 3 imply the solution for $n \equiv 13$ or 15 (mod 18). This completes the proof.

4 Proof of Theorem 1.4

In this section, we will show that the necessary conditions for the existence of a GS(2,3,n,11) are also sufficient. From Theorem 1.3, we need only to consider the case $n \in M_{11} = \{n : n \equiv 1, 3 \pmod{6} \text{ and } 13 \leq n \leq 103\}.$

For $n \equiv 3 \pmod{6}$, to construct a $\operatorname{GS}(2,3,n,11)$ in Z_{11n} , it suffices to find a set of generalized base blocks, $\mathcal{A} = \{B_1, \dots, B_s\}$, $s = \frac{11(n-1)}{2}$, such that $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ forms a $\operatorname{GS}(2,3,n,11)$, where $\mathcal{V} = Z_{11n}$, $G = \{G_1, G_2, \dots, G_n\}$, $G_i = \{i + nj : 0 \leq j \leq 10\}$, $1 \leq i \leq n$, and $\mathcal{B} = \{B + 3j : B \in \mathcal{A}, 0 \leq j \leq \frac{11n}{3} - 1\}$. For convenience, we write $\mathcal{A} = \bigcup_{i=1}^{3} \{\{i, x, y\} : \{x, y\} \in S_i\}$. So, for each \mathcal{A} we need only display the corresponding $S_i, 1 \leq i \leq 3$.

Lemma 4.1 There exists a GS(2, 3, n, 11) for all $n \in F_1$, where $F_1 = \{15, 21, 27, 33, 51, 69\}$.

Proof. For the values $n \in F_1$, with the aid of a computer, we have found a set of generalized base blocks of a GS(2, 3, n, 11). Here, we only list the S_i , $1 \le i \le 3$ for n = 15. For the remaining values n, the corresponding S_i , $1 \le i \le 3$ are listed in the Appendix.

$$\begin{split} n &= 15, \ \mathcal{A} = \bigcup_{i=1}^{3} \{\{i, x, y\} : \{x, y\} \in S_i\}, \\ S_1 &= \{\{24, 95\}, \{111, 154\}, \{6, 162\}, \{90, 148\}, \{11, 53\}, \{15, 20\}, \{139, 159\}, \{72, 134\}, \\ \{71, 129\}, \{2, 109\}, \{66, 122\}, \{65, 128\}, \{14, 67\}, \{47, 103\}, \{114, 160\}, \{39, 138\}, \\ \{142, 158\}, \{130, 141\}, \{22, 63\}, \{99, 105\}, \{41, 44\}, \{55, 133\}, \{74, 124\}, \{81, 140\}, \\ \{80, 85\}, \{137, 165\}, \{115, 119\}, \{9, 157\}, \{118, 143\}\}; \\ S_1 &= \{\{28, 106\}, \{130, 158\}, \{144, 165\}, \{116, 143\}, \{23, 102\}, \{19, 78\}, \{15, 83\}, \{123, 123\}, \{1$$

- $$\begin{split} S_2 &= \{ & \{38, \, 106\}, \, \{130, \, 158\}, \, \{144, \, 165\}, \, \{116, \, 143\}, \, \{23, \, 102\}, \, \{19, \, 78\}, \, \{15, \, 83\}, \, \{123, \\ & 145\}, \, \{36, \, 129\}, \, \{114, \, 155\}, \, \{8, \, 43\}, \, \{79, \, 128\}, \, \{90, \, 110\}, \, \{6, \, 98\}, \, \{24, \, 64\}, \, \{12, \\ & 63\}, \, \{22, \, 54\}, \, \{35, \, 117\}, \, \{101, \, 149\}, \, \{87, \, 160\}, \, \{13, \, 85\}, \, \{74, \, 76\}, \, \{67, \, 153\}, \, \{16, \\ & 112\}, \, \{3, \, 91\}, \, \{42, \, 61\}, \, \{21, \, 57\}, \, \{66, \, 150\} \ \}; \end{split}$$
- $\begin{array}{l} S_3 = \{ \begin{array}{l} \{38, \, 81\}, \ \{6, \, 118\}, \ \{37, \, 120\}, \ \{36, \, 144\}, \ \{139, \, 142\}, \ \{100, \, 131\}, \ \{11, \, 42\}, \ \{35, \, 122\}, \ \{32, \, 143\}, \ \{126, \, 152\}, \ \{15, \, 133\}, \ \{34, \, 73\}, \ \{16, \, 72\}, \ \{66, \, 161\}, \ \{30, \, 77\}, \ \{19, \, 21\}, \ \{52, \, 119\}, \ \{14, \, 94\}, \ \{114, \, 124\}, \ \{67, \, 101\} \ \}. \end{array} \right.$

Lemma 4.2 There exists a GS(2,3,n,11) for all $n \in F_2 = \{13, 19, 25, 31\}$.

Proof. With the aid of a computer, we have found a set of base blocks \mathcal{A} of a GS(2,3,n,11) for $n \in F_2$.

For convenience, we write $\mathcal{A} = \{\{1, x, y\} : \{x, y\} \in S\}$. So, for each \mathcal{A} we need only display the corresponding S.

