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Abstract 

We prove that there is an integer k :::; (n2 
- 2n + 4) /2 such that the 

diagonal entries of Ak are all positive for any non-negative irreducible 
n x n matrix A, and that there are integers i, j with 0 :::; i < j :::; 3n / 2 

such that Ai :::; Aj for any non-negative n x n matrix A with no entry in 
(0,1) and n 2:: 2. The results of Wang and Shallit [Linear Algebra Appl. 
290 (1999) 135-144] are thus improved. 

1 .. Introduction 

In this paper we will be concerned with matrices and vectors with non-negative 
entrices. For a matrix A = (aij) and scalar c, by the inequality A > c we mean that 
aij > c for all i, j, and similarly for the relations A 2:: c and A = c. For matrices A 
and B of the same dimensions, by A 2:: B we mean the inequality holds entrywise. 
We adopt similar conventions for vectors. 

For an n x n matrix A, by diag(A) we mean the vector containing the diagonal 
entries of A. Let I denote the identity matrix. 

A square matrix A is said to be reducible if there is a permutation matrix P such 
that 

T (B 0) P AP= DC' 

where the diagonal blocks Band C are square matrices. A is irreducible if it is not 
\ reducible. 

For an irreducible matrix A, let ~(A) be the least integer k 2:: 1 such that 
diag(Ak) > O. Define ~(n) = sup ~(A), where the supremum is over all irreducible 
n x n matrices. Recently Wang and Shallit [1] proved that ~(n) :::; n(n-l) for n 2:: 2. 
They posed the problem of determining a more precise upper bound for ~(n). 
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For a non-negative n x n matrix A with no entry in (0,1), let a(A) be the least 
positive integer j such that there exists an integer i with ° ~ i < j such that Ai ::; Aj. 
Define a(n) = sup a(A), where the supremum is over all non-negative matrices A 
with no entry in (0,1). Wang and Shallit [1] have proved that a(n) ~ 2n. As is 
remarked in [1], this inequality is almost surely not best possible. 

In this paper we prove more precise bounds for (3(n) and a(n). 

2. Bound for f3(n) 

The graph of an n x n matrix A = (aij) is the directed graph on vertices 
VI, V2, ... ,Vn such that there is an arc from Vi to Vj if and only if aij > 0. We 
denote the graph of A by G(A). An s-cycle is a (directed) cycle of length s. 

An irreducible matrix A is primitive if there is a positive integer l such that 
Al > 0. The least such l is called the exponent of A and is denoted 'y(A). 

For an irreducible matrix A, the greatest common divisor of all cycle lengths of 
G(A) is called the index of imprimitivity of A and is denoted d(A). It is well known 
(see, e.g., [4]) that a matrix A is irreducible if and only if G(A) is strongly connected 
and that an irreducible matrix A is primitive if and only if d(A) = l. 

We first introduce the following lemmas, which we will use to estimate (3(A) for 
an irreducible matrix A. 

Lemma 1 [3]. If A is an n x n primitive matrix whose graph has at least three 
distinct cycle lengths, then ,(A) ::; L(n2 2n + 4)/2J. 

Lemma 2 [2]. Suppose X and Yare r x t and t x r non-negative matrices and 
neither has a zero row or column. Then XY is primitive if and only if Y X is, and 
if XY and Y X are primitive, then ,(Y X) - 1 ::; ,(XY) ~ ,(Y X) + 1. 

Lemma 3 [5]. If A is an n x n primitive matrix, then ,(A) ~ (n - 1)2 + 1. 

Our first theorem refines the bound for (3(n) obtained in [1]. 

Theorem 1. Let 

Then (3(n) ::; f(n). 

Proof. Let A be an irreducible n x n matrix with G = G(A). Denote by 
L(G) the set of cycle lengths of G . If G contains an n-cycle, then (3(A) ~ n ::; f(n). 
Suppose in the following that G contains no n-cycle. There are two cases to consider, 
based on the primitivity of A. 

Case 1: A is primitive. 
Case 1.1: IL(G)I = 2. Suppose L(G) = {p, q} with p < q ::; n-1. If p+q ~ n+ 1, 

then every p-cycle interects every q-cycle, and hence (3(A) ~ p+q ~ (n-2)+(n-1) = 
2n - 3 ~ f(n), while if p + q ::; n, then (3(A) ::; pq ::; ((p + q)/2)2 ~ n2 /4 ~ f(n). 

Case 1.2: IL( G) I ~ 3. In this case, we have n ~ 4. By Lemma 1 we have 
(3(A) ::; ')'(A) ::; L(n2 

- 2n + 4)/2J = f(n). 
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Case 2: A is not primitive. Suppose d(A) = d ~ 2. By classical results on 
imprimitive matrices (see [4, pp.71-73]), there is a permutation matrix P such that 

0 Al 0 0 
0 0 A2 0 

pTAP= 

0 0 0 Ad-I 
Ad 0 0 0 

where the diagonal zero blocks are square and- each block Ai has no zero row or 
column; furthermore, if Ai is of dimension ni x ni+l (nd+1 = nl), and we put Bi = 
AiAi+1 ... AdAl .,. Ai-I, then 

( 

BI 0 .. . 
o B2 .. . 

p T Adp = : : . 

o 0 

where Bi is an ni x ni primitive matrix for each i with 1 :::; i :::; d. 
If d = n, then clearly jJ(A) = n S f(n). If n = 3 and d = 2, then J3(A) = 2 S 

f(3) = 3. Suppose 2 :::; d :::; n - 1 and n ~ 4. 
Let nm = min ni where 1 < m < d and 'Y(Bt ) = max "V(Bi) where 1 < t < d. 

