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Abstract 

The graphs with Hall number at most 2 form a class of graphs within 
which the chromatic number equals the choice (list-chromatic) number. 
This class has a forbidden-induced-subgraph characterization which has 
not yet been found, although a fairly imposing collection of minimal 
forbidden induced subgraphs has been assembled. In this paper we add 
to the collection, most notably adding 

(i) K5 with an ear of length 2 attached; 

(ii) K4 with an ear of any length> 2 attached; 

(iii) any cycle together with "two triangles based on incident edges on the 
cycle; 

(iv) any odd cycle together with two triangles based on non-incident 
edges of the cycle; and 

(v) any even cycle together with three triangles based on non-incident 
edges of the cycle. 
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1 Introduction 

Throughout, G will denote a finite simple graph and L will denote a list assignment 
to the vertices of G, i.e., a function from V(G) into the collection F(O) of finite 
subsets of 0, an infinite set (of "colors", or symbols). A proper L-coloring of G is 
a selection <p( v) E L( v) for all v E V (G) such that if u and v are adjacent in G, 
then ip(u) =1= <p(v). [Alternatively, this last bit can be restated: for each a E 0, 
ip-l(a) = {v E V(G): ip(v) = a} is an independent set of vertices in G.] 

The study of list colorings, started by Vizing [13] and independently by Erdos, 
Rubin, and Taylor [2], departs from the question of when (under what conditions on 
G and L) is there a proper L-coloring of G? The main focus of interest is the choice 
number, or list chromatic number: c(G) is the smallest positive integer among those 
m such that there is a proper L-coloring of G whenever IL( v) 1 2:: m for all v E V( G). 
It is clear that c( G) 2:: x( G), the chromatic number of G, and it is known that c( G) 
can be quite a bit larger than X(G); for instance, c(Km,m) "-' 10g2m [10]. Curiosity 
is drawn to the extremes: how much larger than X(G) can c(G) be (for instance, can 
c(G)j(X(G) log IV(G) I) be arbitrarily large?) and, at the other extreme, for which 
Gis c(G) = X(G)? 

Here is a necessary condition for a proper L-coloring which does not directly refer 
to the size of the lists L(v), v E V(G). We say that G and L satisfy Hall's condition 
iff for each sub graph H of G, 

IV(H)I ::; La(a,L,H) 
uEC 

where a(a, L, H) is the independence number of the subgraph of H induced by 
{u E V(H); a E L(u)}. To put it another way, if you were trying to properly L-color 
H, a(a, L, H) would be the largest number of vertices you could color with a. (This 
shows why Hall's condition is necessary for the existence of a proper L-coloring of 
G) 

Note that for G and L to satisfy Hall's condition it suffices that (*) holds for 
induced subgraphs H of G. Note also that if G and L satisfy Hall's condition, 
then so do G' and L, for any subgraph G' of G. The reason for the name, Hall's 
condition, is that in the case when G is a clique, in which case a proper L-coloring 
of G is also a system of distinct representatives (SDR) of the sets L(v), v E V(G), 
Hall's condition (with H confined to induced subgraphs, i.e. subcliques) boils down 
to the condition, both necessary and sufficient for such an SDR, given in the famous 
theorem of Phillip Hall [6]. The main result of [7] is that a graph G has the property 
that Hall's condition is sufficient for'the existence of a proper L-coloring if and only 
if every block of G is a clique. 

The Hall numberofG, denoted h(G), is the smallest positive integer among those 
m such that there is a proper L-coloring of G whenever Hall's condition is satisfied 
and IL(v)1 2:: m for all v E V(G). The result mentioned in the preceding paragraph 
can be restated: h( G) = 1 if and only if every block of G is a clique. 
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The Hall number is somewhat contrived and unnatural-when you hear x( G) = 3 
you feel you know something rather straightforward about G, but when you hear that 
h(G) = 3, you look at the definition, and you look at G, and you shake your head. To 
make matters worse, the Hall number is very badly behaved: removing a single edge 
can cause the Hall number to go up, or down, by a large amount (see [8]). The Hall 
number behaves better with respect to vertex removal: if H is an induced subgraph 
of G, then h(H) ::; h(G) ([9]). Still, removing a single vertex can cause a huge drop 
in the Hall number, whereas the chromatic and choice numbers can drop by at most 
one. 