- $\begin{array}{c} n=13, \ \bar{S}=\{ \ \{62,\ 65\}, \ \{5,\ 88\}, \ \{130,\ 136\}, \ \{127,\ 134\}, \ \{117,\ 128\}, \ \{114,\ 126\}, \ \{24,\ 58\}, \\ \{21,\ 123\}, \ \{32,\ 129\}, \ \{25,\ 95\}, \ \{29,\ 54\}, \ \{34,\ 63\}, \ \{36,\ 68\}, \ \{56,\ 125\}, \ \{44,\ 81\}, \ \{99,\ 104\}, \ \{55,\ 102\}, \ \{52,\ 100\}, \ \{59,\ 60\}, \ \{67,\ 135\}, \ \{3,\ 39\}, \ \{23,\ 73\} \ \}. \end{array}$
- $n = 19, S = \{ \{28, 108\}, \{86, 93\}, \{76, 124\}, \{42, 133\}, \{30, 100\}, \{89, 193\}, \{43, 152\}, \\ \{31, 80\}, \{64, 175\}, \{82, 138\}, \{15, 204\}, \{69, 95\}, \{54, 166\}, \{2, 189\}, \{107, 178\}, \\ \{126, 144\}, \{17, 79\}, \{88, 91\}, \{29, 75\}, \{35, 199\}, \{3, 173\}, \{55, 163\}, \{117, 141\}, \\ \{90, 145\}, \{151, 174\}, \{13, 74\}, \{83, 114\}, \{143, 195\}, \{146, 197\}, \{6, 10\}, \{44, 84\}, \\ \{11, 61\}, \{177, 202\} \}.$
- $\begin{array}{l} n=25, \ S=\{ \ \{91,\ 162\},\ \{20,\ 153\},\ \{99,\ 113\},\ \{50,\ 220\},\ \{71,\ 148\},\ \{65,\ 118\},\ \{64,\ 229\},\\ \{240,\ 260\},\ \{44,\ 234\},\ \{42,\ 169\},\ \{181,\ 255\},\ \{140,\ 194\},\ \{39,\ 248\},\ \{97,\ 109\},\ \{173,\ 174\},\ \{70,\ 74\},\ \{152,\ 261\},\ \{6,\ 9\},\ \{79,\ 155\},\ \{132,\ 266\},\ \{136,\ 138\},\ \{62,\ 102\},\ \{196,\ 230\},\ \{63,\ 252\},\ \{38,\ 156\},\ \{133,\ 160\},\ \{192,\ 225\},\ \{147,\ 195\},\ \{84,\ 116\},\ \{31,\ 66\},\ \{60,\ 73\},\ \{127,\ 182\},\ \{8,\ 177\},\ \{23,\ 120\},\ \{105,\ 184\},\ \{46,\ 69\},\ \{40,\ 92\},\ \{61,\ 90\},\ \{10,\ 68\},\ \{7,\ 94\},\ \{154,\ 165\},\ \{27,\ 45\},\ \{114,\ 131\},\ \{32,\ 89\}\ \}. \end{array}$

The following lemma is a combination of Theorem 1 and Lemma 7 in [2]. Here, we need a new concept. A maximum packing with triangles, MPT(n), is an ordered triple $(\mathcal{P}, \mathcal{T}, \mathcal{L})$, where \mathcal{P} is the vertex set of K_n , \mathcal{T} is a collection of edge disjoint triangles from the edge set of K_n with $|\mathcal{T}|$ as large as possible, and \mathcal{L} is the collection of edges in K_n not belonging to one of the triangles of \mathcal{T} . The collection of edges \mathcal{L} is called the *leave*.

Lemma 4.3 There exists a GS(2, 3, n, 11) for any prime power $n \equiv 1 \pmod{6}$ and $n \geq 43$.

Proof. Apply Theorem 1 and Lemma 7 in [2], it suffices to show that there exists a MPT(11) = $(\mathcal{P}, \mathcal{T}, \mathcal{L})$ with 6 partial parallel classes, which is listed below.

$$\mathcal{P} = \{1, 2, \cdots, 11\}, \mathcal{T} = \bigcup_{i=1}^{b} P_i, \mathcal{L} = \{\{2, 4\}, \{4, 3\}, \{3, 10\}, \{10, 2\}\}.$$

$$P_1 = \{\{4, 8, 11\}, \{1, 5, 9\}, \{2, 6, 7\}\}; P_2 = \{\{1, 7, 8\}, \{2, 5, 11\}, \{6, 9, 10\}\};$$

$$P_3 = \{\{7, 10, 11\}, \{1, 2, 3\}, \{4, 5, 6\}\}; P_4 = \{\{2, 8, 9\}, \{3, 5, 7\}, \{1, 4, 10\}\};$$

$$P_5 = \{\{5, 8, 10\}, \{1, 6, 11\}, \{3, 9, 11\}\}; P_6 = \{\{3, 6, 8\}, \{4, 7, 9\}\}.$$

Lemma 4.4 There exists a GS(2, 3, v, 11) for all $v \in F_3 = \{37, 39, 45, 55, 57, 63, 75, 81, 91, 93, 99\}.$

Proof. From Lemmas 4.1 and 4.2, we have a GS(2,3,n,11) for all $n \in F = \{13, 15, 19, 21, 25, 27, 31, 33\}$. Apply Lemma 2.10 with $n \in F$, we get a GS(2, 3, v, 11) for all $v \in F_3$.

Lemma 4.5 There exists a GS(2, 3, v, 11) for all $v \in F_4 = \{85, 87\}$.

