Near α-labelings of bipartite graphs*

S. I. El-Zanati, M. J. Kenig and C. Vanden Eynden

4520 Mathematics Department
Illinois State University
Normal, Illinois 61790-4520, U.S.A.

Abstract

An α-labeling of a bipartite graph G with n edges easily yields both a cyclic G-decomposition of $K_{n, n}$ and of $K_{2 n x+1}$ for all positive integers x. A β-labeling (or graceful labeling) of G yields a cyclic decomposition of $K_{2 n+1}$ only. It is well-known that certain classes of trees do not have α-labelings. In this article, we introduce the concept of a near α-labeling of a bipartite graph, and prove that if a graph G with n edges has a near α-labeling, then there is a cyclic G-decomposition of both $K_{n, n}$ and $K_{2 n x+1}$ for all positive integers x. We conjecture that all trees have a near α-labeling and show that certain classes of trees which are known not to have an α-labeling have a near α-labeling.

1 Introduction

Only graphs without loops and without multiple edges will be considered herein. Undefined graph-theoretic terminology can be found in the textbook by Chartrand and Lesniak [1]. If m and n are integers with $m \leq n$ we denote $\{m, m+1, \ldots, n\}$ by $[m, n]$. Let N denote the set of nonnegative integers and Z_{n} the group of integers modulo n. If we consider K_{m} to have the vertex set Z_{m}, by clicking we mean applying the isomorphism $i \rightarrow i+1$. Likewise if we consider $K_{m, m}$ to have the vertex set $Z_{m} \times Z_{2}$, with the obvious vertex bipartition, by clicking we mean applying the isomorphism $(i, j) \rightarrow(i+1, j)$.

Let K and G be graphs with G a subgraph of K. A G-decomposition of K is a set $\Gamma=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ of subgraphs of K each of which is isomorphic to G and such that the edge sets of the graphs G_{i} form a partition of the edge set of K. In this case, we say G divides K. If K is K_{m} or $K_{m, m}$, a G-decomposition Γ is cyclic (purely cyclic) if clicking is a permutation (t-cycle) of Γ.

A labeling or valuation of a graph G is one-to-one function from $V(G)$ into N. In 1967, Rosa [7] introduced several types of graph labelings as tools for decomposing

[^0]complete graphs into isomorphic subgraphs. These labelings are particularly useful in attacking the following conjectures.

Conjecture 1 (Ringel [6], 1964) Every tree with n edges divides the complete graph $K_{2 n+1}$.

Conjecture 2 Every tree with n edges divides the complete bipartite graph $K_{n, n}$.
Conjecture 2, which is part of the folklore of the subject, is a special case of the conjecture by Häggkvist that every tree with n edges divides every n-regular bipartite graph [5]. Since every tree with n edges divides a tree with $n x$ edges for all positive integers x, Conjecture 1 implies the following.

Conjecture 3 Every tree with n edges divides K_{p} for all $p \equiv 1(\bmod 2 n)$.
Let G be a graph with n edges. In 1967, Alex Rosa [7] called a function γ a ρ labeling of G if γ is an injection from $V(G)$ into $\{0,1, \ldots, 2 n\}$ such that $\{\min \{\mid \gamma(u)-$ $\gamma(v)|, 2 n+1-|\gamma(u)-\gamma(v)|\}:\{u, v\} \in E(G)\}\}=\{1,2, \ldots, n\}$. Rosa proved the following result.

Theorem 1 (Rosa [7], 1967) Let G be a graph with n edges. A purely cyclic G decomposition of $K_{2 n+1}$ exists if and only if G has a ρ-labeling.

The above result does not necessarily extend to G-decompositions of $K_{2 n x+1}$. Also, if G is bipartite, then a ρ-labeling of G does not necessarily yield a G-decomposition of $K_{n, n}$.

Conjecture 4 (Rosa [7], 1967) Every tree has a ρ-labeling.
Rosa [7] also introduced β-labelings. A β-labeling of a graph G with n edges is an injection γ from $V(G)$ into $\{0,1, \ldots, n\}$ such that $\{|\gamma(u)-\gamma(v)|:\{u, v\} \in E(G)\}=$ $\{1,2, \ldots, n\}$. Golomb [4] subsequently called such a labeling a graceful labeling and that is now the popular term.

Since a β-labeling is also a ρ-labeling, Theorem 1 also applies to "graceful" graphs. Unfortunately, from a graph decomposition point of view, a graceful labeling, which is far more restrictive than a ρ-labeling, offers no additional applications.

Theorem 2 Let G be a graph with n edges that has a β-labeling. Then there exists a purely cyclic G-decomposition of the complete graph $K_{2 n+1}$.

