A q-analogue of a formula of Hernandez obtained by inverting a result of Dilcher

Helmut Prodinger*

The John Knopfmacher Centre for Applicable Analysis and Number Theory
Department of Mathematics, University of the Witwatersrand
P. O. Wits, 2050 Johannesburg, South Africa
email: helmut@gauss.cam.wits.ac.za
homepage: http://www.wits.ac.za/helmut/index.htm.

Abstract

We prove a q-analogue of the formula

$$
\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k-1} \sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m}=k} \frac{1}{i_{1} i_{2} \ldots i_{m}}=\sum_{1 \leq k \leq n} \frac{1}{k^{m}}
$$

by inverting a formula due to Dilcher.

1 The identities

Hernández in [6] proved the following identity:

$$
\begin{equation*}
\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k-1} \sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m}=k} \frac{1}{i_{1} i_{2} \ldots i_{m}}=\sum_{1 \leq k \leq n} \frac{1}{k^{m}} . \tag{1}
\end{equation*}
$$

However this identity does not really require a proof, since we will show that it is just an inverted form of an identity of Dilcher [2];

$$
\begin{equation*}
\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k-1} \frac{1}{k^{m}}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq n} \frac{1}{i_{1} i_{2} \ldots i_{m}} \tag{2}
\end{equation*}
$$

For $k \geq 1$, define

$$
a_{k}:=-\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m}=k} \frac{1}{i_{1} i_{2} \ldots i_{m}} \quad \text { and } \quad b_{k}:=\frac{1}{k^{m}},
$$

*This research was conducted while the author was a host of the projet Algo at INRIA, Rocquencourt. The funding came from the Austrian-French "Amadée" cooperation.

Australasian Journal of Combinatorics $\underline{21}(2000)$, pp.271-274
then the identities are

$$
\begin{align*}
\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k} a_{k} & =\sum_{1 \leq k \leq n} b_{k} \tag{3}\\
\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k} b_{k} & =\sum_{1 \leq k \leq n} a_{k}
\end{align*}
$$

These are inverse relations, as can be seen by introducing ordinary generating functions $A(z)=\sum a_{n} z^{n}$ and $B(z)=\sum b_{n} z^{n}$. Then (3) gives immediately

$$
\begin{aligned}
& A\left(\frac{z}{z-1}\right)=B(z) \\
& B\left(\frac{z}{z-1}\right)=A(z) .
\end{aligned}
$$

However

$$
w=\frac{z}{z-1} \longleftrightarrow z=\frac{w}{w-1}
$$

and the proof is finished. An alternative argument that will be useful in the sequel when we do the q-analogue, is as follows. We take differences in (3) of the lines indexed with n resp. $n-1$; then we have to prove that

$$
b_{n}=\sum_{1 \leq k \leq n}\binom{n-1}{k-1}(-1)^{k} a_{k} \quad \Longleftrightarrow \quad a_{n}=\sum_{1 \leq k \leq n}\binom{n-1}{k-1}(-1)^{k} b_{k}
$$

Now in this form this is a traditional inverse relation; see e. g. [7]. An explicit argument will follow in the next section for the q-instance.
We note that Dilcher's sum appears also in disguised form in [3].

2 A q-analogue

Dilcher's formula (2) is a corollary of his elegant q-version;

$$
\sum_{1 \leq k \leq n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-1)^{k-1} \frac{q^{\binom{k+1}{2}+(m-1) k}}{\left(1-q^{k}\right)^{m}}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq n} \frac{q^{i_{1}}}{1-q^{i_{1}}} \cdots \frac{q^{i_{m}}}{1-q^{i_{m}}}
$$

Here, $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ denotes the Gaussian polynomial

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

with

$$
(x ; q)_{n}:=(1-x)(1-x q) \ldots\left(1-x q^{n-1}\right) .
$$

Apart from Dilcher's paper [2], the article [1] is also of some relevance in this context. Therefore it is a natural question to find a q-analogue of Hernández' formula, or, what amounts to the same, to find the appropriate inverse relations for the q-analogues. We state them in the following lemma.

Lemma 1.

$$
\begin{align*}
\sum_{1 \leq k \leq n} b_{k} & =\sum_{1 \leq k \leq n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-1)^{k} q^{\binom{k}{2}} a_{k}, \\
\sum_{1 \leq k \leq n} q^{-k} a_{k} & =\sum_{1 \leq k \leq n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-1)^{k} q^{-k n+\binom{k}{2}} b_{k} . \tag{4}
\end{align*}
$$

Proof. Again, taking differences in (4), we have to prove that

$$
b_{n}=\sum_{1 \leq k \leq n}\left[\begin{array}{l}
n-1 \tag{5}\\
k-1
\end{array}\right]_{q}(-1)^{k} q^{\binom{k}{2}} a_{k} \Longleftrightarrow a_{n}=\sum_{1 \leq k \leq n}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}(-1)^{k} q^{-(n-1) k+\binom{k}{2}} b_{k} .
$$

However, after trivial modifications, this is the inverse pair reported in [5], exercise (2.6.6 (b)). Credits for it are given to Carlitz, Szegő, and Rogers; compare the references in [5].
After a first version of this note was circulated, O. Warnaar kindly informed me that this lemma would also follow from results in [4].
We would like to remark that an alternative formulation can be given in terms of matrices of connection coefficients.
This can be done in terms of the original formulæ (4), but looks much nicer when referring to (5):
Define matrices

$$
T:=\left[\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}(-1)^{k} q^{k} \begin{array}{c}
k \\
2
\end{array}\right]_{n, k}, \quad U:=\left[\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}(-1)^{k} q^{-(n-1) k+\binom{k}{2}}\right]_{n, k}
$$

then

$$
T U=I .
$$

Theorem 2. [q-analogue of Hernández' formula]

$$
\sum_{1 \leq k \leq n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-1)^{k-1} q^{-k n+\binom{k}{2}} \sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m}=k} \frac{q^{i_{1}}}{1-q^{i_{1}}} \cdots \frac{q^{i_{m}}}{1-q^{i_{m}}}=\sum_{1 \leq k \leq n} \frac{q^{k(m-1)}}{\left(1-q^{k}\right)^{m}}
$$

Acknowledgment. The presentation has gained much by the comments of an insightful referee.

References

[1] G. Andrews, D. Crippa, and K. Simon. q-series arising from the study of random graphs. SIAM Journal on Discrete Mathematics, 10:41-56, 1997.
[2] K. Dilcher. Some q-series identities related to divisor functions. Discrete Mathematics, 145:83-93, 1995.
[3] P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite differences and Rice's integrals. Theoretical Computer Science, 144:101-124, 1995.
[4] I. Gessel and D. Stanton. Applications of q-Lagrange inversion to basic hypergeometric series. Transactions of the American Mathematical Society, 227:173-201, 1983.
[5] I. Goulden and D. Jackson. Combinatorial Enumeration. John Wiley, 1983.
[6] V. Hernández. Solution IV of problem 10490 (a reciprocal summation identity). American Mathematical Monthly, 106:589-590, 1999.
[7] J. Riordan. Combinatorial Identities. John Wiley, 1968.