Proof. There exist 24 DILS(24+*a*, *a*) for a = 0 or 1 by Lemma 2.2. There exist also a GS(2, 3, 13, 11) and a GS(2, 3, 15, 11) by Lemma 4.2 and Lemma 4.1. From Lemma 2.10, we have a HGS(2, 3, (37, 13), 11). Apply Lemma 2.3 with m = 3, n = 24, t = 11, u = 13, a = 0 or 1, we get a GS(2, 3, 85, 11) or a GS(2, 3, 87, 11) respectively.

Now, we are in a position to prove Theorem 1.4. **Proof of Theorem 1.4**: From Theorem 1.3, we need only to consider the values v, such that $v \in M_{11}$. Lemma 4.3 provides a GS(2, 3, v, 11) for all $v \in F_5 =$ $\{43, 49, 61, 67, 73, 79, 97, 103\}$. It is readily checked that the union of F_i , for $1 \le i \le 5$, is the same as M_{11} . The conclusion then follows.

Appendix

$$n = 21, \mathcal{A} = \bigcup_{i=1}^{3} \{\{i, x, y\} : \{x, y\} \in S_i\},\$$

$$\begin{split} S_1 &= \{ \{135, 202\}, \{96, 205\}, \{74, 159\}, \{61, 171\}, \{162, 230\}, \{121, 187\}, \{79, 214\}, \{217, 227\}, \\ &\{38, 181\}, \{99, 213\}, \{118, 200\}, \{75, 229\}, \{176, 184\}, \{107, 158\}, \{179, 208\}, \{36, 53\}, \\ &\{129, 220\}, \{109, 116\}, \{41, 128\}, \{150, 206\}, \{104, 139\}, \{120, 157\}, \{48, 82\}, \{12, 14\}, \\ &\{113, 222\}, \{18, 138\}, \{71, 173\}, \{23, 223\}, \{15, 218\}, \{17, 130\}, \{21, 110\}, \{51, 226\}, \{93, 178\}, \{133, 212\}, \{163, 228\}, \{90, 183\}, \{153, 199\}, \{42, 72\} \}; \end{split}$$

$$\begin{split} S_2 &= \{ \{70, 142\}, \{199, 200\}, \{56, 204\}, \{166, 168\}, \{67, 227\}, \{45, 88\}, \{57, 175\}, \{143, 219\}, \\ \{14, 164\}, \{72, 180\}, \{66, 190\}, \{77, 90\}, \{41, 172\}, \{25, 119\}, \{135, 157\}, \{17, 84\}, \{36, 100\}, \{74, 122\}, \{140, 187\}, \{62, 63\}, \{68, 207\}, \{27, 40\}, \{54, 82\}, \{52, 109\}, \{38, 79\}, \{47, 105\}, \{93, 108\}, \{5, 94\}, \{112, 228\}, \{85, 215\}, \{18, 159\}, \{19, 155\}, \{42, 129\} \}; \end{split}$$

$$\begin{split} S_3 &= \{ \ \{19, \ 99\}, \ \{26, 227\}, \ \{135, 216\}, \ \{41, 103\}, \ \{35, 44\}, \ \{133, 137\}, \ \{172, 211\}, \ \{28, 83\}, \ \{51, 229\}, \ \{34, 119\}, \ \{23, 226\}, \ \{6, 75\}, \ \{38, 62\}, \ \{116, 215\}, \ \{91, 110\}, \ \{155, 166\}, \ \{151, 177\}, \ \{53, 183\}, \ \{47, 78\}, \ \{140, 197\}, \ \{9, 10\}, \ \{58, 122\}, \ \{55, 80\}, \ \{198, 207\}, \ \{175, 224\}, \ \{168, 222\}, \ \{161, 205\}, \ \{42, 89\}, \ \{43, 79\}, \ \{185, 212\}, \ \{134, 230\}, \ \{109, 196\}, \ \{61, 202\}, \ \{14, 148\}, \ \{27, 98\}, \ \{48, 81\}, \ \{63, 190\}, \ \{65, 188\}, \ \{11, 132\} \ \}. \end{split}$$

$$n = 27, \ \mathcal{A} = \bigcup_{i=1}^{3} \{\{i, x, y\} : \{x, y\} \in S_i\},\$$

- $$\begin{split} S_1 &= \{ \{ 64, 266 \}, \{ 147, 208 \}, \{ 29, 116 \}, \{ 192, 195 \}, \{ 97, 230 \}, \{ 186, 222 \}, \{ 187, 233 \}, \{ 139, 268 \}, \\ \{ 117, 131 \}, \{ 61, 227 \}, \{ 21, 149 \}, \{ 76, 115 \}, \{ 209, 228 \}, \{ 94, 98 \}, \{ 69, 154 \}, \{ 13, 191 \}, \{ 25, 264 \}, \{ 124, 216 \}, \{ 66, 198 \}, \{ 239, 265 \}, \{ 23, 26 \}, \{ 138, 193 \}, \{ 133, 182 \}, \{ 46, 119 \}, \{ 35, 58 \}, \{ 104, 287 \}, \{ 86, 256 \}, \{ 143, 196 \}, \{ 232, 282 \}, \{ 174, 194 \}, \{ 110, 247 \}, \{ 19, 236 \}, \{ 85, 100 \}, \{ 140, 288 \}, \{ 170, 262 \}, \{ 9, 44 \}, \{ 157, 278 \}, \{ 132, 151 \}, \{ 141, 295 \}, \{ 102, 220 \}, \{ 59, 210 \}, \{ 99, 108 \}, \{ 225, 289 \}, \{ 155, 215 \}, \{ 114, 137 \}, \{ 63, 211 \}, \{ 60, 176 \}, \{ 181, 188 \}, \{ 33, 277 \}, \{ 105, 126 \} \}; \end{split}$$
- $$\begin{split} S_2 &= \{ \{ 240, 280 \}, \{ 79, 149 \}, \{ 37, 66 \}, \{ 75, 93 \}, \{ 27, 158 \}, \{ 26, 244 \}, \{ 154, 192 \}, \{ 6, 289 \}, \{ 142, 179 \}, \{ 254, 259 \}, \{ 215, 232 \}, \{ 15, 92 \}, \{ 40, 81 \}, \{ 140, 216 \}, \{ 16, 138 \}, \{ 103, 147 \}, \{ 127, 144 \}, \{ 234, 249 \}, \{ 228, 252 \}, \{ 65, 237 \}, \{ 36, 38 \}, \{ 80, 176 \}, \{ 187, 193 \}, \{ 156, 257 \}, \{ 10, 87 \}, \{ 53, 123 \}, \{ 188, 260 \}, \{ 167, 284 \}, \{ 50, 286 \}, \{ 4, 95 \}, \{ 59, 205 \}, \{ 32, 219 \}, \{ 111, 247 \}, \{ 76, 107 \}, \{ 115, 197 \}, \{ 11, 270 \}, \{ 3, 20 \}, \{ 204, 211 \}, \{ 102, 266 \}, \{ 33, 146 \}, \{ 52, 54 \}, \{ 100, 224 \}, \{ 131, 200 \} \}; \end{split}$$