1 <i<d - - I 1 <i<d I - -

We claim that ,,(Bt ) :::; "((Bm) + 1. This is obvious if t = m. Suppose with
out loss of generality that 1 S t < m :::; d. Let X = AtAt+1 ... Am - 1 and Y = 
AmAm+l ... AdAI ... At-I' Then Bt = XY and Bm = Y X. By Lemma 2, we have 
,,((Bt ) = "((XY) :::; ,,(Y X) + 1 = "((Bm) + 1, as desired. 

Note that nl + n2 + ... + nd = n. We have nm :::; n/d. It follows from Lemma 3 
that 

max ,,(B-) 
I~i~d z 

,,((Bt ) S "((Bm) + 1 

< (nm - 1)2 + 1 + 1 
< (~ - 1)2 + 2. 

Hence 
J3(A) < d max ,,(Bi) 

l<i<d 

< d(~ =- 1)2 + 2d 
(n~d)2 + 2d. 

The function h(d) = (n - d)2/d + 24 is a decreasing function of d in [2, n/v'3] and 
an increasing function in [n/v'3, n - 1]. Hence it assumes its largest value either for 
d = 2 or d = n - 1. We have 

h(2) = (n - 2)2/2 + 2, h(n - 1) = 2(n -1) + l/(n -1). 

It is easy to see that lh(n-1)J S lh(2)J :::; f(n) for n;?: 6, and lh(2)J :::; lh(n-1)J S 
f(n) for n = 4 or 5. Hence 

J3(A) S h(d) S max{lh(2)J, lh(n - 1)J} :::; f(n). 0 
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3. Bound for a(n) 

For a non-negative n x n matrix A with no entry in (0,1), Wang and Shallit [1] 
proved that a(n) ::; 2n for all n ~ 1, and this bound cannot be replaced byeVnlOgn. 
We are going to improve this result. First we give a lemma that will be used. 

Lemma 4 [1]. Suppose A ~ 0 is an n x n matrix of the form 

A=(~ ~), 
where B, D are square matrices with D ~ I. For integers l ~ 0, define the matrices 
Ct by 

A' = (~: ~,). 
Then for all I ~ 0, we have Cl ~ C1+1 and Dt ::; Dl+!. 

An easily verified fact is that f(n) = l(n2 
- 2n + 4}/2J ~ 3n / 2 for all n ~ 2. 

Theorem 2. For all n ~ 2, we have a(n} ~ 3n/ 2
• 

Proof. Let A be a non-negative n x n matrix with no entry in (0,1). We use 
induction on n to prove the theorem. For n = 2, if A is irreducible, then clearly 
AO = I ::; A2, while if A is reducible, then we have either A = A2 or A2 = A3 = O. 
Hence a(A) ::; 3 for n = 2. 

Assume n ~ 3 and the result holds for all m with 2 ~ m < n. The proof is now 
divided into the following two cases. 

Case 1: A is irreducible. By Theorem 1, there is an integer k, 1 ~ k ::; f(n), such 
that diag(Ak ) > O. Note that every positive diagonal entry of Ak is ~ 1. We have 
1= AO ~ Ak. Hence a(A} ~ k ~ f(n} ::; 3n / 2. 

Case 2: A is reducible. There is a permutation matrix P such that 

(

All 0 .. . 
A21 A22 .. . 

pTAP= : : . 

An At2 

o ) o 
. , 

Att 

where All, A 22 , ••• ,Att are square matrices that are either 0 or irreducible. 
Case 2.1: Att = O. The last column of A is O. We write 

A=(B 0) 
x 0 ' 

where x is a vector of dimension n - 1. Note that n - 1 ~ 2. By induction, 
a(B) ~ 3(n-l)/2, i.e., there are integersi, j with 0 ::; i < j ~ 3(n-l)/2 such that 
Bi ::; Bj. It follows that 

Ai+l = (Bi+~ 0) < (Bj+~ 0) = Aj+! 
xBt 0 - xBJ 0 ' 
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and 1 ~ i + 1 < j + 1 ~ 3(n-l)/2 + 1 ~ 3 n / 2. Hence o:(A) ~ 3 n / 2 . 

Case 2.2: Att is irreducible. Suppose Att is of dimension m x m with 1 ~ m ~ n-1. 
By Theorem 1, there is an integer k with 1 ~ k ~ f(m) ~ 3m / 2 such that A:t ~ I. 
We write 

A=(~ J,,). 
Case 2.2.1: B is 0 of dimension 1 x 1. Then C is a column vector of dimension 

n - 1. By similar arguments as in Case 2.1, we have 

and 1 ~ i + 1 < j + 1 ~ 3(n-l)/2 + 1 ~ 3 n / 2. Hence o:(A) ~ 3 n / 2. 

Case 2.2.2: B is not 0 of dimension 1 x 1. Then we have either m ~ n - 2 or 
B is of dimension 1 x 1 but not O. In the former case, we know by the induction 
hypothesis applied to Bk that there are integers i, j with 0 ~ i < j ~ 3(n-m)/2 such 
that (Bk)i ~ (Bk)j, while in the later case we have (Bk)i ~ (Bk)j where i = 0 and 
j = 1. Note that 

Ak= (~: Jd 
for some Ck. By Lemma 4, (Ak)i ~ (Ak)j and 0 ~ ki < kj ~ 3m / 23(n-m)/2 = 3 n/ 2. 

Hence o:(A) ~ 3n / 2 . 

The proof is now completed. 0 
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