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Abstract 

Generalized Steiner triple systems, GS(2, 3, n, g) are equivalent to max
imum constant weight codes over an alphabet of size 9 + 1 with distance 
3 and weight 3 in which each codeword has length n. The existence of 
GS(2, 3, n, g) has been solved by several authors for 2 S 9 ::; 10. The 
necessary conditions for the existence of a GS(2, 3, n, g) are (n - l)g == 
o (mod 2), n(n - 1)g2 == 0 (mod 6), and n 2:: 9 + 2. Recently, D. Wu 
et al proved that for any given 9 2:: 7, if there exists a GS(2, 3, n, g) for 
all n, 9 + 2 S n ::; 9g + 158, satisfying the above two congruences, then 
the necessary conditions are also sufficient. In this paper, the result is 
partially improved. It is shown that for any given g, 9 == 1,5 (mod 6) 
and 9 2:: 11, if there exists a GS(2, 3, n, g) for all n, n == 1,3 (mod 6) and 
9 + 2 ::; n ::; 9g + 4, then the necessary conditions are also sufficient. As 
an application, it is proved that the necessary conditions for the existence 
of a GS(2, 3, n, g) are also sufficient for g = 11. 

1 Introduction 

A (g + l}-ary constant weight code (n, w, d) is a code C ~ (Zg+1)n of length nand 
minimum distance d, such that every c E C has Hamming weight w. To construct 
a constant weight code (n, w, d) with w = 3, a group divisible design (GDD) will 
be used. A K -GDD is an ordered triple (V, Q, B) where V is a set of n elements, 
Q is a collection of subsets of V called groups which partition V, and B is a set 
of some subsets of V called blocks, such that each block intersects each group in 
at most one element and that each pair of elements from distinct groups occurs 
together in exactly one block in B, where IBI E K for any B E B. The group type 
is the multiset {IGI : G E Q}. A k-GDD(gn) denotes a K-GDD with n groups 
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of size 9 and K = {k}. If all blocks of a GDD can be partitioned into parallel 
classes, then the GDD is called resolvable GDD and denoted by RGDD, where a 
parallel class is a set of blocks partitioning the element set V. In a 3-GDD(gn), let 
V = (Zg+l \ {O}) X (Zn+1 \ {O}) with n groups Gi E Q, Gi = (Zg+1 \ {O}) x {i}, 
1::; i::; n and blocks {(a, i), (b,j), (c,k)} E B. One can construct a constant weight 
code (n, 3, d) as stated in [5], [7]. From each block we form a codeword of length 
n by putting an a, band c in positions i, j and k respectively and zeros elsewhere. 
This gives a constant weight code over Zg+1 with minimum distance 2 or 3. If the 
minimum distance is 3, then the code is a (g + 1 )-ary maximum constant weight code 
(MCWC) (n, 3, 3) and the 3-GDD(gn) is called generalized Steiner triple system, 
denoted by GS(2, 3, n, g). It is easy to see that a 3-GDD(gn) is a GS(2, 3, n, g) iff any 
two intersecting blocks meet at most two common groups of the GDD. The following 
result is known. 

Lemma 1.1 ([5], [7]) The following are the necessary conditions for the existence of 
a GS(2, 3, n, g): 
(1) (n - l)g == 0 (mod 2); 
(2) n(n 1)g2 == 0 (mod 6); 
(3)n2::g+2. 

The necessary conditions are shown to be sufficient by several authors with one 
exception for 2 ::; 9 ::; 10. Hence, we have the following lemma. 

Lemma 1.2 ([5], [7], [8], [3], [4], [9], [6]) The necessary conditions for the existence 
of a GS(2, 3, n, g) are also sufficient for 2 ::; 9 ::; 10 with one exception of (g, n) = 
(2,6). 

Blake-Wilson and Phelps [2] proved that the necessary conditions for the existence 
of a GS(2, 3, n, g) are also asymptotically sufficient for any g. Recently, D. Wu et 
al [9] proved that for any given 9 ~ 7, if there exists a GS(2, 3, n, g) for all n, 
9 + 2 ::; n ::; 9g + 158, satisfying (n - l)g == 0 (mod 2) and n(n - 1)g2 == 0 (mod 6), 
then the necessary conditions for the existence of a GS(2, 3, n, g) are also sufficient. 

Since the existence of GS(2, 3, n, g) has been solved for 9 ::; 10, we need only to 
consider the case 9 ~ 11. For 9 == 1, 5 (mod 6) and 9 ~ 11, let Tg = {n: there exists 
a GS(2, 3, n, g)}, Bg = {n: n satisfying the necessary conditions listed in Lemma 1.1 
}, Mg = {n: n E Bg , n ::; 9g + 4 }. In this paper, the results of [9] will be partially 
improved and the foHowing results are obtained. 

Theorem 1.3 For any 9 == 1,5 (mod 6) and 9 2:: ll, if Mg C TgI then Bg = 
Tg • That is, the necessary conditions for the existence of a GS(2, 3, n, g) are also 
sufficient. 

Theorem 1.4 Ell = T11 , that is, the necessary conditions for the existence of a 
GS(2, 3, n, g) are also sufficient for 9 = 11. 

Combining Lemma 1.2 and Theorem 1.4 shows that the existence of a GS(2, 3, n, g) 
is completely determined for any 9 :S 11. 
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2 Product Constructions 

In product constructions, we will need the concept of both holey generalized Steiner 
triple systems and disjoint incomplete Latin squares. 