$$\begin{split} S_3 &= \{ \{120,\ 260\},\ \{47,\ 102\},\ \{72,\ 205\},\ \{34,\ 82\},\ \{105,\ 228\},\ \{44,\ 170\},\ \{148,\ 217\},\ \{89,\ 145\},\\ &\{28,\ 253\},\ \{122,\ 166\},\ \{257,\ 263\},\ \{25,\ 101\},\ \{31,\ 42\},\ \{203,\ 244\},\ \{4,\ 171\},\ \{70,\ 71\},\ \{94,\ 214\},\ \{52,\ 180\},\ \{141,\ 173\},\ \{77,\ 124\},\ \{161,\ 190\},\ \{96,\ 249\},\ \{69,\ 277\},\ \{226,\ 290\},\ \{63,\ 159\},\ \{9,\ 243\},\ \{14,\ 189\},\ \{16,\ 216\},\ \{33,\ 295\},\ \{8,\ 29\},\ \{140,\ 274\},\ \{206,\ 272\},\ \{129,\ 233\},\ \{112,\ 212\},\ \{92,\ 150\},\ \{118,\ 288\},\ \{108,\ 293\},\ \{7,\ 210\},\ \{182,\ 194\},\ \{239,\ 255\},\ \{55,\ 213\},\ \{40,\ 251\},\ \{56,\ 78\},\ \{46,\ 117\},\ \{185,\ 267\},\ \{51,\ 59\},\ \{176,\ 222\},\ \{49,\ 220\},\ \{181,\ 197\},\ \{95,\ 258\}\,\}. \end{split}$$

$$n = 33, \ \mathcal{A} = \bigcup_{i=1}^{3} \{\{i, x, y\} : \ \{x, y\} \in S_i\},\$$