But even if one does not regard the Hall number as being of much interest in 
itself, there is a good reason to work on it, and to endure its caprices: it offers 
a way in to the study of the extremal equation c( G) = x( G). This virtue arises 
from some fundamental relations that h enjoys with c, X, and a fourth parameter, 
the Hall-condition number, that will not playa role here-see [9] for details. One 
consequence of these relations is that c( G) = X( G) if and only if h( G) ::; X( G). Thus, 
in principle, a practical characterization of 1-lk = {G; h( G) ::; k} for each positive 
integer k would "solve" the c = X problem: given G, determine k = x( G) and then 
check to see if G E 1-lk. Of course, determining X(G) is "hard", but not as hard as 
determining c(G), which is on an entirely different level of complexity; see [4], [5], 
and [12] (Section 4.4). 

Furthermore, a "practical characterization" of 1-lk exists, although we despair 
of finding it when k ~ 3. Because h is monotone with respect to taking induced 
subgraphs, 1-lk has a forbidden-induced-subgraph characterization: G E tlk if and 
only if G has no induced subgraph which is "critical with Hall number> k"; a graph 
H is critical with Hall number> k if and only if h(H) > k but h(H - v) ::; k for all 
v E V(H). 

Let us shorten "critical with Hall number> k", the terminology used in [9], to 
"Hall-k+ -critical". Thus, as shown in [9], the Hall-l +-critical graphs are the cycles 
en, n ~ 4 and K4-minus-an-edge. Note that we have a perfectly good characteri
zation of 1-l1 = {G; h(G) = I}, namely every-block-is-a-clique, which does not refer 
to forbidden induced· subgraphs. Our aim here is to forge on toward a forbidden
induced-subgraph characterization of 1-l2' i.e. to add to the list of Hall-2+-critical 
graphs begun in [9], but we do not rule out the possibility of an alternative char
acterization of the "global" variety. We would expect any such characterization to 
emerge from the forbidden-induced-subgraph characterization. 

Why make a fuss about 1-l2? For one thing, it is next in line after tll. Also, 
characterizing the graphs G satisfying p( G) = 2, or p( G) ::; 2, is a standard and 
fundamental exercise for positive-integer-valued parameters p. (See [2] for a charac
terization of the graphs with choice number::; 2.) But mainly our interest is piqued 
by the observation, easily verifiable by previous remarks, that G E 1-l2 implies that 
c( G) = X( G). Furthermore, k = 2 is the largest value for which 1-lk has this property, 
since for every graph G such that c(G) > X(G), we have c(G) = h(G) (see [9]), and 
there are plenty of such G with X(G) = 2 and c(G) = 3 (G = K3,3, for instance). 
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2 Results and Problems 

First we collect the Hall-2+-critical graphs from [9]. We extend the terminology 
introduced in [2]: if mI, ... ,mk are positive integers, B(ml,' .. , mk) will denote the 
graph obtained by connecting two vertices by k internally disjoint paths of lengths 
ml, ... , mk, respectively. (In [2], k = 3, only. Clearly we can do without k = 1 
and k = 2. Also, note that B(ml,"" mk) is simple only if mj = 1 for at most 
one j E {I, ... , k}.) If GI , G2 are simple graphs, let cuff(G1 , G2 , £) denote a graph 
obtained by connecting copies of G1 and G2 by a path of length £; the copies of 
GI and G2 are to be disjoint except for a single shared vertex when £ = 0, and the 
connecting path is understood to intersect G1 and G2 only at its end-vertices. Of 
course, attaching the connecting path to different vertices of, say, G1 , may result in 
different graphs, if G1 is not vertex-transitive; when the end attachments are not 
specified, let cUff( GI , G2 , £) stand for the whole class of graphs obtainable by joining 
GI to G2 as described, with various points of attachment. 

