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Abstract 

The main problem on caps, posed originally by Segre in the fifties, is to 
determine the values of k for which there exists a complete k-cap. In 
the present paper, we construct in PG(3, q), for odd prime q, a family of 
~ (q2 + 7)-caps which have 2 points on a line external to an elliptic quadric 
E and the remaining points on E. We conjecture that they are complete. 

1 Introduction 

The general aim is to construct, for small enough k, complete k-caps, having k - 2 
points in common with a quadric and 2 points in common with an external line 1. 
We refer to [4], [6], [7], [5], [1] and [2] for detailed information on caps and earlier 
results obtained in this direction. 

In [3], a class of complete k-caps was obtained in the case of q being an odd prime, 
and the line l being a tangent to an elliptic quadric; in [8] and [9], the construction 
was modified to all cases with q odd. These papers provided the impetus to the 
investigation of the following problem: find constructions of complete caps, based 
on geometrical configurations which are the possible intersections of a line with an 
elliptic quadric. In the present paper, we consider the case of the line being external. 
More precisely, we construct !(q2 + 7)-caps in PG(3, q), q an odd prime, which have 
two points on a line external to an elliptic quadric and the remaining points on the 
quadric. We conjecture that they are complete. 
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2 Construction 

Let E be an irreducible elliptic quadric of PG(3, q), q an odd prime. Without loss 
of generality, the equation of E may be taken as 

xi - ax~ + x~ - 2XOX3 = 0, 

where a is a non-square element of GF(q). Consider the points P = (0,1,0,0) and 
Q = (0,0,1,0) . The line PQ has equations Xo = X3 = ° , and is external to E . Of 
the q + 1 planes of the pencil on. PQ, 

{Xo = kX3: k E GF(q)}.u {X3 = O}, 

two are tangents to E at the points of E given by 7rp n 7rQ n E, where 7rp and 
7rQ are the polar planes of P and Q, respectively. Thus, the points of contact are 
T = (1,0,0,0) and Tl = (k(q + 1),0,0,1), and the two tangent planes T and T' are 
given by, 

T: X3 = ° and 
, q+1 

T : Xo = -2-X3, 

respectively. Let the plane trk , with equation Xo = kX3 , k E GF(q)\ {~(q + I)}, 
intersect E in the conic Ok, then 

Ck = {(k, JO!x~ + 2k -1,x2, 1): X2 E U} , 

where U is the set of those values of GF(q) for which ax~ + 2k - 1 is a square. 
Given X2 E U, write u2 = ax~ + 2k - 1. The following set of four points of Ck 

are then uniquely determined: 

Al = (k, U, X2, 1) 
A2 = (k, -U,X2, 1) 
A3 = (k, U, -X2' 1) 
A4 = (k, -u, -X2' 1). 

From each such set, select two points as follows: 
If X2 E HI = {I, ... , ~(q - I)} , select from {AI, A2} the point whose second co
ordinate belongs to HI, and select from {A3, A4} the one whose second coordinate 
belongs to H 2 = {~( q + 1), ... , q - I} . 
If X2 E H2 , select from {AI, A2 } the point whose second coordinate belongs to H2, 
and from {A3' A4} the point whose second coordinate belongs to HI. 

Let A denote the set of points so' selected. 
For a given X2 =f. 0, the expression, 

ax~ + 2k - 1, 

(i) is equal to ax~ if k = ~ (q + 1), and hence is a non-square 
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and 
(ii) assumes all the values of GF(q) as k varies in GF(q). 
In particular, for appropriate values of k E GF(q)\ {!(q + I)}, all the squares of 

GF(q) can be obtained from this expression. 
We now prove that IAI = !(q - 1)2. 
For a given X2 =I- ° , there correspond ~ (q - 1) squares of type ax~ + 2k - 1, and 

each such square gives rise to 2 points of A, of type (k, Xl, X2, 1) and (k, -Xl, -X2, 1). 
Thus, A has 

(
q - 1 ) q - 1 1 2 
-2- . 2 . -2- =:= "2(q - 1) 

points. 
Define a set B of points of the quadric E by: 

B = {(k,0,X2, 1): X2 E Hl , ax~ +2k -1 = O}. 