- $$\begin{split} S_1 &= \{ \{ 168, 306 \}, \{ 3, 7 \}, \{ 147, 225 \}, \{ 299, 324 \}, \{ 140, 343 \}, \{ 136, 339 \}, \{ 142, 354 \}, \{ 18, 123 \}, \\ \{ 48, 222 \}, \{ 235, 246 \}, \{ 164, 336 \}, \{ 282, 333 \}, \{ 46, 138 \}, \{ 237, 326 \}, \{ 61, 323 \}, \{ 58, 281 \}, \\ \{ 148, 268 \}, \{ 33, 40 \}, \{ 11, 137 \}, \{ 45, 139 \}, \{ 179, 301 \}, \{ 120, 187 \}, \{ 8, 15 \}, \{ 106, 214 \}, \{ 162, 262 \}, \{ 207, 340 \}, \{ 212, 249 \}, \{ 111, 113 \}, \{ 50, 125 \}, \{ 16, 362 \}, \{ 74, 248 \}, \{ 351, 356 \}, \{ 37, 193 \}, \{ 77, 80 \}, \{ 124, 144 \}, \{ 175, 194 \}, \{ 51, 122 \}, \{ 70, 134 \}, \{ 26, 273 \}, \{ 202, 286 \}, \{ 54, 114 \}, \{ 105, 185 \}, \{ 53, 353 \}, \{ 110, 303 \}, \{ 43, 55 \}, \{ 30, 95 \}, \{ 66, 311 \}, \{ 126, 183 \}, \{ 261, 283 \}, \{ 24, 318 \}, \{ 36, 314 \}, \{ 38, 211 \}, \{ 96, 289 \}, \{ 19, 145 \}, \{ 206, 253 \}, \{ 49, 348 \}, \{ 63, 200 \}, \\ \{ 128, 271 \}, \{ 2, 272 \}, \{ 47, 215 \}, \{ 198, 327 \}, \{ 59, 135 \}, \{ 56, 169 \} \}; \end{split}$$
- $$\begin{split} S_2 &= \{ \left\{ 163, 224 \right\}, \left\{ 64, 268 \right\}, \left\{ 112, 347 \right\}, \left\{ 212, 217 \right\}, \left\{ 162, 303 \right\}, \left\{ 57, 72 \right\}, \left\{ 109, 189 \right\}, \left\{ 45, 359 \right\}, \\ \left\{ 6, 80 \right\}, \left\{ 308, 317 \right\}, \left\{ 29, 305 \right\}, \left\{ 82, 254 \right\}, \left\{ 21, 339 \right\}, \left\{ 58, 114 \right\}, \left\{ 116, 337 \right\}, \left\{ 56, 215 \right\}, \left\{ 69, 309 \right\}, \left\{ 73, 156 \right\}, \left\{ 84, 137 \right\}, \left\{ 123, 263 \right\}, \left\{ 105, 348 \right\}, \left\{ 31, 210 \right\}, \left\{ 141, 218 \right\}, \left\{ 131, 182 \right\}, \left\{ 127, 296 \right\}, \left\{ 331, 361 \right\}, \left\{ 28, 274 \right\}, \left\{ 32, 198 \right\}, \left\{ 257, 321 \right\}, \left\{ 98, 295 \right\}, \left\{ 119, 164 \right\}, \left\{ 76, 165 \right\}, \left\{ 63, 148 \right\}, \left\{ 208, 298 \right\}, \left\{ 16, 293 \right\}, \left\{ 33, 221 \right\}, \left\{ 213, 343 \right\}, \left\{ 61, 279 \right\}, \left\{ 124 \right\}, \left\{ 179, 330 \right\}, \left\{ 97, 280 \right\}, \left\{ 46, 322 \right\}, \left\{ 150, 325 \right\}, \left\{ 139, 227 \right\}, \left\{ 178, 183 \right\}, \left\{ 83, 275 \right\}, \left\{ 144, 345 \right\}, \left\{ 125, 159 \right\}, \left\{ 158, 235 \right\}, \left\{ 70, 86 \right\}, \left\{ 333, 352 \right\}, \left\{ 44, 262 \right\}, \left\{ 192, 326 \right\}, \left\{ 34, 283 \right\}, \left\{ 25, 234 \right\}, \left\{ 23, 157 \right\} \right\}; \end{split}$$
- $$\begin{split} S_3 &= \{ \{ 292, 330 \}, \{ 104, 105 \}, \{ 217, 289 \}, \{ 52, 138 \}, \{ 159, 363 \}, \{ 239, 259 \}, \{ 112, 276 \}, \{ 84, 190 \}, \\ &\{ 11, 345 \}, \{ 46, 240 \}, \{ 90, 211 \}, \{ 95, 358 \}, \{ 235, 353 \}, \{ 14, 257 \}, \{ 62, 181 \}, \{ 53, 265 \}, \{ 164, 295 \}, \{ 131, 146 \}, \{ 87, 128 \}, \{ 115, 166 \}, \{ 55, 314 \}, \{ 327, 350 \}, \{ 125, 249 \}, \{ 12, 110 \}, \{ 116, 152 \}, \{ 30, 287 \}, \{ 233, 268 \}, \{ 167, 272 \}, \{ 71, 99 \}, \{ 298, 307 \}, \{ 189, 293 \}, \{ 96, 150 \}, \{ 193, 308 \}, \{ 111, 255 \}, \{ 98, 122 \}, \{ 73, 76 \}, \{ 269, 360 \}, \{ 50, 238 \}, \{ 86, 175 \}, \{ 27, 348 \}, \{ 291, 325 \}, \{ 66, 251 \}, \{ 75, 221 \}, \{ 82, 236 \}, \{ 91, 197 \}, \{ 15, 183 \}, \{ 117, 340 \}, \{ 58, 174 \}, \{ 216, 230 \}, \{ 79, 344 \}, \{ 4, 156 \}, \{ 139, 320 \}, \{ 151, 182 \}, \{ 41, 208 \}, \{ 100, 127 \}, \{ 266, 278 \}, \{ 51, 161 \} \}. \end{split}$$

$$n = 51, \ \mathcal{A} = \bigcup_{i=1}^{3} \{\{i, x, y\} : \ \{x, y\} \in S_i\},$$