A holey group divisible design, K - HGDD, is a fourtuple (V, Q, 1-L, B), where V 
is a set of points, 9 is a partition of V into subsets called groups, 1-L c Q, B is a set of 
blocks such that a group and a block contain at most one common point and every 
pair of points from distinct groups, not both in 1-L, occurs in a unique block in B, 
where lEI E K for any E E B. A k-HGDD(g(n,u)) denotes a K-HGDD with n groups 
of size g in Q, u groups in 1-L and K = {k}. A holey generalized Steiner triple system, 
HGS(2, 3, (n, u), g), is a 3-HGDD(g(n,u)) with the property that any two intersecting 
blocks meet at most two common groups. 

It is easy to see that if u = 0 or u = 1, then a HGS(2, 3, (n + u, u), g) is just a 
GS(2, 3, n, g) or a GS(2, 3, n + 1, g) respectively. 

A Latin square of side n, LS(n), is an n x n array based on some set S of n symbols 
with the property that every row and every column contains every symbol exactly 
once. An incomplete Latin square, ILS(n + a, a), denotes a LS(n + a) "missing" a 
sub LS(a). Without loss of generality, we may assume that the missing subsquare, 
or hole, is at the lower right corner. We say (i, j, s) E ILS( n + a, a) if the entry in 
the cell (i,j) is s. Let AI, A2 be two ILS(n + a, a)s on the same symbol set. If 
(i,j,sd #- (i,j,s2) for any (i,j,sd E AI, (i,j,s2) E A2, then we say that Al and A2 
are disjoint. We use r DILS(n + a, a) to denote r pairwise disjoint ILS(n + a, a)s. 

For the existence of r DILS(n + a, a), we have the following two lemmas. 

Lemma 2.1 ([3]) There exist 5(a) DILS(n + a, a), where 5(0) = nand 5(a) = a for 
1 ~ a ~ n. 

Lemma 2.2 ([9]) There exist n DILS(n+a, a) for all n == 0 (mod 4) and 0 ~ a ~ n. 

The following singular indirect product construction for GS(2, 3, n, g)s is first 
stated in [3]. 

Lemma 2.3 (Singular Indirect Product (SIP)) Let m, n, t, u and a be integers such 
that 0 ~ a ~ u < n. Suppose the following designs exist: 
(1) t DILS(n + a, a); 
(2) a 3 - GDD(gm) with the property that all blocks of the design can be partitioned 
into t sets So, Sl, ... ,St-l, such that the minimum distance in STl 0 ~ r ~ t - 1, is 
3; 
(3) a HGS(2, 3, (n + u, u), g). 
Then there exists a HGS(2, 3, (c, d), g), where c = m(n + a) + u - a, d = ma + u - a. 
Further, if there exists 
(4) a GS(2, 3, rna + u - a, g), 
then there exists a GS(2, 3, m(n + a) + u - a, g). 

Taking a = 0 in Lemma 2.3, we get the singular direct product construction, 
which first appeared in [8]. 
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Lemma 2.4 (Singular Direct Product (SDP)) Let m, n, t, and u be integers such 
that 0 :S u < n. Suppose t :S n and the following designs exist: 
(1) a 3 - GDD(gm) with the property that all blocks of the design can be partitioned 
into t sets So, S1, ... , St-I, such that the minimum distance in STl 0 :S r :S t - 1, is 
3' I 

(2) a HGS(2, 3, (n + u, u), g). 
Then there exists a HGS(2, 3, (mn + u, u), g). Further, if there exists a GS(2, 3, u, g), 
then there exists a GS(2, 3, mn + u, g). 

Taking u=O or 1 in Lemma 2.4, we get the Construction C or D of Etzion in [5] 
respectively. 

Lemma 2.5 (Direct Product (DP) ) Let (V, Q, B) be a 3-GDD(gm), and suppose 
there exists a GS(2, 3, n, g). Then there exists a GS(2, 3, mn, g) if B can be partitioned 
into t sets So, ... , St-I, such that the minimum distance in STl 0 :S r :S t - 1, is 3 
and t :S n. 

Lemma 2.6 ([5)) Let (V, Q, B) be a 3-GDD(gm), and suppose there exists a 
GS(2,3,n,g). Then there exists a GS(2,3,m(n - 1) + l,g) if B can be partitioned 
into t sets So, ... , St-I, such that the minimum distance in Sr,O :S r :S t - 1, is 3 
and t :S n - 1. 

It is easy to notice that the derived generalized Steiner triple system in Lemma 
2.5 and Lemma 2.6 has a sub GS(2, 3, n, g). Hence, we have the following. 

Lemma 2.7 Let (V,Q,B) be a 3-GDD(gm). Suppose there exists a GS(2,3,n,g). 
Then there exists a HGS(2, 3, (mn, n), g) or a HGS(2, 3, (m(n -1) + 1, n), g) if B can 
be partitioned into t sets So, ... ,St-I, such that the minimum distance in Sr, 0 :S r :S 
t - 1, is 3 and t :S n or t :S n - 1 respectively. 

If one uses a 3-RGDD(gm) in the constructions, then each parallel class becomes 
an Sr and there are t = 9(~-1) such classes. The following is stated in [3]. 

Lemma 2.8 If there exists a GS(2, 3, n, g) and a 3-RGDD(gm) with t = 9(~-1) :S n 
or n -I, then there exists a GS(2, 3, mn, g) or a GS(2, 3, m(n -1) + 1, g) respectively. 

For the existence of a 3-RGDD(gm), we have the following. 

Lemma 2.9 ([I)) A 3-RGDD(gm) exists iff (m - l)g == 0 (mod 2), mg == 0 (mod 3) 
and gm =f: 23 , 26 and 63 . 

By combining Lemmas 2.7-2.9, we have the following. 

Lemma 2.10 For any 9 2 11, if there exists a GS(2, 3, n, g), then there exists a 
GS(2,3,3n,g) and a GS(2,3,3(n-l)+1,g). Consequently, there exists a 
HGS(2, 3, (3n, n), g) and a HGS(2, 3, (3(n - 1) + 1, n), g). 
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3 Proof of Theorem 1.3 

In this section, we will show the proof of Theorem 1.3. First, we need the following 
lemmas. 