Thus lSI = IHII = ~(q - 1) . 
As k varies in GF(q), (2k - 1) assumes all the values of GF(q); in particular, all 

the squares of GF(q) can be written as 2k - 1 for an appropriate k. Define the set 
C by: 

where 2k - 1 is a square and J2k - 1 belongs to HI' Thus, ICI = Hq - 1). 

Theorem 1 The set K of points defined by 

K = A u B u C U {T, T1, P,Q} 

is a !(q2 + 7)-cap . 

Proof. By construction, K has ~ (q2 + 7) points. Also, apart from the points P, Q, 
all the other points of K are points of E. Since the line PQ does not intersect E, we 
need only prove that no pair of points of K\ {P, Q} are collinear with P or with Q. 
Now PT, PTI , QT, QTI being tangent lines to E, have no further point in common 
with K. 

Any line II through P, not in the planes T and T', has equations of type 

Xo = kX3 . and 

Such a line h intersects E in the points 

(k, J ax~ + 2k - 1, X2, 1) and (k, -J ax~ + 2k - 1, X2, 1). 

Only one of these two points lies in K. 
Similarly, no line through Q can intersect K in two points. 

o 
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In the case q = 3, the construction yields 

A = {(O, 1,1,1), (0,2,2, I)}, 
B = {(1,0,1,1)}, 
C = {(1,1,0,1)}, 

P = (0,1,0,0), T = (1,0,0,0), 
Q = (0,0,1,0)" Tl = (2,0,0,1). 

Direct calculation shows that this 8-cap of PG(3, 3) is complete and it is projectively 
equivalent to the 8-cap furnished in [5]. Further, it can be observed that in this case: 

(i) each of the planes X2 = ° and X2 = X3 intersect K in 4 points, which 
constitute an irreducible conic, and hence form a complete arc, and 

(ii) the plane X2 = 2X3 intersect K in three points, namely P, T, and (0,2,2,1); 
these three points constitute an incomplete q-arc. 

The above observations suggest the following question: 
For what values of q 2:: 5 is the k- cap K such that 
(I) the points lying in the plane X2 = AX3, A E HI U {O}, constitute a complete 

arc, and 
(II) the points lying in the plane X2 = AX3) A E H2 , form a q-arc? 
As shall be explained at the end of this paper, we conjecture that (I) and (II) are 

satisfied for q ~ 19; for q ::; 19, (I) is satisfied only for q = 7, 13, 17 . 

3 Completeness 

We determine a condition that ensures that the Hq2 + 7)-cap K is complete. 
We say that a point A of PG(3, q) is saturated by K if there exists at least one 

2-secant of K through A. Thus, K is complete, if and only if, all the points of the 
planes on PT are saturated by K. 

Of the planes on PT, 7 is tangent to E, and the others are secant to E and have 
equations of type X2 = AX3, A E GF(q). In 7, there are three points of K, namely 
P, Q, and T. The points of K in the plane X2 = XX3, with X =f. 0, are of type 

(J(Xl' X), Xl, X, 1), 

where, 
(i) if X E Hb these points are contained in AU B and Xl E Hl U {O} . 
(ii) if X E H 2 , these points are contained in A and Xl E H 2 • 

If X = 0, the points of K in the plane X2 = 0, other than P and T, are those of the 
set C u{Td. 

Consider '1Tx, a secant plane of equation, 

Such a plane is saturated if all of its lines through T are saturated. Clearly, the line 
T P, being a 2-secant of K is saturated by K. The other lines, mn in the plane 7!">" 

through T, have equations, 

(7 E GF(Q)). 
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If 7E HI U {O}, each such line is, by the construction of K, saturated by K. 
We need to investigate the lines m" for which 7 E H 2 • Let the points of K with 

X3 =f:. 0 be, 

{ 
l2 + 1 - a..\2} 

(xo(..\, l), l,..\, 1): xo(..\, l) = 2 . 