Theorem 1 ([9], Theorem 6) The following are Hall-2+ -critical: 

(a) Cuff(Cm,Cn ,£), for any integers, m 2:: n ~ 3, £ 2:: 0, provided m 2:: 4; 

(b) B(ml, m2, m3) for any positive integers mi ~ m2 ~ m3 with m2 2:: 3, except 
possibly if (ml' m2, m3) = (3,3,2); 

(c) B(m, 2, 2, 1) and B(m, 2, 2, 2) for any positive integer m ~ 2. 

The case of B(3, 3, 2) was left unsettled in [9], which also leaves the case of 
B(3, 3, 2,2) unsettled. (This latter has Hall number> 2, as shown in [9), but will 
only be Hall-2+-critical if B(3, 3, 2) has Hall number 2.) The graph B(3, 3, 2) is one 
of those small-case anomalies that makes finite discrete mathematics so curiously 
unpredictable and exciting, since B(3, 3,1), B(m, 3, 3), m ~ 3, and O(m, 3, 2), m 2:: 4, 
are all Hall-2+ -critical. We will settle the matter of B(3, 3,2) here. The other claims 
in the following theorem are proven in [9], as part of the proof of Theorem 6 there 
(Theorem 1, above). 

Theorem 2 The following have Hall number 2: 

(a) Cn, n ~ 4; 

(b) B(m, 2,1), m ~ 2; 

(c) B(m, 2, 2), m ~ 2; 

(d) B(3, 3,2). 

Corollary 1 (of part (d)). B(3, 3, 2, 2) is Hall-2+ -critical. 
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It is worth noting that 8(2,2, 1) is also known as K4-minus-an-edge. 
Now on to new business. An ear on a clique Kn is a path from one vertex of Kn 

to another, with no internal vertex of the path in Kn. A triangle based on an edge of 
a cycle is just what it sounds like; the triangle together with the cycle make a copy 
of 8(m, 2,1), where m + 1 is the length of the cycle. When we refer to more than 
one triangle based on edges of a cycle, it will be understood that the vertices of the 
triangles that are not on the cycle are distinct, a different one for each triangle. The 
following two theorems are closely related-indeed, the claims of Theorem 3 can be 
inferred from Theorem 4-but it seems more reader-friendly to separate their claims. 

Theorem 3 The following have Hall number 2: 

(a) K4 with an ear of length 2; 

(b) any even cycle with two triangles based on non-incident edges of the cycle; 

(c) Cuff( G, K 3 , f), where f 2: 0, G = 8(2,2,1), and the point of attachment of the 
joining path to G is one of the vertices of G of degree 2. 

We suspect that K3 in Theorem 3(c) can be replaced by Kn for any n, but will 
leave this conjecture for another time. See Problem 1 (b). 

Theorem 4 The following are Hall-2+ -critical: 

(a) K5 with an ear of length 2,-

(b) K4 with an ear of any length> 2; 

(c) K4 with two disjoint ears of length 2; 

(d) two K4 's intersecting in a K 3; 

(e) two K4 's intersecting in a K 2 ; 

(f) any cycle with two triangles based on incident edges of the cycle; 

(g) any cycle with two triangles based on the same edge of the cycle; 

(h) any odd cycle with two triangles based on distinct non-incident edges of the 
cycle; 

(i) any even cycle with three triangles based on distinct non-incident edges of the 
cycle; 

(j) CUff( G, K 3 , f), for any integer f :2: 0, when G is 

(1) K4 with an ear of length 2, provided the point of attachment to G of the 
joining path is one of the two vertices of degree 3, or 
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(k) 

(l) 

(2) 8(m, 2, 1) for some integer m ~ 3, provided the point of attachment to G 
of the joining path is the vertex of degree 2 in the only triangle in G [see 
Fig. il, or 

(3) 8(2,2,1), provided the point of attachment of the joining path to G is one 
of the vertices of G of degree 3 [see Figure 2}. 

~ 
P 
pI ---0 

p" -------'t" , in which either at least 
two of P, pI, p" are single edges, or the lengths of all three have the same parity. 

- ... -<1 
Figure 1: Theorem 4(j)(2). 