Lemma 3.1 For 9 == 1,5 (mod 6) and 9 2 11, suppose v = ISp + j, j E {I, 3, 7, 9}. 
II6p + UJ + J(j) E Tg, where J(j) = 0 or 1, and c5(j) == j (mod 3), then v E Tg. 

Proof. Apply Lemma 2.10 with n = 6p + lfJ + c5(j), the conclusion then follows. 
o 

Lemma 3.2 For 9 == 1,5 (mod 6) and 9 2 11, suppose v = 54p + j, j = 13 or 15. 
I16p+3 E Tg, ISp+j -12 E Tg, andp 2 P-t?l, then v E Tg. 

Proof. Apply Lemma 2.3 with m = 3, n = 12p + 4, t = g, 'U = 6p + 3 and a = 
6p - ¥. It is easy to check that a ~ u < n. Since p 2 r ~ 1, it is easy to see that 
a 2 O. From Lemma 2.2, there exist n DILS(n+a, a) for 0 :::; a ~ n. We further have 
t DILS(n+a, a) since t:::; u-2 < n. Thus the condition (1) of Lemma 2.3 is satisfied. 
For 9 2 11, a 3-RGDD(g3) always exists by Lemma 2.9, which has 9 parallel classes. 
So, condition (2) is also satisfied. From U E Tg , we apply Lemma 2.10 to obtain 
a HGS(2, 3, (n + u, u), g), providing the design in condition (3). Finally, we have 
ma + u - a = lSp - 12 + j E Tg, the condition (4) is satisfied. Therefore, we have 
v E Tg . This completes the proof. 0 

Lemma 3.3 For 9 == 1,5 (mod 6) and 9 2 11, suppose v = 54p + j, j E {31, 33, 49, 
51}. II6p+7ETg, lSp+j-36ETg, andp2 r~l, thenvETg• 

Proof. Apply Lemma 2.3 with m = 3, n = 12p + 12, t = g, U = 6p + 7 and 
a = 6p - ~. Then the proof is completed analogously to that of Lemma 3.2. 0 

Now, we are in a position to prove Theorem 1.3. 
Proof of Theorem 1.3. We need to show that Mg C Tg implies that Bg C Tg. 
The proof is by induction on n. Suppose n E Bg. If n E Mg, then n E Tg. Otherwise, 
we have n 2 9g + 6 and distinguish between the following cases: 
Case 1: n = ISp+ j 2 9g+6, j E {I, 3, 7, 9}. It is easy to see that n 2 9g+6 implies 
a = 6p+ LfJ +J(j) 2 3g+2 > g+2. It is also easy to verify that a E Bg. If a E Mg , 

then Lemma 3.1 guarantees that n E Tg and the proof is complete. Otherwise, we 
can repeat the induction process taking a as n'. 
Case 2: n = 54p + j 2 9g + 6, j = 13 or 15. We first claim that p 2 r~l. If not 
so, then p < r~l ~ 1. Thus n < 54 + j. Since 9 2 11 and j = 13 or 15, we have 
n < 69 < 99 + 6, a contradiction. 

Next, it is easy to see that n 2 9g + 6 implies 6p 2 9 +~. Then it is easily 
checked that a = 6p + 3 29+ 2 and {3 = ISp + j - 12 2 9 + 2 for 9 2 11. Since 
{3 == 1 or 3 (mod 6), we see that a E Bg and {3 E Bg. If we have both a E Mg and 
{3 E Mg , then Lemma 3.2 guarantees that n E Tg and the proof is complete. If at 
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least one of a and (3 is not in Mg , then we can repeat the induction process taking 
the number a, (3 not in Mg as n'. 
Case 3: n = 54p + j ~ 9g + 6, j E {31, 33, 49, 51}. Apply Lemma 3.3, the proof 
of this case is similar to that of Case 2. We need only to check that p ~ r~l, 
6p + 7 ~ 9 + 2 and 18p + j - 36 ~ 9 + 2. We first claim that p ~. r4~;q. If not so, 
then p < r4;;jl ::; 1. Thus n < 54 + j. Since 9 ~ 11 and j E {31, 33,49, 51}, we 
have n < 54 + 51 ::; 9g + 6, a contradiction. 

Next, it is easy to check that n ~ 9g+6 implies 6p+7 ~ g+2 and 18p+ j -36 ~ 
9 + 2 for 9 ~ 11. 

After certain steps of induction on n, n' will be small enough so that n' is in Mg , 

consequently, n E Tg • Case 1 implies the solution for n == 1,3, 7 or 9 (mod 18); Cases 
2 and 3 imply the solution for n == 13 or 15 (mod 18). This completes the proof. 0 

4 Proof of Theorem 1.4 

In this section, we will show that the necessary conditions for the existence of a 
GS(2, 3, n, 11) are also sufficient. From Theorem 1.3, we need only to consider the 
case n E Mll = {n : n == 1,3 (mod 6) and 13 ::; n ::; 103}. 

For n == 3 (mod 6), to construct a G8(2, 3, n, 11) in Zlln, it suffices to find a set 
of generalized base blocks, A = {Bl ,"', Bs }, s = ll(~-l), such that (V, Q, B) forms 
a GS(2,3,n,11), where V = ZUn, G = {G l ,G2,"',Gn },Gi = {i+nj: 0::; j::; 
10},1 ::; i ::; n, and B = {B + 3j : B E A,O ::; j ::; l~n - I}. For convenience, 

3 
we write A U {{ i, x, y} : {x, y} E Silo So, for each A we need only display the 

i=l 
corresponding Si, 1 ::; i ::; 3. 