Again, Theorem 2 does not necessarily extend to G-decompositions of $K_{2 n x+1}$ nor does it necessarily yield a G-decomposition of $K_{n, n}$ when G is bipartite.

The following conjecture is attributed to both Ringel and Kotzig.
Conjecture 5 Every tree has a β-labeling.

Figure 1: A near α-labeling of $S_{3,2}$ and an α-labeling of $S_{3,3}$
Conjecture 5 is known as the graceful tree conjecture. It is one of the best-known problems in the theory of graphs. Since Rosa's 1967 article [7], there have been over 200 research papers related to this conjecture (see Gallian [3]). In spite of many partial results, the conjecture remains open.

A more restrictive labeling than either ρ or β was also introduced by Rosa [7]. An α-labeling of G is a β-labeling having the additional property that there exists an integer λ such that if $\{u, v\} \in E(G)$, then $\min \{\gamma(u), \gamma(v)\} \leq \lambda<\max \{\gamma(u), \gamma(v)\}$. Note that if G admits an α-labeling then G is bipartite with parts A and B, where $A=\{u \in V(G): \gamma(u) \leq \lambda\}$, and $B=\{u \in V(G): \gamma(u)>\lambda\}$. Rosa proved the following result.

Theorem 3 (Rosa [7], 1967) Let G be a graph with n edges that has an α-labeling. Then there exists a cyclic G-decomposition of $K_{2 n x+1}$ for all positive integers x.

It can also be easily shown (see [2]) that α-labelings are useful in finding purely cyclic G-decompositions of $K_{n, n}$.

Theorem 4 If a graph G with n edges has an α-labeling, then there exists a purely cyclic decomposition of the complete bipartite graph $K_{n, n}$ into isomorphic copies of G.

The condition of having an α-labeling is the most restrictive applied by Rosa, and there are trees which do not admit α-labelings. In particular, he points out [7] that trees of diameter four that contain the comet $S_{3,2}$ as a subtree (See Figure 1) do not admit α-labelings. The comet $S_{k, n}$ is the graph obtained from the k-star $K_{1, k}$ by replacing each edge by a path with n edges. We note that not all comets fail to admit an α-labeling (see Figure 1 for an α-labeling of $S_{3,3}$).

In this article we introduce the concept of a near α-labeling of a bipartite graph, and prove that if a graph G with n edges has a near α-labeling, then G divides both $K_{n, n}$ and $K_{2 n x+1}$ for all positive integers x. We conjecture that all trees have a near α-labeling and show that certain classes of trees which are known not to have an α labeling have a near α-labeling. We also show that a result of Snevily [8] on the weak tensor product of graphs with α-labelings extends to graphs with near α-labelings.

2 Near α-labelings

We call γ a near α-labeling of a graph G if γ is a graceful labeling of G such that $V(G)$ has a partition V_{1}, V_{2} with the property that each edge of G has the form $\left\{v_{1}, v_{2}\right\}$, where $v_{1} \in V_{1}, v_{2} \in V_{2}$, and $\gamma\left(v_{1}\right)<\gamma\left(v_{2}\right)$. Note that necessarily G is bipartite. The proofs of the following two theorems are essentially the same as those of Theorems 3 and 4.

Theorem 5 Let G be a graph with n edges that has a near α-labeling. Then there exists a cyclic G-decomposition of $K_{2 n x+1}$ for all positive integers x.

Proof. Let G have the near α-labeling γ, with V_{1} and V_{2} as in the definition. Consider the bipartite graph G^{*} with bipartition $V_{1}^{*}=V_{1}$ and $V_{2}^{*}=V_{2} \times\{0,1, \ldots, x-$ $1\}$, with the $n x$ edges $\left\{v_{1},\left(v_{2}, i\right)\right\}$ for $v_{1} \in V_{1},\left\{v_{1}, v_{2}\right\} \in E(G)$, and $0 \leq i<x$. Note that G divides G^{*}. Define the labeling γ^{*} on $V\left(G^{*}\right)$ to be γ on V_{1} and $\gamma+i$ in on $V_{2} \times\{i\}, 0 \leq i<x$. Then γ^{*} can be seen to be a near α-labeling of G^{*}. Thus $K_{2 n x+1}$ has a purely cyclic G^{*}-decomposition by Theorem 2 .

Theorem 6 If a graph G with n edges has a near α-labeling, then there exists a purely cyclic decomposition of the complete bipartite graph $K_{n, n}$ into isomorphic copies of G.

