New infinite classes of 1-factorizations of complete graphs

Midori Kobayashi, Nobuaki Mutoh
School of Administration and Informatics
University of Shizuoka
Yada, Shizuoka 422-8526, Japan

Gisaku Nakamura
Tokai University
Shibuya-ku, Tokyo, 151-0063, Japan

Abstract

Some classes of 1 -factorizations of complete graphs are known. They are $G K_{2 n}, A K_{2 n}, W K_{2 n}$ and their variations, and automorphism-free 1 -factorizations. In this paper, for any positive integer t, we construct new 1 -factorizations $N_{t} K_{2 n}$ which are defined for all $2 n$ with $2 n \geq 6 t$. They also have some variations.

1. INTRODUCTION

Let $K_{2 n}=\left(V_{2 n}, E_{2 n}\right)$ be the complete graph on $2 n$ vertices. Put $m=2 n-1$. A 1-factor of $K_{2 n}$ is a set of n edges that partition the vertex set $V_{2 n}$. A 1-factorization of $K_{2 n}$ is a set of $m 1$-factors that partition the set of edges $E_{2 n}$.

Some 1-factorizations of $K_{2 n}$ are known [1,2,3,4]. They have been dubbed $G K_{2 n}$, $W K_{2 n}$ and $A K_{2 n}$. They have some variations; $G^{\prime} K_{2 n}, W^{\prime} K_{2 n}, W^{\prime \prime} K_{2 n}, W^{(1)} K_{2 n}$, $W^{(1) \prime} K_{2 n}, W^{(1) \prime \prime} K_{2 n}$ (Figures 1 to 10). Among these, $G K_{2 n}$ is the most simple and famous 1-factorization of $K_{2 n}$; it is called the patterned 1-factorization.

Moreover, it is known there exists an automorphism-free 1-factorization of $K_{2 n}$ ($n \geq 5$) [1].

These 1 -factorizations are defined for every $2 n$ except a few small $2 n$. On the other hand, not for every $2 n$, various 1 -factorizations have been constructed; for example, cyclic 1 -factorizations when $2 n \neq 2^{k}$, geometric 1 -factorizations when $2 n=2^{k}$ and affine 1 -factorizations when $2 n=3^{k}+1$ ([2], p604).

In this paper, for any positive integer t, we construct a new 1-factorization $N_{t} K_{2 n}$ which is defined for all $2 n$ with $2 n \geq 6 t$. And we show their variations; $N_{t}^{\prime} K_{2 n}$, $N_{t}^{\prime \prime} K_{2 n}, N_{t}^{(1)} K_{2 n}, N_{t}^{(1) \prime} K_{2 n}, N_{t}^{(1) \prime \prime} K_{2 n}$.

Figure 3: $A K_{14}$

Figure 4: $A K_{16}$

Figure 5: $W K_{30}$
Figure 6: $W^{\prime} K_{32}$

Figure 7: $W^{\prime \prime} K_{32}$

Figure 9: $W^{(1) \prime} K_{32}$

Figure 8: $W^{(1)} K_{30}$

Figure 10: $W^{(1) "} K_{32}$

2. PRELIMINARIES

Put $r=n-1$. Assume the vertices are labeled as $V_{2 n}=\{\infty\} \cup\{0,1,2, \cdots, m-1\}=$ $\{\infty\} \cup Z_{m}$. Let σ be the vertex permutation $\sigma=(\infty)\left(\begin{array}{ll}0 & 12 \cdots m-1) \text { and put }\end{array}\right.$ $\Sigma=\langle\sigma\rangle$. Then for any edge $\{a, b\}$ of $K_{2 n}$, we define the length of the edge with respect to Σ :

$$
d(\{a, b\})= \begin{cases}\min \{|b-a|, m-|b-a|\} & (a, b \neq \infty) \\ \infty & \text { (otherwise) }\end{cases}
$$