Lemma 4.1 There exists a GS(2, 3, n, 11) for all n E FlI where Fl = {15, 21, 27, 33, 
51, 69}. 

Proof. For the values n E Fl , with the aid of a computer, we have found a set of 
generalized base blocks of a GS(2, 3, n, 11). Here, we only list the Si, 1 ::; i ::; 3 for 
n = 15. For the remaining values n, the corresponding Si, 1 ::; i ::; 3 are listed in the 
Appendix. 

3 
n 15,A U{{i,x,y}:{X,y}ESi}, 

i=l 
51 = { {24, 95}, {Ill, I54}, {6, l62}, {90, l48}, {ll, 53}, {15, 20}, {139, l59}, {72, l34}, 

{71, l29}, {2, l09}, {66, l22}, {65, l28}, {14, 67}, {47, l03}, {114, I60}, {39, l38}, 
{142, 158}, {130, l4l}, {22, 63}, {99, 105}, {4l, 44}, {55, l33}, {74, l24}, {8l, l40}, 
{80, 85}, {137, l65}, {1l5, 1I9}, {9, l57}, {1I8, l43} }; 

52 = { {38, 106}, {130, l58}, {144, l65}, {1I6, l43}, {23, 102}, {19, 78}, {15, 83}, {123, 
145}, {36, 129}, {1I4, 155}, {8, 43}, {79, l28}, {90, IlO}, {6, 98}, {24, 64}, {12, 
63}, {22, 54}, {35, 1I7}, {lOl, l49}, {87, l60}, {13, 85}, {74, 76}, {67, l53}, {16, 
1I2}, {3, 9l}, {42, 6l}, {2l, 57}, {66, l50} }; 

53 = { {38, 8l}, {6, 1I8}, {37, l20}, {36, l44}, {139, l42}, {lOO, l3l}, {ll, 42}, {35, 
l22}, {32, l43}, {126, l52}, {15, l33}, {34, 73}, {16, 72}, {66, l6l}, {30, 77}, {19, 
2l}, {52, 1I9}, {14, 94}, {1l4, l24}, {67, lOl} }. 0 
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Lemma 4.2 There exists a GS(2, 3, n, 11) for all n E F2 = {13, 19,25,31}. 

Proof. With the aid of a computer, we have found a set of base blocks A of a 
GS(2, 3, n, 11) for n E F2 • 

For convenience, we write A = {{I, x, y} : {x, y} E S}. So, for each A we need 
only display the corresponding S. 
n = 13, S = { {62, 65}, {5, 88}, {130, 136}, {127, 134}, {ll7, 128}, {114, 126}, {24, 58}, 

{21, 123}, {32, 129}, {25, 95}, {29, 54}, {34, 63}, {36, 68}, {56, 125}, {44, 81}, {99, 
104}, {55, 102}, {52, IOO}, {59, 60}, {67, 135}, {3, 39}, {23, 73} }. 

n = 19, S = { {28, 108}, {86, 93}, {76, 124}, {42, 133}, {30, 100}, {89, I93}, {43, I52}, 
{31, 80}, {64, 175}, {82, I38}, {15, 204}, {69, 95}, {54, I66}, {2, I89}, {107, I78}, 
{126, 144}, {17, 79}, {88, 91}, {29, 75}, {35, 199}, {3, 173}, {55, 163}, {ll7, 141}, 
{90, I45}, {151, 174}, {13, 74}, {83, ll4}, {143, 195}, {146, 197}, {6, 10}, {44, 84}, 
{ll, 61}, {177, 202} }. 

n = 25, S = { {91, 162}, {20, 153}, {99, ll3}, {50, 220}, {7l, 148}, {65, 1I8}, {64, 229}, 
{240, 260}, {44, 234}, {42, 169}, {181, 255}, {140, 194}, {39, 248}, {97, 109}, {173, 
174}, {70, 74}, {152, 261}, {6, 9}, {79, 155}, {132, 266}, {136, 138}, {62, 102}, {196, 
230}, {63, 252}, {38, 156}, {133, 160}, {192, 225}, {147, 195}, {84, 116}, {31, 66}, 
{60, 73}, {127, 182}, {8, 177}, {23, 120}, {105, 184}, {46, 69}, {40, 92}, {61, 90}, 
{1O, 68}, {7, 94}, {154, 165}, {27, 45}, {ll4, 131}, {32, 89} }. 

n = 31, S = { {1l3, 139}, {83, 245}, {183, 272}, {111, 149}, {234, 290}, {267, 270}, 
{198, 248}, {24, 128}, {80, 231}, {200, 307}, {106, 334}, {188, 227}, {124, 181}, 
{102, 283}, {103, 222}, {115, 323}, {132, 186}, {14, 177}, {189, 242}, {82, 328}, 
{77, 273}, {35, 119}, {184, 208}, {254, 332}, {133, 142}, {33, 123}, {137, 338}, {61, 
153}, {37, 136}, {165, 195}, {87, 271}, {140, 217}, {75, 97}, {44, 317}, {28, 174}, 
{12, 305}, {298, 326}, {284, 325}, {175, 255}, {170, 221}, {86, 236}, {321, 336}, 
{176, 302}, {13, 225}, {278, 341}, {19, 287}, {193, 276}, {3, 214}, {43, 48}, {68, 
17l}, {138, 199}, {46, 92}, {244, 309}, {226, 335}, {293, 313} }. 0 

The following lemma is a combination of Theorem 1 and Lemma 7 in [2]. Here, 
we need a new concept. A maximum packing with triangles, MPT(n), is an ordered 
triple (P, T, £.), where P is the vertex set of K n , T is a collection of edge disjoint 
triangles from the edge set of Kn with ITI as large as possible, and £, is the collection 
of edges in Kn not belonging to one of the triangles of T. The collection of edges £, 

is called the leave. 