- $$\begin{split} S_1 &= \{ \{24, 74\}, \{71, 429\}, \{21, 58\}, \{87, 106\}, \{149, 283\}, \{116, 314\}, \{14, 327\}, \{376, 485\}, \\ \{138, 548\}, \{371, 374\}, \{12, 514\}, \{216, 284\}, \{67, 435\}, \{405, 560\}, \{96, 320\}, \{217, 367\}, \\ \{16, 310\}, \{418, 478\}, \{259, 416\}, \{195, 360\}, \{294, 510\}, \{47, 372\}, \{258, 488\}, \{408, 440\}, \\ \{221, 248\}, \{134, 220\}, \{44, 319\}, \{160, 501\}, \{184, 353\}, \{541, 550\}, \{28, 97\}, \{114, 389\}, \\ \{378, 387\}, \{299, 441\}, \{55, 227\}, \{247, 339\}, \{40, 424\}, \{214, 296\}, \{168, 226\}, \{130, 442\}, \\ \{177, 555\}, \{62, 251\}, \{190, 479\}, \{4, 69\}, \{218, 430\}, \{497, 498\}, \{37, 270\}, \{370, 426\}, \\ \{191, 223\}, \{132, 471\}, \{292, 344\}, \{203, 233\}, \{125, 382\}, \{275, 540\}, \{189, 558\}, \{72, 172\}, \\ \{439, 445\}, \{76, 108\}, \{274, 401\}, \{255, 444\}, \{325, 423\}, \{228, 359\}, \{236, 365\}, \{31, 375\}, \\ \{467, 484\}, \{153, 352\}, \{94, 518\}, \{415, 468\}, \{226, 489\}, \{20, 477\}, \{84, 140\}, \{420, 475\}, \\ \{222, 263\}, \{208, 213\}, \{300, 538\}, \{2, 323\}, \{51, 179\}, \{9, 123\}, \{393, 427\}, \{36, 264\}, \{30, 481\}, \{65, 432\}, \{361, 521\}, \{221, 263\}, \{211, 744\}, \}; \end{split}$$
- $$\begin{split} S_2 &= \{ \{ 61, 514 \}, \{ 93, 196 \}, \{ 68, 295 \}, \{ 14, 322 \}, \{ 121, 166 \}, \{ 134, 286 \}, \{ 285, 445 \}, \{ 143, 534 \}, \\ \{ 96, 112 \}, \{ 63, 78 \}, \{ 418, 508 \}, \{ 235, 433 \}, \{ 480, 488 \}, \{ 276, 453 \}, \{ 375, 482 \}, \{ 299, 425 \}, \\ \{ 231, 412 \}, \{ 416, 503 \}, \{ 287, 528 \}, \{ 188, 237 \}, \{ 177, 537 \}, \{ 123, 176 \}, \{ 25, 264 \}, \{ 9, 420 \}, \\ \{ 157, 173 \}, \{ 27, 371 \}, \{ 120, 165 \}, \{ 195, 215 \}, \{ 81, 325 \}, \{ 10, 458 \}, \{ 309, 314 \}, \{ 15, 160 \}, \\ \{ 26, 540 \}, \{ 50, 400 \}, \{ 113, 158 \}, \{ 91, 290 \}, \{ 66, 427 \}, \{ 111, 209 \}, \{ 48, 248 \}, \{ 118, 468 \}, \\ \{ 116, 496 \}, \{ 232, 557 \}, \{ 442, 464 \}, \{ 167, 404 \}, \{ 186, 318 \}, \{ 58, 358 \}, \{ 102, 397 \}, \{ 94, 421 \}, \\ \{ 92, 292 \}, \{ 38, 254 \}, \{ 483, 484 \}, \{ 335, 355 \}, \{ 133, 553 \}, \{ 293, 362 \}, \{ 52, 399 \}, \{ 55, 169 \}, \\ \{ 184, 348 \}, \{ 114, 478 \}, \{ 253, 414 \}, \{ 529, 554 \}, \{ 183, 463 \}, \{ 179, 349 \}, \{ 42, 151 \}, \{ 31, 271 \}, \\ \end{split}$$

 $\begin{array}{l} \{7, \ 198\}, \ \{117, \ 429\}, \ \{30, \ 341\}, \ \{54, \ 455\}, \ \{35, \ 282\}, \ \{303, \ 387\}, \ \{127, \ 320\}, \ \{40, \ 208\}, \\ \{126, \ 561\}, \ \{95, \ 152\}, \ \{181, \ 440\}, \ \{72, \ 338\}, \ \{345, \ 383\}, \ \{305, \ 376\}, \ \{37, \ 302\}, \ \{460, \ 462\}, \\ \{12, \ 446\}, \ \{187, \ 234\}, \ \{18, \ 451\}, \ \{178, \ 401\}, \ \{17, \ 261\}, \ \{283, \ 479\}, \ \{137, \ 192\}, \ \{44, \ 542\}, \\ \{70, \ 87\}, \ \{221, \ 319\}, \ \{103, \ 443\}, \ \{526, \ 559\}, \ \{28, \ 256\}, \ \{69, \ 109\}, \ \{226, \ 477\}, \ \{145, \ 409\}, \\ \{185, \ 247\} \ \}; \end{array}$

$$\begin{split} S_3 &= \{ \{125, 356\}, \{418, 458\}, \{445, 521\}, \{419, 491\}, \{243, 409\}, \{249, 262\}, \{200, 527\}, \{211, 253\}, \{77, 287\}, \{280, 420\}, \{268, 394\}, \{213, 359\}, \{28, 415\}, \{85, 92\}, \{20, 164\}, \{24, 456\}, \{27, 291\}, \{73, 378\}, \{159, 275\}, \{166, 395\}, \{319, 416\}, \{140, 526\}, \{126, 285\}, \{176, 344\}, \{69, 81\}, \{82, 428\}, \{255, 303\}, \{144, 209\}, \{365, 522\}, \{242, 444\}, \{46, 109\}, \{506, 545\}, \{232, 304\}, \{13, 463\}, \{182, 487\}, \{308, 396\}, \{116, 244\}, \{502, 520\}, \{49, 155\}, \{6, 289\}, \{237, 296\}, \{528, 542\}, \{47, 530\}, \{95, 560\}, \{119, 230\}, \{410, 550\}, \{151, 316\}, \{181, 482\}, \{115, 143\}, \{175, 393\}, \{120, 523\}, \{228, 277\}, \{154, 338\}, \{377, 474\}, \{75, 322\}, \{439, 533\}, \{183, 459\}, \{99, 273\}, \{72, 100\}, \{236, 431\}, \{357, 504\}, \{261, 292\}, \{229, 460\}, \{345, 558\}, \{270, 385\}, \{245, 256\}, \{80, 246\}, \{65, 538\}, \{366, 477\}, \{78, 461\}, \{70, 161\}, \{212, 266\}, \{311, 358\}, \{14, 293\}, \{15, 434\}, \{96, 333\}, \{74, 341\}, \{122, 426\}, \{326, 430\}, \{128, 208\}, \{254, 465\}, \{198, 274\}, \{33, 224\}, \{392, 531\}, \{57, 475\} \}. \end{split}$$

$$n = 69, \ \mathcal{A} = \bigcup_{i=1}^{n} \{\{i, x, y\} : \{x, y\} \in S_i\},\$$