We note that $1 \leq d(\{a, b\}) \leq r$ when $a, b \neq \infty$.
A starter of Z_{m} is a set of edges $S=\left\{\left\{v_{i}, w_{i}\right\} \in E_{2 n} \mid 1 \leq i \leq r\right\}$ such that the set of vertices of S is $V_{2 n} \backslash\{\infty, 0\}$ and $d(S)=\{1,2, \cdots, r\}$. If S is a starter of Z_{m}, $S^{\prime}=S \cup\{\{\infty, 0\}\}$ is called a starter 1-factor of $K_{2 n}$, and we obtain a 1-factorization of $K_{2 n}$ by rotating S^{\prime} according to σ, that is, $\Sigma S^{\prime}=\left\{\sigma^{i} S^{\prime} \mid 0 \leq i \leq m-1\right\}$.

For any positive integer t, we will construct starters of $K_{2 n}$ in sections 3 and 4.

3. $N_{t} K_{2 n}$ WHEN t IS ODD

Assume t is odd ≥ 1 and $2 n \geq 6 t$. Put $s=(t-1) / 2$ and put
(1) $V_{I}=\left\{a_{1}, a_{2}, \cdots, a_{t}, a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{t}^{\prime}\right\}$,
$E_{I}=\left\{\left\{a_{1}, a_{1}^{\prime}\right\},\left\{a_{2}, a_{2}^{\prime}\right\}, \cdots,\left\{a_{t}, a_{t}^{\prime}\right\}\right\}$,
(2) $V_{I I}=\left\{b_{1}, b_{2}, \cdots, b_{t}, b_{1}^{\prime}, b_{2}^{\prime}, \cdots, b_{t}^{\prime}\right\}$,
$E_{I I}=\left\{\left\{b_{1}, b_{s+1}^{\prime}\right\},\left\{b_{2}, b_{s+2}^{\prime}\right\}, \cdots,\left\{b_{s+1}, b_{t}^{\prime}\right\}\right\} \cup\left\{\left\{b_{s+2}, b_{1}^{\prime}\right\},\left\{b_{s+3}, b_{2}^{\prime}\right\}, \cdots,\left\{b_{t}, b_{s}^{\prime}\right\}\right\}$,
(3) $V_{I I I}=\left\{\infty, 0, c_{1}, c_{2}, \cdots, c_{s}, c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{s}^{\prime}\right\}$,
$E_{I I I}=\left\{\{\infty, 0\},\left\{c_{1}, c_{1}^{\prime}\right\},\left\{c_{2}, c_{2}^{\prime}\right\}, \cdots,\left\{c_{s}, c_{s}^{\prime}\right\}\right\}$,
(4) $V_{I V}=\left\{d_{1}, d_{2}, \cdots, d_{s}, d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{s}^{\prime}\right\}$,
$E_{I V}=\left\{\left\{d_{1}, d_{1}^{\prime}\right\},\left\{d_{2}, d_{2}^{\prime}\right\}, \cdots,\left\{d_{s}, d_{s}^{\prime}\right\}\right\}$.
(5) When $r(=n-1)$ is odd, put $u=(r-3 t+2) / 2, v=(r-3 t) / 2$. When r is even, put $u=v=(r-3 t+1) / 2$. And put
$V_{V_{1}}=\left\{e_{1}, e_{2}, \cdots, e_{u}, e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{u}^{\prime}\right\}, E_{V_{1}}=\left\{\left\{e_{1}, e_{1}^{\prime}\right\},\left\{e_{2}, e_{2}^{\prime}\right\}, \cdots,\left\{e_{u}, e_{u}^{\prime}\right\}\right\}$,
$V_{V_{2}}=\left\{f_{1}, f_{2}, \cdots, f_{v}, f_{1}^{\prime}, f_{2}^{\prime}, \cdots, f_{v}^{\prime}\right\}, E_{V_{2}}=\left\{\left\{f_{1}, f_{1}^{\prime}\right\},\left\{f_{2}, f_{2}^{\prime}\right\}, \cdots,\left\{f_{v}, f_{v}^{\prime}\right\}\right\}$.
We define $V_{2 n}$ and σ as follows;