- ... -<1 
Figure 2: Theorem 4(j) (3) 

What's next? The graphs whose Hall-2+-criticality next seems most obviously in 
question are listed below in Problem 1. In each case, removing any vertex results in 
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a graph with Hall number S; 2, so the question of Hall-2+ -criticality rests on whether 
or not the Hall number is > 2. To show h( G) > 2 is simply a matter of finding a 
list assignment satisfying some requirements. Although this is not necessarily easy 
(for instance, it took us quite a while to discover an assignment for K5 with an ear 
of length 2), it is far less painful than proving h( G) = 2, should this be the case. 

Problem 1 Which of the following are Hall-2+ -critical? (See Figure 3). 

(a) A graph obtained by inserting one or more vertices of degree 2 onto one edge 
of a K4· 

(b) CujJ(8(2, 2, 1), K n , f), where f 2:: 0, n :2: 4, and the point of attachment of the 
joining path to 8(2, 2, 1) is one of the vertices of degree 2 in 8(2, 2, 1). 

(c) CujJ(G, K n , f) where f :2: 0, n 2:: 3, G is K4 with an ear of length 2, and the 
point of attachment of the joining path to G is the vertex of degree 2, in G. 

(a) 

1& .... 

(b) 

Figure 3: 

.. .. .. 

(c) 

When Problem 1 is solved the Hall-number-two problem could be quite close to 
solution, we estimate, although the final assault will be quite a producton. 

The graphs 8(2,2,1), K4 or K5 with an ear of length 2, and the graphs in (d) 
and (e) of Theorem 4 are special cases of graphs formed by two intersecting cliques. 
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It would be interesting to know the Hall numbers of such graphs, as a sort of gen
eralization of Hall's theorem. (Note that the main result of [7], referred to in the 
Introduction, says that any graph formed by sticking cliques together at cut-vertices 
has Hall number 1.) 

Problem 2 Suppose that a, b, and c are positive integers satisfying a ~ b > c. De
termine, or estimate, in terms of a, b, and c, the Hall number of the graph consisting 
of a Ka and a Kb intersecting in a Kc. 

At one extreme, when c = 1, the Hall number is 1. At the other, Tuza [11] has 
shown that h (Kn minus an edge) = n - 2; thus the Hall number above is a -1 when 
a=b=c+l. 

3 Proofs and intermediate results 

Lemma 1 If h( Go) ::; 2 and G is obtained by adding a path to Go, intersecting Go 
only at one end-vertex of the path, then h(G) ::; 2. 

Proof: Suppose L is a list assignment to V(G) such that G and L satisfy Hall's 
condition and IL(v)1 ~ 2 for all v E V(G). Since h{Go) ::; 2, Go can be prop
erly L-colored. Since the lists on the path each contain at least two colors, it is 
straightforward to extend the L-coloring of Go to a proper L-coloring of G. 

Definition A subgraph H of G is L-tight if and only if 

IV(H)I = L a{a, L, H). 
(fEC 

Clearly, if H is L-tight then in any proper L-coloring of H, each color a appears 
on exactly a(a, L, H) vertices of H. The following lemma is borrowed from [1]. 

Lemma 2 Suppose that G and L satisfy Hall's condition. Suppose that K is a 
clique in G. Let L' be obtained from L by removing a symbol 7" from every list L( v), 
v E V (K), on which it appears. If G and L' do not satisfy Hall's condition then there 
is an L-tight induced subgraph H of G, intersecting K, such that every maximum 
independent set of vertices of H, among those bearing 7" on their L-lists, contains a 
vertex of K. 

Proof: Since G and L satisfy Hall's condition, but G and L' do not, for some 
induced subgraph H of G we have L: a(a, L', H) < IV(H)I ::; I: a(a, L, H). Going 

(fEC (fEe 

from L' to L by restoring 7" to the lists on K from which it was removed does not 
affect the numbers a( a, -, H), a =I T, and can increase a( T, -, H) by at most one, 
and only by that amount if every independent set of a( T, L, H) vertices of H bearing 
T on their lists includes some vertex of K. The conclusions of the Lemma follow. 

With G, L, K, 7", and H as in Lemma 2, for any proper L-coloring <p of H, it must 
be that T is the color on a maximum independent set of vertices of H, among those 
with T on their lists, because H is L-tight, so <p(v) = T for some v E V(K). 
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Lemma 2 will usually be applied with K being a single vertex. 