Proof. Let G have the near α-labeling γ, with V_{1} and V_{2} as in the definition. Define $\delta: V(G) \rightarrow Z_{2}$ to be 0 on V_{1} and 1 on V_{2}. Take the vertex set of $K_{n, n}$ to be $Z_{n} \times Z_{2}$, with the obvious bipartition. We denote the edge $\{(u, 0),(v, 1)\}$ of $K_{n, n}$ by (u, v). Consider the isomorphism $\psi: G \rightarrow K_{n, n}$ given by $\psi(v)=(\gamma(v), \delta(v))$. This is one-to-one since $n \notin V_{1}$ and $0 \notin V_{2}$. We claim that clicking $\psi(G)$ gives a purely cyclic G-decomposition of $K_{n, n}$.

Suppose that $(\gamma(u), \gamma(v))$ and $(\gamma(r), \gamma(s))$ are edges of $\psi(G)$ and clicking the first i times gives the same edge as clicking the second j times. Then $\gamma(u)+i=\gamma(r)+j$ and $\gamma(v)+i=\gamma(s)+j$ in Z_{n}. Then $\gamma(v)-\gamma(u)=\gamma(s)-\gamma(r)$, and since γ is a near α-labeling, $u=r$ and $v=s$. Thus $i=j$ in Z_{n}. Thus $\psi(G)$ and the graphs formed by clicking it $n-1$ times are edge disjoint and give a cyclic decomposition of $K_{n, n}$.

We append to the list of longstanding conjectures in the area by proposing the following.

Conjecture 6 Every tree has a near α-labeling.

Let G and H be bipartite graphs with vertex bipartions V_{1}, V_{2} and W_{1}, W_{2}, respectively. Snevily [8] defines their weak tensor product (with respect to the given bipartitions) to be the bipartite graph $G \bar{\otimes} H$ with vertex bipartition $V_{1} \times W_{1}, V_{2} \times W_{2}$ and with $\left(v_{1}, w_{1}\right)$ and (v_{2}, w_{2}) adjacent if and only if v_{1} is adjacent to v_{2} in G and w_{1} is adjacent to w_{2} in H. He proves that if G and H have α-labelings then so does $G \bar{\otimes} H$. Snevily's result considerably enlarges the class of graphs known to have α-labelings. We show a similar result for near α-labelings.

Figure 2: Near α-labelings of G, H and $G \bar{\otimes} H$
Theorem 7 If the graphs G and H have near α-labelings, then so does their weak tensor product with respect to the corresponding vertex partitions.

Proof. Let G and H have the near α-labelings γ and δ with corresponding bipartitions V_{1}, V_{2} and W_{1}, W_{2}, respectively. Suppose G has m edges and H has n edges. Define σ on $V(G \bar{\otimes} H)$ by

$$
\begin{array}{ll}
\sigma\left(v_{1}, w_{1}\right)=m \delta\left(w_{1}\right)+\gamma\left(v_{1}\right) & \text { for }\left(v_{1}, w_{1}\right) \in V_{1} \times W_{1} \\
\sigma\left(v_{2}, w_{2}\right)=m\left(\delta\left(w_{2}\right)-1\right)+\gamma\left(v_{2}\right) & \text { for }\left(v_{2}, w_{2}\right) \in V_{2} \times W_{2}
\end{array}
$$

(See Figure 2 for an example.) It is easily seen that the range of σ is a subset of $[0, m n]$. Now we show that σ is injective. First suppose $\sigma\left(v_{1}, w_{1}\right)=\sigma\left(v_{1}^{*}, w_{1}^{*}\right)$ with $\left(v_{1}, w_{1}\right),\left(v_{1}^{*}, w_{1}^{*}\right) \in V_{1} \times W_{1}$. Then $m \delta\left(w_{1}\right)+\gamma\left(v_{1}\right)=m \delta\left(w_{1}^{*}\right)+\gamma\left(v_{1}^{*}\right)$ and so $m \mid \gamma\left(v_{1}\right)-\gamma\left(v_{1}^{*}\right)$. Thus $v_{1}=v_{1}^{*}$, and so $w_{1}=w_{1}^{*}$ also. The proof that if $\sigma\left(v_{2}, w_{2}\right)=$ $\sigma\left(v_{2}^{*}, w_{2}^{*}\right)$ with $\left(v_{2}, w_{2}\right),\left(v_{2}^{*}, w_{2}^{*}\right) \in V_{2} \times W_{2}$, then $v_{2}=v_{2}^{*}$ and $w_{2}=w_{2}^{*}$ is similar.