$$
V_{2 n}=\{\infty\} \cup V_{I} \cup V_{I I} \cup V_{I I I} \cup V_{I V} \cup V_{V_{1}} \cup V_{V_{2}},
$$

$$
\begin{aligned}
\sigma= & (\infty)\left(f_{v} f_{v-1}\right.
\end{aligned} \cdots f_{1}
$$

and put $\Sigma=\langle\sigma\rangle$ (see Figure 11).

Figure 11: $N_{7} K_{56}$

Proposition 3.1 Assume t is odd ≥ 1 and $2 n \geq 6 t$. Then

$$
S_{t}=E_{I} \cup E_{I I} \cup E_{I I I} \cup E_{I V} \cup E_{V_{1}} \cup E_{V_{2}}
$$

is a starter 1-factor of $K_{2 n}$ with respect to $\Sigma=\langle\sigma\rangle$.
Proof. We need only show that the lengths of the edges of S_{t} are all different.
(1) $\left|E_{I}\right|=t . d\left(E_{I}\right)=\{1,3,5, \cdots, 2 t-1\}$.
(2) $\left|E_{I I}\right|=t$. Since $d\left(\left\{b_{1}, b_{s+1}^{\prime}\right\}\right)=\left|V_{I I I}\right|-1+\left(\left|V_{V_{2}}\right|+\left|V_{V_{1}}\right|+\left|V_{I V}\right|\right) / 2+s+1=$ $r-t+1$, we have $d\left(E_{I I}\right)=\{r-t+1, r-t+2, \cdots, r\}$.
(3) $\left|E_{I I I}\right|=s+1$. $d\left(E_{I I I}\right)=\{\infty, 2,4,6, \cdots, t-1\}$.
(4) $\left|E_{I V}\right|=s . d\left(E_{I V}\right)=\{t+1, t+3, t+5, \cdots, 2 t-2\}$.

We have $\left|E_{I} \cup E_{I I} \cup E_{I I I} \cup E_{I V}\right|=3 t$, so it doesn't depend on $2 n$. (Note that we are assuming $2 n \geq 6 t$.) Only $E_{V_{1}}$ and $E_{V_{2}}$ depend on $2 n$.
(5) $\left|E_{V_{1}}\right|=u$ and $\left|E_{V_{2}}\right|=v$. When r is odd, $d\left(E_{V_{1}}\right)=\{2 t, 2 t+2,2 t+4, \cdots, r-t\}$ and $d\left(E_{V_{2}}\right)=\{2 t+1,2 t+3,2 t+5, \cdots, r-t-1\}$
When r is even, $d\left(E_{V_{1}}\right)=\{2 t, 2 t+2,2 t+4, \cdots, r-t-1\}$ and $d\left(E_{V_{2}}\right)=$ $\{2 t+1,2 t+3,2 t+5, \cdots, r-t\}$.
Therefore $d\left(S_{t}\right)=\{\infty, 1,2, \cdots, r\}$, from which it follows that S_{t} is a starter 1-factor of $K_{2 n}$.

4. $N_{t} K_{2 n}$ WHEN t IS EVEN

Assume t is even ≥ 2 and $2 n \geq 6 t$. Put $s=t / 2$ and put
(1) $V_{I}=\left\{a_{1}, a_{2}, \cdots, a_{t}, a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{t}^{\prime}\right\}$,

$$
E_{I}=\left\{\left\{a_{1}, a_{1}^{\prime}\right\},\left\{a_{2}, a_{2}^{\prime}\right\}, \cdots,\left\{a_{t}, a_{t}^{\prime}\right\}\right\}
$$