The secant lines of K which meet a line mn X E HI U {O}, 7 E H2 can be divided 
into four subsets as follows: 

(1) 2-secants of K through P in the plane 7l"X. These have equations 

X2 = XX3, Xo = Hl2 + 1-'aX2)x3 1 E HI U {O}; 

(2) lines joining two points of K, distinct from P and T, lying in 7l"X. If two such 
points are (~(1+li-aX2), ll,X,I) and (~(I+l~-aX2), l2,X, 1), then the line joining 
them has equations 

(3) lines joining Q = (0,0,1,0) and a point of K of type 

(
[2 + 1 - a..\2 1 ..\ 1) 

2 ' " . 

These lines have equations 

Such a line intersects m" iff 1 = 7. In such a case, it follows that ..\ E H2 . 
(4) lines in the plane Xl = 7X3, joining two points of K, other than Q or T. Since 

7 E H2 , it follows that ..\ E H2• These lines join points of K of type (HI + 7 2 - a{3f), 
7, (31, 1) and (~(1 + 7 2 - a{3i), 7, (32, 1) with {3I =f:. {32 . Hence their equations are of 
type 

One such line meets the plane X2 = XX3 in the point with coordinates, 

( 1 + 72 + a{31{32 _ a({31 + (32)X X 1) 
2 2 ,7" . 

We note that the q points of mn distinct from T, are given by, 

Xo E GF(q). 

To prove that the points of m" are saturated by K, it suffices to show that the first 
coordinates of the points of intersection of m" and the lines of the above-mentioned 
four subsets cover GF(q). This needs to be shown for all X E HI U {O}, V7 E H 2 • In 
other words, saturation of points of m" requires that the following condition A be 
satisfied: 
Condition A : 

V7 E H 2 , V"\E HI U {O} , 
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GF(q) = {~(l2 + 1 - aA2): 1 E HI U {O}} 
U ~ t(l - hl2 + 7(h + l2) - a).2): li E HI U {O}, h i= 12} 
U ¥ (72 + 1 - (82

): 8 E H2 } 

U "2(1 + 7 2 + af3d32 - a(f31 + f32)A): f3i E H2, f31 i= f32} . 

Similarly, consider the plane 71"..\, with ).E H2 . 
Saturation of points of these planes by K requires condition B be satisfied: 
Condition B: 

\;/7 E HI U {O}, \;/).E H2, 

GF(q) = {~(z2 + 1 - aA2): IE H2} 
U {t(l -11l2 + 7(11 + l2) - aA2).: 1i E H2, h =l12} 
U ¥( 7 2 + 1 - (82

): 8 E Hl U {O} } 
U "2(1 + 7 2 + af3If32 - a(f31 + f32)A): f3i E HI U {O}, f31 i= f32} . 

As for the plane 7, the points on the sides of triangle PQT are saturated by K. 
The remaining points of 7 have coordinates of type (xo, X1l1, 0), Xi E GF(q)*. Such a 
point is saturated by K if it is collinear with two points of K, of type G(1+m2 -a'y2), 
m",I) and (~(1 + n2 

- (82 ), n,8, 1), with m i= n, , =18, and-each pair (m, ,) and 
(n,6) belonging to {HI U {O}} x {HI U {O}} or to H2 X H2. It is easy to verify that 
collinearity of these three points is equivalent to 

8 = ,+ (n - m)/xl, 
, = (- 2XOXI + n(xi - a) + m(xi + a))/(2ax1) . 

(1) 

Therefore, a sufficient condition for saturation of the points of the plane 7 by K is 
Condition C: 

\;/ Xo, Xl E GF(q), :3 two pairs (m, ,) and (n,8) with m =I nand, i= 8 each 
pair belonging to {HI U {O} } x {HI U {O}} or to H2 X H2 and such that the above 
relations (1) hold between xo, Xl, m, n, 8, ,. 

We have established the following theorem: 

Theorem 2 If q is prime, a a non-square of GF(q), and if conditions A, B, and C 
are satisfied, then the ~ (q2 + 7) - cap K is complete. 