Now suppose $\sigma\left(v_{1}, w_{1}\right)=\sigma\left(v_{2}, w_{2}\right)$ with $\left(v_{1}, w_{1}\right) \in V_{1} \times W_{1}$ and $\left(v_{2}, w_{2}\right) \in V_{2} \times W_{2}$. Then $m \delta\left(w_{1}\right)+\gamma\left(v_{1}\right)=m\left(\delta\left(w_{2}\right)-1\right)+\gamma\left(v_{2}\right)$, and so $m \mid \gamma\left(v_{2}\right)-\gamma\left(v_{1}\right)$. We conclude that $\gamma\left(v_{2}\right)=m$ and $\gamma\left(v_{1}\right)=0$. This implies $\delta\left(w_{1}\right)=\delta\left(w_{2}\right)$, which is impossible.

Finally suppose $\left\{\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right\}$ and $\left\{\left(v_{1}^{*}, w_{1}^{*}\right),\left(v_{2}^{*}, w_{2}^{*}\right)\right\}$ are edges of $G \bar{\otimes} H$, with $\left(v_{1}, w_{1}\right),\left(v_{1}^{*}, w_{1}^{*}\right) \in V_{1} \times W_{1}$ and $\left(v_{2}, w_{2}\right),\left(v_{2}^{*}, w_{2}^{*}\right) \in V_{2} \times W_{2}$. Note that $\sigma\left(v_{2}, w_{2}\right)-$ $\sigma\left(v_{1}, w_{1}\right)=m\left(\delta\left(w_{2}\right)-1\right)+\gamma\left(v_{2}\right)-\left(m \delta\left(w_{1}\right)+\gamma\left(v_{1}\right)\right)=m\left(\delta\left(w_{2}\right)-\delta\left(w_{1}\right)-1\right)+\gamma\left(v_{2}\right)-$ $\gamma\left(v_{1}\right)>0$. Since the weak tensor product has $m n$ edges with labels in [1, mn], it suffices to show they are distinct. Suppose $\sigma\left(v_{2}, w_{2}\right)-\sigma\left(v_{1}, w_{1}\right)=\sigma\left(v_{2}^{*}, w_{2}^{*}\right)-$ $\sigma\left(v_{1}^{*}, w_{1}^{*}\right)$. Then

$$
m\left(\delta\left(w_{2}\right)-\delta\left(w_{1}\right)-1\right)+\gamma\left(v_{2}\right)-\gamma\left(v_{1}\right)=m\left(\delta\left(w_{2}^{*}\right)-\delta\left(w_{1}^{*}\right)-1\right)+\gamma\left(v_{2}^{*}\right)-\gamma\left(v_{1}^{*}\right)
$$

Thus $m \mid \gamma\left(v_{2}\right)-\gamma\left(v_{1}\right)-\left(\gamma\left(v_{2}^{*}\right)-\gamma\left(v_{1}^{*}\right)\right)$, and so $v_{1}=v_{1}^{*}$ and $v_{2}=v_{2}^{*}$, since γ is a β-labeling. It follows in the same way that $w_{1}=w_{1}^{*}$ and $w_{2}=w_{2}^{*}$.

3 Trees with near α - but no α-labelings

Let $S_{m, 2}$ denote the graph with vertices $x, y_{1}, y_{2}, \ldots, y_{m}, z_{1}, z_{2}, \ldots, z_{m}$ and edges $\left\{x, y_{i}\right\}$ and $\left\{y_{i}, z_{i}\right\}$ for $1 \leq i \leq m$. If $m>2$ then $S_{m, 2}$ has no α-labeling by the previously mentioned result of Rosa. However, we shall show that $S_{m, 2}$ has a near α-labeling for all m.

Lemma 1 If m is a positive integer congruent to 0 or 1 modulo 3 , then $S_{m, 2}$ has a near α-labeling γ with $\gamma(x)=2 m$.

Proof. Note that $S_{m, 2}$ has $2 m$ edges and $2 m+1$ vertices. Set $k=1+\lfloor 3 m / 4\rfloor$. We define sets

$$
\begin{aligned}
& A=\{i: 1 \leq i<k, i \equiv 1 \quad(\bmod 2)\} \\
& B=\{i: k \leq i<m, i \equiv m \quad(\bmod 2)\} \\
& C=\{i: 1 \leq i<k, i \equiv 0 \quad(\bmod 2)\} \\
& D=\{i: k \leq i<m, i \not \equiv m \quad(\bmod 2)\}
\end{aligned}
$$