(2) $V_{I I}=\left\{b_{0}, b_{1}, b_{2}, \cdots, b_{t-1}, b_{0}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, \cdots, b_{t-1}^{\prime}\right\}$,

$$
E_{I I}=\left\{\left\{b_{0}, b_{0}^{\prime}\right\}\right\} \cup\left\{\left\{b_{1}, b_{s}^{\prime}\right\},\left\{b_{2}, b_{s+1}^{\prime}\right\}, \cdots,\left\{b_{s}, b_{t-1}^{\prime}\right\}\right\}
$$

$$
\cup\left\{\left\{b_{s+1}, b_{1}^{\prime}\right\},\left\{b_{s+2}, b_{2}^{\prime}\right\}, \cdots,\left\{b_{t-1}, b_{s-1}^{\prime}\right\}\right\},
$$

(3) $V_{I I I}=\left\{\infty, 0, c_{1}, c_{2}, \cdots, c_{s-1}, c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{s-1}^{\prime}\right\}$,
$E_{I I I}=\left\{\{\infty, 0\},\left\{c_{1}, c_{1}^{\prime}\right\},\left\{c_{2}, c_{2}^{\prime}\right\}, \cdots,\left\{c_{s-1}, c_{s-1}^{\prime}\right\}\right\}$,
(4) $V_{I V}=\left\{d_{1}, d_{2}, \cdots, d_{s}, d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{s}^{\prime}\right\}$,
$E_{I V}=\left\{\left\{d_{1}, d_{1}^{\prime}\right\},\left\{d_{2}, d_{2}^{\prime}\right\}, \cdots,\left\{d_{s}, d_{s}^{\prime}\right\}\right\}$.
(5) When r is odd, put $u=v=(r-3 t+1) / 2$. When r is even, put $u=(r-3 t) / 2$, $v=(r-3 t+2) / 2$. Put
$V_{V_{1}}=\left\{e_{1}, e_{2}, \cdots, e_{u}, e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{u}^{\prime}\right\}, E_{V_{1}}=\left\{\left\{e_{1}, e_{1}^{\prime}\right\},\left\{e_{2}, e_{2}^{\prime}\right\}, \cdots,\left\{e_{u}, e_{u}^{\prime}\right\}\right\}$,
$V_{V_{2}}=\left\{f_{1}, f_{2}, \cdots, f_{v}, f_{1}^{\prime}, f_{2}^{\prime}, \cdots, f_{v}^{\prime}\right\}, E_{V_{2}}=\left\{\left\{f_{1}, f_{1}^{\prime}\right\},\left\{f_{2}, f_{2}^{\prime}\right\}, \cdots,\left\{f_{v}, f_{v}^{\prime}\right\}\right\}$.
We define $V_{2 n}$ and σ as follows;

$$
\begin{aligned}
& V_{2 n}=\{\infty\} \cup V_{I} \cup V_{I I} \cup V_{I I I} \cup V_{I V} \cup V_{V_{1}} \cup V_{V_{2}} \\
& \sigma=(\infty)\left(f_{v} f_{v-1} \cdots f_{1}\right. \\
& c_{s-1} c_{s-2} \cdots c_{1} 0 c_{1}^{\prime} c_{2}^{\prime} \cdots c_{s-1}^{\prime} \\
& b_{0} b_{1} b_{2} \cdots b_{t-1} \\
& f_{1}^{\prime} f_{2}^{\prime} \cdots f_{v}^{\prime} \\
& a_{t} a_{t-1} \cdots a_{1} a_{1}^{\prime} a_{2}^{\prime} \cdots a_{t}^{\prime} \\
& e_{u}^{\prime} e_{u-1}^{\prime} \cdots e_{1}^{\prime} \\
& b_{0}^{\prime} \\
& d_{s}^{\prime} d_{s-1}^{\prime} \cdots d_{1}^{\prime} \\
& b_{t-1}^{\prime} b_{t-2}^{\prime} \cdots b_{1}^{\prime} \\
& d_{1} d_{2} \cdots d_{s} \\
& \left.e_{1} e_{2} \cdots e_{u}\right)
\end{aligned}
$$

and put $\Sigma=\langle\sigma\rangle$ (see Figure 12).