Lemma 4.3 There exists a GS(2, 3, n, 11) for any prime power n == 1 (mod 6) and 
n ~ 43. 

Proof. Apply Theorem 1 and Lemma 7 in [2], it suffices to show that there exists 
a MPT(l1) = (P, T, £.) with 6 partial parallel classes, which is listed below. 

6 
P = {I, 2, ... , 11}, T = U Pi, £. = {{2, 4}, {4, 3}, {3, lO}, {1O, 2}}. 

i=l 
PI = {{4,8,11},{1,5,9},{2,6, 7}}; P2 = {{I, 7,8},{2,5,11},{6,9,lO}}; 
P3 = {{7,10,11},{1,2,3},{4,5,6}}; P4 = {{2,8,9},{3,5, 7},{1,4,lO}}; 
P5 = {{5,8,10},{1,6,11},{3,9,11}}; P6 = {{3,6,8},{4, 7,9}}. 0 

Lemma 4.4 There exists a GS(2, 3, v, 11) for all v E F3 = {37, 39, 45,55,57,63,75, 
81,91, 93,99}. 
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Proof. From Lemmas 4.1 and 4.2, we have a G8(2, 3, n, 11) for all n E F = 
{13, 15, 19,21,25,27,31, 33}. Apply Lemma 2.10 with n E F, we get a G8(2, 3, v, 11) 
for all v E F3• 0 

Lemma 4.5 There exists a GS(2, 3, v, 11) for all v E F4 = {85, 87}. 

Proof. There exist 24 DIL8(24+a, a) for a = 0 or 1 by Lemma 2.2. There exist also 
a G8(2, 3,13,11) and a G8(2, 3,15,11) by Lemma 4.2 and Lemma 4.1. From Lemma 
2.10, we have a HG8(2, 3, (37, 13), 11). Apply Lemma 2.3 with m = 3, n = 24, t = 
11, u 13, a = 0 or 1, we get a G8(2, 3, 85, 11) or a G8(2, 3,87,11) respectively. 0 

Now, we are in a position to prove Theorem 1.4. 
Proof of Theorem 1.4: From Theorem 1.3, we need only to consider the val
ues v, such that v E Mn. Lemma 4.3 provides a G8(2, 3, v, 11) for all v E Fs = 
{43, 49, 61, 67, 73, 79, 97, 103}. It is readily checked that the union of Fi , for 1 :::; i :::; 5, 
is the same as Mn. The conclusion then follows. 0 

Appendix 

3 
n = 21, A = U { { i, x, y}: {x, Y} E Si}, 

i=l 
8 1 = { {135, 202}, {96, 205}, {74, l59}, {6l, l71}, {162, 230}, {12l, l87}, {79, 2l4}, {2l7, 227}, 

{38, l8l}, {99, 2l3}, {1l8, 200}, {75, 229}, {176, l84}, {107, 158}, {179, 208}, {36, 53}, 
{129, 220}, {l09, 116}, {4l, l28}, {150, 206}, {lO4, l39}, {120, l57}, {48, 82}, {12, l4}, 
{1l3, 222}, {18, l38}, {71, l73}, {23, 223}, {15, 2l8}, {17, l30}, {2l, 110}, {51, 226}, {93, 
178}, {133, 2l2}, {163, 228}, {90, 183}, {153, 199}, {42, 72} }; 

8 2 = { {70, 142}, {199, 200}, {56, 204}, {166, 168}, {67, 227}, {45, 88}, {57, 175}, {143, 219}, 
{14, l64}, {72, 180}, {66, 190}, {77, 90}, {41, 172}, {25, 119}, {135, 157}, {17, 84}, {36, 
lOO}, {74, l22}, {140, l87}, {62,63}, {68,207}, {27,40}, {54,82}, {52, 109},{38, 79}, {47, 
lO5}, {93, 108}, {5, 94}, {1l2, 228}, {85, 215}, {18, 159}, {19, I55}, {42, I29} }j 

83 = { {19, 99}, {26, 227}, {135, 216}, {4I, lO3}, {35, 44}, {133, I37}, {172, 211}, {28, 83}, {51, 
229}, {34, 119}, {23, 226}, {6, 75}, {38, 62}, {116, 215}, {91, 110}, {155, 166}, {151, 177}, 
{53, 183}, {47, 78}, {140, 197}, {9, lO}, {58, l22}, {55, 80}, {198, 207}, {175, 224}, {168, 
222}, {161, 205}, {42, 89}, {43, 79}, {185, 212}, {134, 230}, {l09, 196}, {61, 202}, {14, 
l48}, {27, 98}, {48, 8l}, {63, 190}, {65, 188}, {ll, l32} }. 

3 
n = 27, A = U {{i,x,y}: {x,y} E Si}, 

i=l 
8 1 {{64, 266}, {147, 208}, {29, 116}, {192, 195}, {97, 230}, {186, 222}, {187, 233}, {139, 268}, 

{117, I31}, {61, 227}, {2l, 149}, {76, 115}, {209, 228}, {94, 98}, {69, l54}, {13, 191}, {25, 
264}, {124, 216}, {66, 198}, {239, 265}, {23, 26}, {138, 193}, {133, l82}, {46, 119}, {35, 
58}, {104, 287}, {86, 256}, {143, I96}, {232, 282}, {174, 194}, {llO, 247}, {19, 236}, {85, 
laO}, {140, 288}, {170, 262}, {9, 44}, {157, 278}, {132, 15l}, {14I, 295}, {lO2, 220}, {59, 
2lO}, {99, l08}, {225, 289}, {155, 215}, {1l4, I37}, {63, 2Il}, {60, 176}, {181, 188}, {33, 
277}, {lO5, 126} }j 