- $S_1 = \{ \{239, 535\}, \{13, 63\}, \{249, 563\}, \{469, 524\}, \{127, 369\}, \{316, 715\}, \{212, 513\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}, \{371, 485\}$ $\{110, 459\}, \{103, 231\}, \{179, 645\}, \{60, 759\}, \{267, 630\}, \{402, 561\}, \{589, 704\}, \{284, 60, 759\}, \{261, 630\}, \{402, 561\}, \{510, 704\}, \{284, 60, 759\}, \{201, 630\}, \{402, 561\}, \{510, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704\}, \{284, 704$ 305, $\{25, 322\}$, $\{490, 504\}$, $\{169, 384\}$, $\{258, 664\}$, $\{279, 565\}$, $\{621, 754\}$, $\{108, 257\}$, 597, $\{368, 430\}$, $\{235, 625\}$, $\{618, 699\}$, $\{649, 757\}$, $\{648, 733\}$, $\{523, 560\}$, $\{217, 718\}$, $\{323, 673\}, \{45, 171\}, \{176, 423\}, \{247, 707\}, \{37, 388\}, \{117, 221\}, \{372, 694\}, \{101, 334\},$ $\{2, 377\}, \{416, 519\}, \{79, 270\}, \{324, 345\}, \{612, 671\}, \{262, 709\}, \{441, 538\}, \{536, 577\},$ $\{162, 701\}, \{339, 741\}, \{71, 745\}, \{242, 453\}, \{81, 351\}, \{264, 362\}, \{123, 392\}, \{380, 444\}, \{162, 701\}, \{380, 444\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162, 701\}, \{162,$ $\{57, 672\}, \{269, 274\}, \{40, 584\}, \{131, 616\}, \{23, 357\}, \{272, 424\}, \{330, 404\}, \{367, 725\}, \{272, 424\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{367, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 725\}, \{368, 7$ $\{336, 706\}, \{174, 688\}, \{332, 462\}, \{155, 161\}, \{69, 381\}, \{75, 550\}, \{206, 253\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{154, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156, 268\}, \{156,$ $\{95, 355\}, \{5, 147\}, \{263, 636\}, \{293, 667\}, \{178, 428\}, \{164, 735\}, \{340, 350\}, \{245, 256\},$ $\{729, 731\}, \{413, 600\}, \{233, 436\}, \{374, 714\}, \{210, 750\}, \{447, 702\}, \{228, 488\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182, 483\}, \{182$ 288, {177, 574}, {168, 250}, {254, 385}, {397, 529}, {422, 742}, {50, 497}, {496, 637}, $\{314, 674\}, \{170, 593\}, \{173, 717\}, \{586, 595\}, \{6, 36\}, \{128, 465\}, \{151, 158\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 457\}, \{100, 4$ $\{472, 596\}, \{165, 639\}, \{722, 758\}, \{414, 480\}, \{21, 552\}, \{260, 575\}, \{150, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483, 687\}, \{483,$ 528, {149, 329}, {39, 521}, {744, 753}, {34, 551}, {82, 685}, {328, 752}, {3, 343}}; $S_2 = \{ \{504, 716\}, \{74, 164\}, \{32, 572\}, \{635, 660\}, \{119, 655\}, \{44, 254\}, \{184, 703\}, \{50, 223\}, \{184, 703\}, \{50, 223\}, \{184, 703\}, \{50, 223\}, \{184, 703\}, \{50, 223\}, \{184, 703\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{112, 123\}, \{11$ $\{53, 670\}, \{181, 481\}, \{41, 200\}, \{77, 142\}, \{183, 480\}, \{113, 131\}, \{136, 415\}, \{534, 596\}, \{113, 131\}, \{136, 415\}, \{534, 596\}, \{113, 131\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 415\}, \{136, 4$ 574, $\{488, 651\}$, $\{177, 482\}$, $\{22, 453\}$, $\{287, 658\}$, $\{193, 239\}$, $\{590, 727\}$, $\{544, 748\}$, $\{333, 591\}, \{150, 567\}, \{36, 218\}, \{174, 426\}, \{24, 649\}, \{305, 616\}, \{315, 633\}, \{95, 109\},$ 543, $\{104, 290\}$, $\{251, 662\}$, $\{87, 622\}$, $\{127, 225\}$, $\{230, 231\}$, $\{450, 629\}$, $\{286, 611\}$, $\{438, 560\}, \{236, 328\}, \{234, 484\}, \{59, 364\}, \{159, 728\}, \{214, 756\}, \{332, 390\}, \{106, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214, 328\}, \{214,$ 547, {121, 310}, {383, 392}, {102, 157}, {78, 378}, {156, 361}, {363, 494}, {33, 530}, {68, 68, 68}, {361}, {363, 494}, {33, 530}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {68, 68}, {6 219, $\{143, 158\}$, $\{515, 685\}$, $\{532, 665\}$, $\{69, 247\}$, $\{421, 516\}$, $\{73, 163\}$, $\{198, 356\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{69, 247\}$, $\{421, 516\}$, $\{73, 163\}$, $\{198, 356\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{5, 685\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 68, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100\}$, $\{1, 100$ 243}, {151, 179}, {319, 697}, {263, 675}, {597, 729}, {304, 325}, {56, 83}, {271, 553}, {642, 679, $\{258, 721\}$, $\{587, 747\}$, $\{552, 723\}$, $\{648, 701\}$, $\{266, 521\}$, $\{429, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{39, 93\}$, $\{329, 610\}$, $\{32, 91\}$, $\{32, 91\}$, $\{33, 93\}$, $\{329, 91\}$, $\{32, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, $\{33, 91\}$, 369, $\{28, 208\}, \{45, 245\}, \{295, 638\}, \{54, 569\}, \{296, 424\}, \{514, 557\}, \{366, 726\}, \{440, 566\}, \{424\}, \{414, 514\}, \{414, 514\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{414\}, \{4$ 464, $\{341, 404\}$, $\{536, 669\}$, $\{171, 535\}$, $\{259, 311\}$, $\{555, 678\}$;
- $\begin{array}{l} S_3 = \{ \ \{415, \ 456\}, \ \{320, \ 713\}, \ \{286, \ 407\}, \ \{276, \ 355\}, \ \{511, \ 746\}, \ \{558, \ 738\}, \ \{36, \ 356\}, \ \{269, \ 463\}, \ \{53, \ 377\}, \ \{362, \ 715\}, \ \{73, \ 294\}, \ \{554, \ 689\}, \ \{437, \ 625\}, \ \{94, \ 635\}, \ \{268, \ 469\}, \ \{148, \ 469\}, \$