Figure 12: $N_{8} K_{56}$

Proposition 4.1 Assume t is even ≥ 2 and $2 n \geq 6 t$. Then

$$
S_{t}=E_{I} \cup E_{I I} \cup E_{I I I} \cup E_{I V} \cup E_{V_{1}} \cup E_{V_{2}}
$$

is a starter 1-factor of $K_{2 n}$ with respect to $\Sigma=\langle\sigma\rangle$.
Proof. We need only show that the lengths of the edges of S_{t} are all different.
(1) $\left|E_{I}\right|=t . d\left(E_{I}\right)=\{1,3,5, \cdots, 2 t-1\}$.
(2) $\left|E_{I I}\right|=t . d\left(E_{I I}\right)=\{r-t+1, r-t+2, \cdots, r\}$.
(3) $\left|E_{I I I}\right|=s . d\left(E_{I I I}\right)=\{\infty, 2,4,6, \cdots, t-2\}$.
(4) $\left|E_{I V}\right|=s . d\left(E_{I V}\right)=\{t, t+2, t+4, \cdots, 2 t-2\}$.
(5) $\left|E_{V_{2}}\right|=u$ and $\left|E_{V_{2}}\right|=v$.

When r is odd, $d\left(E_{V_{1}}\right)=\{2 t+1,2 t+3,2 t+5, \cdots, r-t\}$ and $d\left(E_{V_{2}}\right)=$ $\{2 t, 2 t+2,2 t+4, \cdots, r-t-1\}$.
When r is even, $d\left(E_{V_{1}}\right)=\{2 t+1,2 t+3,2 t+5, \cdots, r-t-1\}$ and $d\left(E_{V_{2}}\right)=$ $\{2 t, 2 t+2,2 t+4, \cdots, r-t\}$.

Therefore $d\left(S_{t}\right)=\{\infty, 1,2, \cdots, r\}$, from which it follows that S_{t} is a starter 1 -factor of $K_{2 n}$.

We denote by $N_{t} K_{2 n}$ the 1-factorization induced by S_{t} in Proposition 3.1 and 4.1.

5. EVEN STARTERS

When the vertices are labeled as $V_{2 n}=\left\{\infty, \infty^{\prime}\right\} \cup\{0,1,2, \cdots, 2 n-3\}=\left\{\infty, \infty^{\prime}\right\} \cup$ $Z_{2 n-2}$, we define an even starter.

Let σ_{1} be the vertex permutation $\sigma_{1}=(\infty)\left(\infty^{\prime}\right)\left(\begin{array}{llll}0 & 1 & 2 & \cdots\end{array} 2 n-3\right)$ and put $\Sigma_{1}=\left\langle\sigma_{1}\right\rangle$. For any edge $\{a, b\}$ of $K_{2 n}$ we define the length of the edge with respect to Σ_{1} :

$$
d(\{a, b\})= \begin{cases}\min \{|b-a|,(2 n-2)-|b-a|\} & \left(a, b \neq \infty, \infty^{\prime}\right) \\ \infty & \text { (otherwise) }\end{cases}
$$

We note that $1 \leq d(\{a, b\}) \leq n-1$ when $a, b \neq \infty, \infty^{\prime}$.
An even starter of $Z_{2 n-2}$ is a set of edges $T=\left\{\left\{v_{i}, w_{i}\right\} \in E_{2 n} \mid 1 \leq i \leq n-2\right\}$ such that the set of vertices of T is $V_{2 n} \backslash\left\{\infty, \infty^{\prime}, 0, a\right\}$ for some $a \in V_{2 n}, a \neq \infty, \infty^{\prime}, 0$, and $d(T)=\{1,2, \cdots, n-2\}$.