Notice that $A \cup B \cup C \cup D=[1, m-1]$. We define a labeling γ by

$$
\begin{aligned}
\gamma(x) & =2 m \\
\gamma\left(y_{i}\right) & =i+\lfloor i / 3\rfloor-1 \text { for } 1 \leq i \leq m
\end{aligned}
$$

and

$$
\gamma\left(z_{i}\right)= \begin{cases}2 i & \text { if } i \in A \cup B \\ 2 m-i+1+\lfloor i / 3\rfloor & \text { if } i \in C \cup D \\ \lfloor 4 m / 3\rfloor & \text { if } i=m\end{cases}
$$

We will show that γ is a near α-labeling with $V_{1}=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ and $V_{2}=$ $\left\{x, z_{1}, z_{2}, \ldots, z_{m}\right\}$. First we will show that γ maps the vertices of $S_{m, 2}$ onto $[0,2 m]$. Since there are $2 m+1$ vertices it suffices to show that γ is one-to-one. Note that as a function of $i, \gamma\left(y_{i}\right)$ is increasing on $[1, m]$, while $\gamma\left(z_{i}\right)$ is increasing on $A \cup B$ and decreasing on $C \cup D$ except for the possibility that $\gamma\left(z_{k-1}\right)=\gamma\left(z_{k}\right)$ with $k-1 \in C$ and $k \in D$. This could only happen when m is even and $3 \mid k$. But then $m=4 Q+R$, where R is 0 or 2 , which gives $k=1+3 Q+\lfloor 3 R / 4\rfloor \not \equiv 0(\bmod 3)$, a contradiction.

Note that the largest possible element of B is $m-2$ and the smallest possible element of C is 2 . Then we have

$$
\begin{aligned}
i \in & {[1, m] \Rightarrow \gamma\left(y_{i}\right) \in\left[0, m+\left\lfloor\frac{m}{3}\right\rfloor-1\right]=\left[0,\left\lfloor\frac{4 m}{3}\right\rfloor-1\right] } \\
& i \in A \Rightarrow \gamma\left(z_{i}\right) \in[2,2(k-1)] \\
i & \in B \Rightarrow \gamma\left(z_{i}\right) \in[2 k, 2(m-2)], \\
i & \in C \Rightarrow \gamma\left(z_{i}\right) \in\left[2 m-(k-1)+1+\left\lfloor\frac{k-1}{3}\right\rfloor, 2 m-1\right] \\
i & \in D \Rightarrow \gamma\left(z_{i}\right) \in\left[2 m-(m-1)+1+\left\lfloor\frac{m-1}{3}\right\rfloor, 2 m-k+1+\left\lfloor\frac{k}{3}\right\rfloor\right] .
\end{aligned}
$$

Figure 3: Near α-labelings of $S_{3,2}, S_{4,2}, \ldots, S_{10,2}$.

Now we will establish some congruences for the values of γ. Let $i=3 q+r$, $0 \leq r<3$. Then $\gamma\left(y_{i}\right)=3 q+r+q-1 \equiv r-1 \not \equiv 2 \quad(\bmod 4)$. Now if $i \in C$, then i is even and $q \equiv r \quad(\bmod 2)$. Then $\gamma\left(z_{i}\right)=2 m-2 q-r+1$. By considering the possible values of r we conclude that $\gamma\left(z_{i}\right) \not \equiv 2 m(\bmod 4)$. Likewise if $i \in D$ then $i \equiv m+1$ $(\bmod 2)$. Then $\gamma\left(z_{i}\right)=2 m-i+1+\lfloor i / 3\rfloor \equiv 2(i-1)-i+1+q \equiv 4 q+r-1 \not \equiv 2$ $(\bmod 4)$. Thus we have

$$
\begin{gathered}
i \in[1, m] \Rightarrow \gamma\left(y_{i}\right) \not \equiv 2 \quad(\bmod 4), \\
i \in A \Rightarrow \gamma\left(z_{i}\right) \equiv 2 \quad(\bmod 4), \\
i \in B \Rightarrow \gamma\left(z_{i}\right) \equiv 2 m \quad(\bmod 4), \\
i \in C \Rightarrow \gamma\left(z_{i}\right) \not \equiv 2 m \quad(\bmod 4), \\
i \in D \Rightarrow \gamma\left(z_{i}\right) \not \equiv 2 \quad(\bmod 4) .
\end{gathered}
$$

Now we will show that $\gamma\left(y_{i}\right)=\gamma\left(z_{j}\right)$ leads to a contradiction, using the intervals established above. If $j \in C \cup D$, then $\gamma\left(z_{j}\right) \geq m+2+\lfloor(m-1) / 3\rfloor>m+\lfloor m / 3\rfloor-$ $1 \geq \gamma\left(y_{i}\right)$. Now suppose $j \in B$. Then $m+\lfloor m / 3\rfloor-1 \geq \gamma\left(y_{i}\right)=\gamma\left(z_{j}\right) \geq 2 k=$ $2(1+\lfloor 3 m / 4\rfloor)>2(3 m / 4)$. This yields $\lfloor m / 3\rfloor>m / 2+1$, which is impossible. The congruences above rule out $i \in A$. Clearly $\gamma\left(z_{m}\right)=\lfloor 4 m / 3\rfloor>\gamma\left(y_{i}\right)$.