With the help of a computer, it was verified that conditions A, B, C, are satisfied 
for q = 7 and 13 ::; q < 931 . 

The following was also verified. 

Proposition 3 For q prime, with 19 ::; q < 931, and a a non-square of GF(q), the 
following conditions are satisfied: 

(1) Condition AI: 

\;/7 E H2, VAE HI U {O} 

GF(q) = {~(l2 + 1 - aA2) : 1 E HI U {O}} 
U {HI -llh + 7(l1 + l2) - a).2) : li E HI U {O}, h i= 12} 
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(II) Condition B' : 
\:IT E HI U {O}, \:I)..E H2 

GF(q) = {~(l2 + 1- a)..2) : 1 E H2} 
U {t(l- hl2 + r(ll + l2) - a)..2) : Ii E H2, II i= 12} 
U {2(1- a) } ; 

(III) Condition C. 

We conjecture that this proposition is true for all q. 

Remark As ).. varies, the situation described by Condition A is that of the 
completeness of the arc obtained as the intersection of K and the relevant plane. 
The situation described by Condition B, is that of an incomplete arc L obtained 
as the intersection of K and a plane 7r, where L can be made complete by the 
adjunction of a unique point S of 7r, but S can be shown to be saturated by K. Thus, 
the conjecture can be formulated in the following simpler fashion. 

Conjecture 4 For prime q, q ~ 19, a a non-square in GF(q) the following condi
tions are satisfied 

(I) Condition A" : 
\:IT E H2, 

G F (q) = {~( l2 + 1) : 1 E HI U {O} } 
U {~(1- hl2 + T(lt + l2)) : 1i E HI U {O}, h i= 12} 

(II) Condition B" : 
\:IT E HI U {O}, 

G F( q) = {~(l2 + 1 - a) : 1 E H2} 
. U {t(l - 1112 + r(h + [2) - a) : li E H2, 11 i= 12} 

U {2(1- a) } ; 

(III) Condition C. 

As x I--t x - i is a bijection of GF(q), Condition BII does not depend on a and 
can be rewritten as 

Condition B" 

\:IT E HI U {O} , 

GF(q) = {~(l2 + 1) : 1 E H2} 
U {~(1-lt12 + T(h + [2)) : 1i E H2, h i= l2} U {~} . 
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We cannot prove conjecture 4, although numerical evidence seems to support it. 
That is, we are not able to prove the completeness of the arc, however, we can prove 
that the points not covered by secants of the arc are "few" in the following sense: if 
we carry out the above construction in PG(3, q), then, as q increases, 

lim # points not covered by the arc = O. 
q-+oo # points of the space 

This will follow from Propositions 5 and 7. 
Let q be an odd prime, q > 19. Let 7 a fixed value of H2 . 

Let 

X r = {~(l2 + 1) : l E HI U {O} } 

U {~(1 - 1112 + T (I, + 12)) : I, E HI U {O}, i = 1,2, I, f l, } . 

Proposition 5 

IGF(q)\Xrl < f(q), 

where f(q) = (10g2 q + 1) (10g2 q + 2) + ~(v0 + 1) log2 q + ~y/q + ~ . 

We observe that f(q) is asymptotic to ~VQlog2 q, in the sense that 

lim f(q) = 1. 
q-+oo ~ VQ 10g2 q 

Proof. We prove the proposition by finding a set E such that 
1) IEI:S; f(q), and 
2) GF(q)\Xr ~ E. 
Write p = [10g2 q] , so, log2 q :s; p < 10g2 q + 1. We observe that if q ~ 19 we have 

p < (q - 1)2. 
Consider the following set of polynomials 

fl (x) = 4(72 
- 2x + 1) + 1 

12 (x) = 4(72 
- 2x + 1) + 4 

Let S be the set of values t E GF(q), such that fi(X) is a non-square for every 
i = 1, ... , p. We can obtain information about the cardinality of S since the fi(X) are 
linear in x and distinct, thus satisfying the hypothesis of the following lemma due to 
Szonyi [10]. 
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Lemma 6 Let fl(t), ... , fm(t) E GF(q) [t] be given polynomials. Suppose that no par
tial product fit (t) .. .fij (t), (1 ::; il < i2 < ... < ij, j ::; m) , can be written as a constant 
multiple of a square of a polynomial. If 

m 

2m
-

1 L: deg(fi) ::; Jq - 1 
i=1 

then there is a to E GF(q) such that fi(to) is a non-square for every i = 1, ... , m. 
More preci8P.iy; if we denote the number of these to by N, then 