82 = { {240, 280}, {79, 149}, {37, 66}, {75, 93}, {27, 158}, {26, 244}, {154, 192}, {6, 289}, {142, 
179}, {254, 259}, {215, 232}, {15, 92}, {40, 81}, {140, 2I6}, {16, l38}, {I03, I47}, {127, 
I44}, {234, 249}, {228, 252}, {65, 237}, {36, 38}, {80, 176}, {187, 193}, {156, 257}, {lO, 
87}, {53, 123}, {188, 260}, {167, 284}, {50, 286}, {4, 95}, {59, 205}, {32, 219}, {111,247}, 
{76, 107}, {Il5, 197}, {Il, 270}, {3, 20}, {204, 211}, {I02, 266}, {33, 146}, {52, 54}, {lOa, 
224}, {131, 200} }j 
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83 = { {120, 260}, {47, 102}, {72, 205}, {34, 82}, {105, 228}, {44, 170}, {148, 217}, {89, 145}, 
{28, 253}, {122, 166}, {257, 263}, {25, 101}, {31, 42}, {203, 244}, {4, 171}, {70, 71}, {94, 
214}, {52, 180}, {141, 173}, {77, 124}, {161, 190}, {96, 249}, {69, 277}, {226, 290}, {63, 
159}, {9, 243}, {14, 189}, {16, 216}, {33, 295}, {8, 29}, {140, 274}, {206, 272}, {129, 233}, 
{1l2, 212}, {92, 150}, {H8, 288}, {108, 293}, {7, 2lO}, {182, 194}, {239, 255}, {55, 213}, 
{40, 251}, {56, 78}, {46, Il7}, {185, 267}, {51, 59}, {176, 222}, {49, 220}, {18l, 197}, {95, 
258} }. 

3 
n=33,.A= U{{i,x,y}: {x,y} ESi}, 

i=l 
81 = { {168, 306}, {3, 7}, {147, 225}, {299, 324}, {140, 343}, {136, 339}, {142, 354}, {18, 123}, 

{48, 222}, {235, 246}, {164, 336}, {282, 333}, {46, l38}, {237, 326}, {61, 323}, {58, 281}, 
{148,268}, {33, 40}, {II, l37}, {45, 139}, {179,30l}, {120, l87}, {8, l5}, {l06, 214}, {162, 
262}, {207, 340}, {2l2, 249}, {Ill, Il3}, {50, l25}, {16, 362}, {74, 248}, {35l, 356}, {37, 
193}, {77, 80}, {124, 144}, {175, 194}, {51, l22}, {70, l34}, {26, 273}, {202, 286}, {54, 
Il4}, {l05, 185}, {53, 353}, {1l0, 303}, {43, 55}, {30, 95}, {66, 3Il}, {126, 183}, {26l, 
283},{24,318}, {36,3l4}, {38, 21l}, {96,289}, {19, l45}, {206,253}, {49,348}, {63, 200}, 
{128, 271}, {2, 272}, {47, 215}, {198, 327}, {59, l35}, {56, 169} }; 

82 = { {163, 224}, {64, 268}, {1l2, 347}, {212, 2l7}, {162, 303}, {57, 72}, {109, l89}, {45, 359}, 
{6, 80}, {308, 317}, {29, 305}, {82, 254}, {21, 339}, {58, Il4}, {ll6, 337}, {56, 215}, {69, 
309}, {73, 156}, {84, l37}, {123, 263}, {lO5, 348}, {31, 210}, {141, 2l8}, {131, 182}, {127, 
296}, {331, 361}, {28, 274}, {32, 198}, {257, 321}, {98, 295}, {lI9, l64}, {76, 165}, {63, 
l48}, {208, 298}, {16, 293}, {33, 221}, {2l3, 343}, {6l, 279}, {12, 42}, {179, 330}, {97, 
280}, {46, 322}, {150,325}, {139,227}, {178, 183}, {83, 275}, {144,345}, {125, 159}, {158, 
235}, {70, 86}, {333,352}, {44, 262}, {192,326}, {34, 283}, {25, 234}, {23, l57}}; 

83 = {{292,330}, {l04, 105}, {217,289}, {52, 138}, {159,363}, {239,259}, {112, 276}, {84, 190}, 
{11,345}, {46,240}, {90,211}, {95, 358}, {235,353}, {14, 257}, {62, l81}, {53, 265}, {164, 
295}, {13l, 146}, {87, l28}, {U5, 166}, {55, 3l4}, {327, 350}, {125, 249}, {12, nO}, {lIB, 
152}, {30, 287}, {233, 268}, {167, 272}, {71, 99}, {298, 307}, {189, 293}, {96, 150}, {193, 
308}, {Ill, 255}, {98, l22}, {73, 76}, {269, 360}, {50, 238}, {86, l75}, {2~ 348}, {29l, 
325}, {66, 25l}, {75, 221}, {82, 236}, {9l, 197}, {15, 183}, {lI7, 340}, {58, 174}, {2l6, 
230}, {79, 344}, {, 4, 156}, {139, 320}, {15l, 182}, {4l, 208}, {lOO, 127}, {266, 278}, {51, 
161} }. 