Next we show that the values of $\gamma\left(z_{i}\right)$ are distinct for $i \in A \cup B \cup C \cup D$. Since $\gamma\left(z_{i}\right)$ is strictly monotonic on $A \cup B$ and on $C \cup D$, it suffices to show that $\gamma\left(z_{i}\right)=\gamma\left(z_{j}\right)$ is impossible for $i \in A \cup B$ and $j \in C \cup D$. By the congruences above the only cases to consider are $i \in A$ and $j \in C$ and $i \in B$ and $j \in D$, with m even in the latter case. Now if $i \in A$ and $j \in C$, then $2(k-1) \geq \gamma\left(z_{i}\right)=\gamma\left(z_{j}\right) \geq 2 m-k+$ $2+\lfloor(k-1) / 3\rfloor>2 m-k+1+(k-1) / 3$. Then $3 m / 4+1<k=1+\lfloor 3 m / 4\rfloor$, a contradiction. Likewise if $i \in B$ and $j \in D$ with m even, then $2 k \leq \gamma\left(z_{i}\right)=\gamma\left(z_{j}\right) \leq$ $2 m-k+1+\lfloor k / 3\rfloor \leq 2 m-k+1+k / 3$. Then $3 m / 4+3 / 8 \geq k=\lfloor 3 m / 4\rfloor+1$. This gives $3 m / 4-\lfloor 3 m / 4\rfloor \geq 5 / 8$, impossible for m even.

We must also exclude $\gamma\left(z_{i}\right)=\gamma\left(z_{m}\right)=\lfloor 4 m / 3\rfloor$. If $i \in C \cup D$, then $\gamma\left(z_{i}\right) \geq$ $m+2+\lfloor(m-1) / 3\rfloor>m+1+(m-1) / 3=4 m / 3+2 / 3>\gamma\left(z_{m}\right)$. Likewise if $i \in B$ then $\gamma\left(z_{i}\right) \geq 2 k=2(1+\lfloor 3 m / 4\rfloor)>2(3 m / 4)=3 m / 2>\gamma\left(z_{m}\right)$. Finally let $m=3 q+r$, where by the hypothesis of this lemma, $r=0$ or $r=1$. Then $\gamma\left(z_{m}\right)=\lfloor 4(3 q+r) / 3\rfloor=4 q+\lfloor 4 r / 3\rfloor \equiv 0$ or $1(\bmod 4)$. Thus $\gamma\left(z_{m}\right)=\gamma\left(z_{i}\right)$ for $i \in A$ is impossible.

We have already seen the $\gamma(x)=2 m$ exceeds the value of γ at any other vertex. This concludes the proof that γ is one-to-one.

Now we will show that the edge labels are exactly the set $[1,2 m]$. Since there are $2 m$ edges it suffices to show they have distinct labels in this set. Note that

$$
\begin{equation*}
\gamma(x)-\gamma\left(y_{i}\right)=2 m-i-\left\lfloor\frac{i}{3}\right\rfloor+1 \in\left[m-\left\lfloor\frac{m}{3}\right\rfloor+1,2 m\right] \text { for } 1 \leq i \leq m \tag{1}
\end{equation*}
$$

Also since $i \in B$ implies $i \leq m-2$ we have

$$
\begin{equation*}
\gamma\left(z_{i}\right)-\gamma\left(y_{i}\right)=i-\left\lfloor\frac{i}{3}\right\rfloor+1 \in\left[2, m-\left\lfloor\frac{m-2}{3}\right\rfloor-1\right] \text { for } i \in A \cup B \tag{2}
\end{equation*}
$$

Note that $i-\lfloor i / 3\rfloor+1$ is an increasing function of i on $A \cup B$ unless

$$
(k-1)-\lfloor(k-1) / 3\rfloor+1=k-\lfloor k / 3\rfloor+1,
$$

where 3 divides $k, k-1 \equiv 1(\bmod 2)$, and $k \equiv m(\bmod 2)$. But then m is even, say $m=4 q+r$ with $r=0$ or 2 . Then $k=1+\lfloor 3 m / 4\rfloor=1+3 q+\lfloor 3 r / 4\rfloor \not \equiv 0$ $(\bmod 3)$, a contradiction.