Let 

Let 

We deduce that 

T = {(I, 0) , (1, 1) , ... , (1, P - 1), (2,0), ... , (2, p - 2), ... , (p, o)} 

= {(j,l),j ~ 1,1 ~ O,j + 1 ~ p}. 

U = {HI + 7 (1 - j) + 1j) : (j,l) E T} and 

V = {HI + 7 (~ - j) + (~ + l) [7 - U - j)]) : (j,l) E T} . 

It follows that 
ITI = 1+2+ ... +p= ~p(p+l), 
lUI::; ITI 
IVI::; ITI· 

Let E = S u U u V. 
Now, let x E GF(q). To show that x E Xn it is sufficient to find two distinct 

elements 1I, 12 of HI U {O} , such that, 

or, equivalently 
2x - 1- 7h 

l2 = l' 
7 - 1 

where 7 =f. iI, since 7 E H2 and h EHI U {o}. 
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Let f be the bijective function 

defined by 

f: GF(q)\ {7} -+ GF(q)\ {7} , 

2x -1- 7U 
ur---+ ----

7-U 

We are looking for an element h E HI U {O} such that f(h) E HI U {O}, f(h) =/:: 
h. If such an element h exists, then the pair (h, f(h)) proves that x E X r . 

Write 8 = 7 - [1' Then we have 

f (7 _ 8) = 7 _ 7
2 

- 2x + 1 . 
8 

It is easy to show that f has at most 2 fixed points. Let F denote the set of fixed 
points of f. 

Now, suppose that x rf- X p Then x must be such that the function f, when 
restricted to H = HI U {O} \F, induces a bijection between H and its image f(H), 
and f(H) ~ (H2\ {7}). Since 

q-l 
IHI U {O}I = -2- + 1, and 

q-l 
IH2\ {7}1 = -2- -1, 

it is clear that, as x rf- Xn f necessarily has two fixed points PI and P21 each in 
HI U {O}. So f gives a bijection, 

Now, suppose that x rf- S, so that there exists an integer l, with IS 1 S p, such that 
4 (72 - 2x + 1) +12 is a square or 0 in GF(q). Therefore there is at least one solution, 
Yl, of the equation 

fey) = Y + l. 

Thus, Yl E GF(q)\ {7, PI, P2 }. 

If Yl E HI U {O} \ {Pl, P2 }, then f(yr) E H2\ {7}, so 

. {q+l q+l} 
YI = -J E ~2- -1, ... , -2- -l . 

If Yl E H2 \ {7}, then f(Yl) E HI U {O}, so 

Yl = -j E {-I, -2, ... , -l}. 

In the first case, at least one of the following conditions is satisfied 
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f(~-l) E {~,~+1, .. ,~+p-1} 
f(~-2) E {~,~+1, .. ,~+p-2} 

f(~ -p) E {~} 

while in the second case, at least one of the following conditions is satisfied 
f(-l) E {O, 1, .. ,p-1} 
f( -2) E {O, 1, .. , P - 2} 

f( -p) E {O}. 
A simple calculation shows that, if f( -j) = I, with (j, I) E T then xE U, 

while if f(~ - j) = ~ + l, with (j, l) E T then x E V. 

The proof of Proposition 5 now follows easily. 
o 

Now, let T E HI U {O} and 

YT = {~(l2 + 1): l E H2} U {~(1-ltl2 +7{11 +12)): Ii E H2, It =/-12} U {~}. 
In an analogous way, we can prove: 

Proposition 7 

VQ+1 VQ 3 
IGF(q)\YTI ~ (lOg2 q + 1) (log2 q + 2) + -2- log2 q + 2 + 2' 
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