3 
n=51,.A= U{{i,x,y}: {x,y} ESi}, 

i=l 
81 = { {24, 74}, {71, 429}, {2l, 58}, {87, 106}, {149, 283}, {1I6, 3l4}, {14, 327}, {376, 485}, 

{138, 548}, {371, 374}, {12, 514}, {216, 284}, {67, 435}, {405, 560}, {96, 320}, {217, 367}, 
{16,3l0}, {418,478}, {259,416}, {195,360}, {294,510}, {47,372}, {258,488}, {408,440}, 
{221, 248}, {134, 220}, {44, 3l9}, {160, 501}, {184, 353}, {541, 550}, {28, 97}, {ll4, 389}, 
{378,387}, {299,441}, {55, 227}, {247,339}, {40,424}, {214,296}, {168,226}, {130,442}, 
{177, 555}, {62, 25l}, {190, 479}, {4, 69}, {218, 430}, {497, 498}, {37, 270}, {370, 426}, 
{191,223}, {132,47l}, {292,344}, {203, 233}, {125,382}, {275,540}, {189,558}, {72, l72}, 
{439,445}, {76, 108}, {274,401}, {255,444}, {325,423}, {228,359}, {236,365}, {31,375}, 
{467, 484}, {153, 352}, {94, 518}, {4l5, 468}, {286, 489}, {20, 477}, {84, 140}, {420, 475}, 
{222,263}, {208, 213}, {300,538}, {2, 323}, {51, l79}, {9, 123}, {393,427}, {36, 264}, {30, 
481}, {65, 432}, {36l, 521}, {231, 463}, {1I7, 174} }; 

82 = { {61, 514}, {93, 196}, {68, 295}, {14, 322}, {12l, 166}, {134, 286}, {285, 445}, {143, 534}, 
{96, ll2}, {63, 78}, {418, 508}, {235, 433}, {480,488}, {276, 453}, {375, 482}, {299, 425}, 
{231,4l2}, {416, 503}, {287, 528}, {188, 237}, {177, 537}, {123, 176}, {25, 264}, {9,420}, 
{157, 173}, {27, 371}, {120, 165}, {195, 215}, {81, 325}, {lO, 458}, {309, 314}, {15, 160}, 
{26, 540}, {50, 400}, {1l3, l58}, {91, 290}, {66, 427}, {lI1, 209}, {48, 248}, {ll8, 468}, 
{116,496}, {232,557}, {442,464}, {167,404}, {186,3l8}, {58,358}, {I02,397}, {94,421}, 
{92, 292}, {38, 254}, {483, 484}, {335, 355}, {133, 553}, {293, 362}, {52, 399},{55, l69}, 
{184,348}, {ll4, 478}, {253,4l4}, {529, 554}, {183,463}, {179,349}, {42, 151}, {31, 27l}, 
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{7, 198}, {1l7, 429}, {30, 34l}, {54, 455}, {35, 282}, {303, 387}, {127, 320}, {40, 208}, 
{126, 56l}, {95, l52}, {18l,440}, {72, 338}, {345, 383}, {305, 376}, {37, 302}, {460,462}, 
{12, 446}, {187, 234}, {18, 45l}, {178, 40l}, {17, 26l}, {283, 479}, {137, 192}, {44, 542}, 
{70, 87}, {22l, 3l9}, {103, 443}, {526, 559}, {28, 256}, {69, l09}, {226, 477}, {145, 409}, 
{185, 247} }; 

83 = { {125, 356}, {4l8, 458}, {445, 52l}, {4l9, 49l}, {243, 409}, {249, 262}, {200, 527}, {2ll, 
253}, {77, 287}, {280, 420}, {268, 394}, {2l3, 359}, {28, 4l5}, {85, 92}, {20, l64}, {24, 
456}, {27, 29l}, {73, 378}, {159, 275}, {166,395}, {3l9,4l6}, {140, 526}, {126, 285}, {176, 
344}, {69, 8l}, {82, 428}, {255, 303}, {144, 209}, {365, 522}, {242, 444}, {46, l09}, {506, 
545}, {232, 304}, {13, 463}, {182, 487}, {308, 396}, {1l6, 244}, {502, 520}, {49, l55}, {6, 
289}, {237, 296}, {528,542}, {47,530}, {95, 560}, {199, 230}, {4l0, 550}, {15l,3l6}, {18l, 
482}, {1l5, l43}, {175, 393}, {120, 523}, {228, 277}, {154, 338}, {377, 474}, {75, 322}, 
{439, 533}, {183,459}, {99,273},{72, lOO}, {236, 43l}, {357,504}, {26l,292}, {229,460}, 
{345, 558}, {270, 385}, {245, 256}, {80, 246}, {65, 538}, {366, 477}, {78, 46l}, {70, l6l}, 
{2l2, 266}, {3ll, 358}, {14, 293}, {9l, 490}, {30, 382}, {483, 50l}, {340, 525}, {328,484}, 
{2l5, 429}, {127, l85}, {170, l88}, {165,434}, {96,333}, {74,34l}, {122,426}, {326,430}, 
{128, 208}, {254, 465}, {198,274}, {33, 224}, {392, 53l}, {57,475}}. 

3 
n = 69, A = U {{i,x,y}: {x,y} E Si}, 

i=l 
8 1 = { {239, 535}, {13, 63}, {249, 563}, {469, 524}, {127, 369}, {3l6, 715}, {2l2, 5l3}, {371, 485}, 