A third type of edge label is

$$
\begin{equation*}
\gamma\left(z_{i}\right)-\gamma\left(y_{i}\right)=2 m-2 i+2 \in[4,2 m-2] \text { for } i \in C \cup D . \tag{3}
\end{equation*}
$$

The labels in (1) and (3) are clearly decreasing functions of i. Also $\gamma\left(z_{m}\right)-\gamma\left(y_{m}\right)=1$. It is easy to see that the intervals in (1) and (2) do not intersect. Thus it suffices to show that no label appearing in (3) appears in (1) or (2).

Let $i=3 q+r, 0 \leq r<3$. Then the label in (1) is $2 m-4 q-r+1 \not \equiv 2 m+2$ $(\bmod 4)$. If this equals the label $2 m-2 j+2$ in (3), then j must be odd. Then by the definition of C we must have $j \in D$ and m even. But if $2 m-2 j+2$ is a label in (1) we must have $m-\lfloor m / 3\rfloor+1 \leq 2 m-2 j+2 \leq 2 m-2 k+2$. This yields $2 k \leq m+\lfloor m / 3\rfloor+1 \leq 4 m / 3+1$. But then $4 m / 3+1 \geq 2(1+\lfloor 3 m / 4\rfloor) \geq 2(1 / 2+3 m / 4)$, since m is even, and this is impossible.

It remains to show that no label occurs in both (2) and (3). Let $i=3 q+r$, $0 \leq r<3$. Then the edge label in (2) is $2 q+r+1$. Now if i is odd, then $q \not \equiv r$ $(\bmod 2)$. Examining the possibilities for r we see that the label $2 q+r+1 \not \equiv 0$ (mod 4). This applies if $i \in A$, and, if m is odd, to $i \in B$ also. If m is even and $i \in B$, then i is even and $q \equiv r(\bmod 2)$. In this case we see that the edge label $2 q+r+1 \not \equiv 2(\bmod 4)$. We see that

$$
\gamma\left(z_{i}\right)-\gamma\left(y_{i}\right) \not \equiv \begin{cases}0(\bmod 4) & \text { if } i \in A \\ 2 m+2(\bmod 4) & \text { if } i \in B\end{cases}
$$

From the expression in (3) and the definitions of C and D it is easy to see that

$$
\gamma\left(z_{j}\right)-\gamma\left(y_{j}\right) \equiv \begin{cases}2 m+2(\bmod 4) & \text { if } j \in C, \\ 0(\bmod 4) & \text { if } j \in D .\end{cases}
$$

From the above congruences we see that the only way we could have $\gamma\left(z_{i}\right)-\gamma\left(y_{i}\right)=$ $\gamma\left(z_{j}\right)-\gamma\left(y_{j}\right)$ would be if m is even and either $i \in A$ and $j \in C$, or else $i \in B$ and $j \in D$. Then if $i \in A$ and $j \in C$ we have $\gamma\left(z_{i}\right)-\gamma\left(y_{i}\right)=i-\lfloor i / 3\rfloor+1 \leq$ $k-1-\lfloor(k-1) / 3\rfloor+1<k-1-\left(\frac{k-1}{3}-1\right)+1=\frac{8}{3}(k-1)-2(k-1)+2=$ $\frac{8}{3}\lfloor 3 m / 4\rfloor-2(k-1)+2 \leq 2 m-2(k-1)+2 \leq \gamma\left(z_{j}\right)-\gamma\left(y_{j}\right)$.

Finally, if $i \in B$ and $j \in D$, then $\gamma\left(z_{i}\right)-\gamma\left(y_{i}\right)=i-\lfloor i / 3\rfloor+1 \geq k-\lfloor k / 3\rfloor+1 \geq$ $2 k / 3+1$. Likewise $\gamma\left(z_{j}\right)-\gamma\left(y_{j}\right)=2 m-2 j+2 \leq 2 m-2 k+2$. We will finish this miserable proof by showing that $2 k / 3+1 \leq 2 m-2 k+2$ is impossible. This inequality reduces to $8 k \leq 6 m+3$. Substituting $k=1+\lfloor 3 m / 4\rfloor$ leads to $3 m / 4-\lfloor 3 m / 4\rfloor \geq 5 / 8$. But this is impossible since m is even.

Theorem 8 Every graph $S_{m, 2}$ has a near α-labeling.