 $\begin{array}{l} 720\, \{59,\,313\}, \{246,\,623\}, \{419,\,752\}, \{87,\,758\}, \{178,\,596\}, \{117,\,663\}, \{229,\,584\}, \{75,\\529\}, \{281,\,576\}, \{68,\,661\}, \{568,\,600\}, \{436,\,509\}, \{236,\,697\}, \{47,\,490\}, \{186,\,641\}, \{329,\\528\}, \{234,\,297\}, \{31,\,227\}, \{39,\,79\}, \{108,\,251\}, \{188,\,238\}, \{143,\,734\}, \{29,\,482\}, \{267,\\755\}, \{305,\,612\}, \{432,\,445\}, \{144,\,247\}, \{123,\,679\}, \{691,\,754\}, \{440,\,453\}, \{204,\,434\}, \{37,\,195\}, \{74,\,638\}, \{226,\,287\}, \{52,\,112\}, \{99,\,442\}, \{285,\,522\}, \{54,\,290\}, \{271,\,743\}, \{140,\,370\}, \{594,\,683\}, \{403,\,426\}, \{278,\,536\}, \{154,\,670\}, \{556,\,655\}, \{193,\,643\}, \{70,\,376\}, \{155,\,513\}, \{32,\,673\}, \{98,\,291\}, \{327,\,578\}, \{452,\,464\}, \{371,\,487\}, \{128,\,205\}, \{332,\,684\}, \{557,\,637\}, \{365,\,448\}, \{299,\,354\}, \{90,\,266\}, \{44,\,157\}, \{160,\,479\}, \{295,\,383\}, \{21,\,705\}, \{111,\,121\}, \{337,\,631\}, \{14,\,109\}, \{292,\,644\}, \{170,\,619\}, \{454,\,647\}, \{114,\,330\}, \{264,\,526\}, \{155,\,393\}, \{358,\,756\}, \{580,\,610\}, \{249,\,470\}, \{555,\,158\}, \{397,\,502\}, \{177,\,736\}, \{132,\,342\}, \{228,\,245\}, \{388,\,606\}, \{93,\,270\}, \{1158,\,523\}, \{322,\,664\}, \{137,\,597\}, \{110,\,733\}, \{25,\,775\}, \{100,\,223\}, \{6,\,277\}, \{318,\,745\}, \{241,\,747\}, \{80,\,150\}, \{199,\,680\}, \{387,\,414\}, \{368,\,385\}, \{282,\,654\}, \{119,\,369\}, \{441,\,652\}, \{192,\,353\}, \{392,\,658\}, \{137,\,723\}, \{653,\,714\}, \{7,\,574\}\}. \end{array}$

References

- F. E. Bennett, R. Wei and L. Zhu, Resovable Mendelsohn triple systems with equal sized holes, J. Combin. Designs 5 (1997), 329-340.
- S. Blake-Wilson and K. Phelps, Constant weight codes and group divisible design, Designs, Codes and Cryptography 16 (1999), 11-27.
- [3] K. Chen, G. Ge and L. Zhu, Generalized Steiner triple systems with group size five, preprint.
- [4] K. Chen, G. Ge and L. Zhu, Starters and related codes, preprint.
- [5] T. Etzion, Optimal constant weight codes over Z_k and generalized designs, Discrete Math. 169 (1997), 55-82.
- [6] G. Ge and D. Wu, Generalized Steiner triple systems with group size ten, preprint.
- [7] K. Phelps and C. Yin, Generalized Steiner systems with block three and group size $g \equiv 3 \pmod{6}$, J. Combin. Designs 5 (1997), 417-432.
- [8] K. Phelps and C. Yin, Generalized Steiner systems with block three and group size four, Ars Combin. to appear.
- [9] D. Wu, L. Zhu and G. Ge, Generalized Steiner triple systems with group size g = 7, 8, preprint.

(Received 16/10/98)