{HO, 459}, {103, 231}, {179, 645}, {60, 759}, {267, 630}, {402, 56l}, {589, 704}, {284, 
305}, {25, 322}, {490, 504}, {169, 384}, {258, 664}, {279, 565}, {62l, 754}, {lO8, 257}, 
{532, 716}, {156, 302}, {26, 638}, {349, 562}, {290, 54l}, {5l2, 6l3}, {53l, 633}, {383, 
597}, {368, 430}, {235, 625}, {6l8, 699}, {649, 757}, {648, 733}, {523, 560}, {2l7, 718}, 
{323, 673}, {45, l7l}, {176,423}, {247, 707}, {37, 388}, {117, 22l}, {372,694}, {lOl,334}, 
{2, 377}, {4l6, 5l9}, {79, 270}, {324,345}, {6l2, 67l}, {262, 709}, {44l, 538}, {536, 577}, 
{162, 70l}, {339, 741}, {71, 745}, {242,453}, {81, 35l}, {264,362}, {123,392}, {380,444}, 
{57, 672}, {269, 274}, {40, 584}, {131,616}, {23, 357}, {272, 424}, {330,404}, {367, 725}, 
{336, 706}, {I74, 688}, {332,462}, {I55, 16I}, {69, 38I}, {75, 550}, {206, 253}, {I54, 268}, 
{50l, 696}, {32, 712}, {1l8, 546}, {I98, 703}, {160, 2l3}, {I2, 266}, {I63, 303}, {20, 692}, 
{95, 355}, {5, 147}, {263, 636}, {293, 667}, {I78, 428}, {I64, 735}, {340, 350}, {245, 256}, 
{729, 73I}, {413, 600}, {233, 436}, {374, 714}, {2IO, 750}, {447, 702}, {228, 488}, {I82, 
288}, {177, 574}, {168, 250}, {254, 385}, {397, 529}, {422, 742}, {50, 497}, {496, 637}, 
{314, 674}, {170, 593}, {I73, 717}, {586, 595}, {6, 36}, {128,465}, {151, l58}, {lOO,457}, 
{472, 596}, {165, 639}, {722, 758}, {4l4, 480}, {2I, 552}, {260, 575}, {150, 687}, {483, 
528}, {149, 329}, {39, 52l}, {744, 753}, {34, 551}, {82, 685}, {328, 752}, {3, 343} }; 

82 = { {504, 716}, {74, 164}, {32, 572}, {635, 660}, {1l9, 655}, {44, 254}, {184, 703}, {50, 223}, 
{53, 670}, {18I, 48I}, {4l, 200}, {77, l42}, {I83, 480}, {1l3, l3I}, {I36, 4l5}, {534, 596}, 
{147, 316}, {348, 68I}, {237, 284}, {272, 745}, {llO, 570}, {138, 578}, {I48, 443}, {96, 
574}, {488, 65l}, {I77, 482}, {22, 453}, {287, 658}, {I93, 239}, {590, 727}, {544, 748} , 
{283, 738}, {365, 397}, {427, 617}, {48, 539}, {86, l60}, {80, 548}, {410, 522}, {292, 389}, 
{333, 591}, {150,567}, {36, 2l8}, {174,426}, {24, 649}, {305,6l6}, {315,633}, {95, l09}, 
{331, 417}, {107, 204}, {46l, 559}, {145, 229}, {562, 741}, {558, 694}, {155, 420}, {122, 
543}, {104, 290}, {251, 662}, {87, 622}, {I27, 225}, {230, 231}, {450, 629}, {286, 6ll}, 
{438, 560}, {236, 328}, {234, 484}, {59, 364}, {159, 728}, {214, 756}, {332, 390}, {I06, 
547}, {12I, 3lO}, {383, 392}, {l02, l57}, {78, 378}, {156, 36l}, {363, 494}, {33, 530}, {68, 
2l9}, {143, 158}, {515, 685}, {532, 665}, {69, 247}, {42I, 5l6}, {73, l63}, {198, 356}, {5, 
243}, {15I, 179}, {319, 697}, {263, 675}, {597, 729}, {304, 325}, {56, 83}, {271, 553}, {642, 
679}, {258, 72I}, {587, 747}, {552, 723}, {648, 70l}, {266, 52l}, {429, 6IO}, {39, 93}, {329, 
369}, {28, 208}, {45, 245}, {295,638}, {54, 569}, {296, 424}, {5l4, 557}, {366, 726}, {440, 
464}, {34I, 404}, {536, 669}, {I71, 535}, {259, 311}, {555, 678} }; 

83 = { {4l5, 456}, {320, 713}, {286, 407}, {276, 355}, {5ll, 746}, {558, 738}, {36, 356}, {269, 
463}, {53, 377}, {362, 715}, {73, 294}, {554, 689}, {437, 625}, {94, 635}, {268, 469}, {148, 
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720}, {59, 313}, {246, 623}, {419, 752}, {87, 758}, {178, 596}, {117, 663}, {229, 584}, {75, 
529}, {281,576}, {68,661}, {568, 600}, {436, 509}, {236, 697}, {47,490}, {186,641}, {329, 
528}, {234, 297}, {31, 227}, {39, 79}, {108, 251}, {188, 238}, {143, 734}, {29, 482}, {267, 
755}, {305, 612}, {432, 445}, {144, 247}, {123, 679}, {691, 754}, {440, 453}, {204, 434}, 
{37, 195}, {74, 638}, {226, 287}, {52, 112}, {99, 442}, {285, 522}, {54, 290}, {271, 743}, 
{140, 370}, {594, 683}, {403, 426}, {278, 536}, {154, 670}, {556, 685}, {193, 643}, {70, 
376}, {155,513}, {32,673}, {98, 291}, {327,578}, {452,464}, {371,487}, {128, 205}, {332, 
684}, {55~ 637}, {36~ 448}, {299, 354}, {90, 266}, {44, 157}, {16~ 479}, {295, 383}, {21, 
705}, {II, 121}, {337,631}, {14, I09}, {292,644}, {170,619}, {454,647}, {114,330}, {264, 
526}, {15, 393}, {358, 756}, {580,610}, {249,470}, {55, 175}, {397,502}, {177, 736}, {132, 
342}, {228, 245}, {388,606}, {93, 270}, {158, 523}, {328,669}, {187, 597}, {110, 733}, {25, 
138}, {156,446}, {306,472}, {196,503}, {71,488}, {97,408}, {359,645}, {201,473}, {I03, 
577}, {200, 223}, {6, 277}, {318, 745}, {241, 747}, {80, 150}, {199, 680}, {387, 414}, {368, 
385}, {282,654}, {119,369}, {441,652}, {192,353}, {392,658}, {137, 723}, {653, 714}, {7, 
574} }. 
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