Figure 4: A near α-labeling of $B_{5,3}$

Proof. If m is congruent to 0 or 1 modulo 3 , then the lemma applies. Suppose $m \equiv 2(\bmod 3)$. Then $S_{m-1,2}$ has a near α-labeling γ such that $\gamma(x)=2(m-1)$. We consider $S_{m-1,2}$ to be a subgraph of $S_{m, 2}$ in the natural way. Define γ^{*} on the vertices of $S_{m, 2}$ by $\gamma^{*}=\gamma+1$ on the vertices of $S_{m-1,2}, \gamma^{*}\left(y_{m}\right)=0$ and $\gamma^{*}\left(z_{m}\right)=2 m$. It can easily be verified that γ^{*} is a near α-labeling of $S_{m, 2}$.

Some examples of near α-labelings of $S_{m, 2}$ are given in Figure 3. We give another infinite family of trees which have near α-labelings, but no α-labelings.

Let $B_{m, n}$ denote the tree with the $m+2 n+4$ vertices $x, y_{i}, 1 \leq i \leq 3, z_{1 j}$, $1 \leq j \leq m$, and $z_{i j}, 2 \leq i \leq 3,1 \leq j \leq n$, and the $m+2 n+3$ edges $\left\{x, y_{i}\right\}$, $1 \leq i \leq 3,\left\{y_{1}, z_{1 j}\right\}, 1 \leq j \leq m$, and $\left\{y_{i}, z_{i j}\right\}, 2 \leq i \leq 3,1 \leq j \leq n$. Note that if m and n are positive integers, then $B_{m, n}$ has diameter 4 and contains $S_{m, 2}$ as a subtree and so does not have an α-labeling by the previously mentioned result of Rosa.

Theorem 9 If m and n are positive integers, then $B_{m, n}$ has a near α-labeling.
Proof. Define γ on the vertices of $B_{m, n}$ by $\gamma(x)=2 n+4, \gamma\left(y_{1}\right)=0, \gamma\left(y_{2}\right)=1$, $\gamma\left(y_{3}\right)=3, \gamma\left(z_{11}\right)=2, \gamma\left(z_{1 j}\right)=2 n+j+3,2 \leq j \leq m$, and $\gamma\left(z_{i j}\right)=2 j+5-i$, $2 \leq i \leq 3,1 \leq j \leq n$ (see Figure 4). We will show that γ is a near α labeling with $V_{1}=\left\{y_{1}, y_{2}, y_{3}\right\}$. Note that for $1 \leq j \leq m$ the function γ takes the values $2,2 n+5,2 n+6,2 n+7, \ldots, m+2 n+3$ on the vertices $z_{1 j}$, while for $1 \leq j \leq n$ the function γ takes the values $5,7,9, \ldots, 2 n+3$ on the vertices $z_{2 j}$, and the values $4,6,8, \ldots, 2 n+2$ on the vertices $z_{3 j}$. From this it is easy to see that γ is one-to-one.

Now the differences $\gamma(x)-\gamma\left(y_{i}\right)$ are $\{2 n+1,2 n+3,2 n+4\}=A$, the differences $\gamma\left(z_{1 j}\right)-\gamma\left(y_{1}\right)$ are $\{2\} \cup[2 n+5, m+2 n+3]=B$, the differences $\gamma\left(z_{2 j}\right)-\gamma\left(y_{2}\right)$ are $\{4,6,8, \ldots, 2 n+2\}=C$, and the differences $\gamma\left(z_{3 j}\right)-\gamma\left(y_{3}\right)$ are $\{1,3,5, \ldots, 2 n-1\}=$ D. Note that these are all positive. Moreover $1 \in D, 2 \in B,[3,2 n] \subseteq C \cup D$, $2 n+1 \in A, 2 n+2 \in C,\{2 n+3,2 n+4\} \subseteq A$, and $[2 n+5, m+2 n+3] \subseteq B$. Thus γ is a near α-labeling.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, London, 1996.
[2] S. El-Zanati and C. Vanden Eynden, Decompositions of $K_{m, n}$ into cubes, J. Combin. Designs, 4 (1996), 51-57.
[3] J. A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, Dynamic Survey DS6, www.combinatorics.org.
[4] S. W. Golomb, How to number a graph, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York (1972) 23-37.
[5] R. Häggkvist, Decompositions of complete bipartite graphs, London Math. Soc. Lect. Notes Ser. C. U. P., Cambridge 141 (1989), 115-147.
[6] G. Ringel, Problem 25, in Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963, Prague (1964) 162.
[7] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967) 349-355.
[8] H. S. Snevily, New families of graphs that have α-labelings, Discrete Math. 170 (1997) 185-194.

[^0]: *Research supported by a research grant from Illinois State University