If T is an even starter of $Z_{2 n-2}, T^{\prime}=T \cup\left\{\{\infty, 0\},\left\{\infty^{\prime}, a\right\}\right\}$ is called an even starter 1-factor of $K_{2 n}$. We may call $\sigma_{1}^{i} T^{\prime}(1 \leq i \leq 2 n-3)$ an even starter 1-factor. For an even starter 1-factor T^{\prime}, we obtain a 1-factorization of $K_{2 n}$ by rotating T^{\prime} according to σ_{1} and adding the pinwheel P,

$$
P=\{\{0, n-1\},\{1, n\}, \cdots,\{n-2,2 n-3\}\},
$$

that is, $\Sigma_{1} T^{\prime} \cup\{P\}$ is a 1 -factorization of $K_{2 n}$.
Some starter 1-factors of $K_{2 n}$ can be extended to even starter 1-factors of $K_{2 n+2}$ ($[1], \mathrm{p} 48$). Our starter 1 -factors constructed in sections 3 and 4 can be extended to even starter 1 -factors, also (Figures 13,14). We denote the induced 1 -factorizations by $N_{t}^{\prime} K_{2 n}$ and $N_{t}^{\prime \prime} K_{2 n}$, respectively.

When $t \geq 3, N_{t} K_{2 n}$ has more variations $N_{t}^{(1)} K_{2 n}, N_{t}^{(1) \prime} K_{2 n}$ and $N_{t}^{(1) "} K_{2 n}$ (Figures 15 to 18).

Finally, we should mention whether the 1-factorizations constructed in this paper are new, i.e., not isomorphic to known 1 -factorizations. For example, when $2 n=$ 20,22 , the t satisfying $6 t \leq 2 n$ are $t=1,2,3$; so $K_{2 n}$ has $G K_{2 n}, G^{\prime} K_{2 n}, A K_{2 n}$, $W K_{2 n}, W^{\prime} K_{2 n}, W^{\prime \prime} K_{2 n}, W^{(1)} K_{2 n}, W^{(1) \prime} K_{2 n}, W^{(1) \prime \prime} K_{2 n}, N_{t} K_{2 n}, N_{t}^{\prime} K_{2 n}, N_{t}^{\prime \prime} K_{2 n}(t=$ $1,2,3), N_{3}{ }^{(1)} K_{2 n}, N_{3}{ }^{(1) \prime} K_{2 n}, N_{3}{ }^{(1) \prime \prime} K_{2 n}$. It is shown that these 1-factorizations are not isomorphic each other with the aid of a computer.

It is not easy to demonstrate in general that the 1 -factorizations constructed in this paper are new, but it is clear that there are new 1 -factorizations among them because the number of the 1 -factorizaions of $K_{2 n}$ constructed in this paper increases as $2 n$ increases.

Figure 13: $N_{7}^{\prime} K_{58}$

I

Figure 14: $N_{7}^{\prime \prime} K_{58}$

Figure 15: $N_{7}^{(1)} K_{56}$

I

Figure 16: $N_{8}^{(1)} K_{56}$

Figure 17: $N_{7}^{(1) \prime} K_{58}$

Figure 18: $N_{7}^{(1) "} K_{58}$

References

[1] E. Mendelsohn and A. Rosa, One-factorizations of the complete graph - A survey, J. Graph Theory, 9 (1985) 43-65.
[2] W. D. Wallis, One-factorizations of complete graphs, in: Contemporary Design Theory (eds. J. H. Dinitz and D. R. Stinson), Wiley, New York (1992) 593-631.
[3] W. D. Wallis, One-Factorizations, Kluwer Academic Publishers, Dordrecht (1997).
[4] K. E. Wolff, Fast-Blockpläne, Mitt. Math. Sem. Giessen, H. 102 (1973) 1-72.