Definition Suppose that u, v E V(G), a E L(u) and b E L(v). We will say that 
(the choice of) a at u forces (the choice of) b at v through G if and only if there is 
a proper L-coloring <p of G with <p(u) = a, and for every such coloring, <p(v) = b. 
lf G is a path with end-vertices u and v, the word "along" will be used in place of 
"through" . 

The following is extracted from [9], and we omit the proof, which is by induction 
on the length of the path. 

Lemma 3 ([9], Lemma 2) Suppose that P is a path with vertices Vo, .. . ,v£, in order, 
a E L(vo), and IL(Vi)1 2:: 2, i = 1, ... , f. Then the choice of a at Vo forces b at 
Vi. along P if and only if there exist ao, .. . ,a£ with a ao, b = at, such that 
L(vj) = {aj-I, aj}, j = 1, ... , f. 

Corollary 2 Suppose that P and L are as above, at, a2 E L(vo), bI , b2 E L(v£), 
al =1= a2, and ai at Vo forces bi at v£ along P, i = 1,2. Then b1 =1= b2 and L(vj) = 
{at, a2} = {b1, b2}, j = 1, ... ,f. 

Corollary 3 Suppose that P and L are as above, f 2:: 1, a E L(vo), and b E L(v£). 
Suppose that a at Vo forces b at v£ along P, and b at v£ forces a at Vo along P. Then 
L(vo) = ... = L(v£). If f is odd, a =1= band L(Vi) = {a, b}, i = 0, ... , f. If f is even, 
a = band L(Vi) = {a,a}, i = 0, ... ,f, for some a =1= a. 

Proof: The proof is by induction on f. The result is easy for f = 1. Suppose that 
f > 1. Then IL(Vi)1 = 2, i = 0, ... , f, by Lemma 3. Let a = ao, al,'" ,a£-t, a£ = b 
be as in the conclusion of Lemma 3, arising from the supposed forcing of b by a. 
Since b at Ve forces a at Vo along P, it must be that b E L( v£-d = {a£-2, a£-I}, by 
Lemma 3; since b = ae =1= a£-I, it must be that b = ae-2. Now, a at Vo forces a£-1 
at V£-1 along P - Vi, and a£-1 at V£-l forces a at Vo along P - Vi. By the induction 
hypothesis, L(vo) = ... = L(v£-d, and by reversing the roles of a and b, and of Vo 
and Ve, we conclude L(vd = ... = L(v£). Thus all L(vj) are the same, j = 0, ... ,f. 
lf f is odd, f - 1 is even, so a = a £-1 =1= b and the common list on P is {a, a} for some 
a =1= a; since L( V£-I) = {b, 0"£-1) = {a, b}, it must be that a = b. If f is even, f - 1 is 
odd, so by the induction hypothesis a =1= a£-l and the common list is {a, a£-d; since 
L(v£-d = {b, a£-d, it must be that a = b, in this case. 

Proof of Theorem 2( d) Let the vertices of G = 8(3,3,2) be labeled as in Figure 
4, and suppose that L is a list assignment such that G and L satisfy Hall's condition 
and IL(x)1 ~ 2 for all x E V(G). 

By earlier remarks, Theorem 2(a), and Lemma 1, G - x is properly L-colorable 
for all x E V(G), so we may as well assume that IL(x)1 = 2 for x = Xl,X2,Yl,Y2,V. 
(Otherwise, G would surely be properly L-colorable.) Suppose that L(v) = {a, b}. 

Then we may as well suppose that in each proper L-coloring of the 6-cycle G - v, 
one of u, w is colored a, the other b. 

First suppose that some symbol 'T ~ {a,b} is in L(u) U L(w). Without loss of 
generality, suppose that a, 'T E L(u) and b E L(w). Since all lists are of length ~ 2, 
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we can properly L-color the path P : U, Y1, Y2, W, X2, Xl starting with 7 at u: since no 
proper L-coloring of G - v has 7 at u, it must be that T at U forces 7 at Xl along P. 
By Lemma 3 there exist 0"1,0"2,0"3,0"4 such that L(Yd = {T,O"l}, L(Y2) = {0"1,0"2}, 
L( w) = {0"2' 0"3}, L(X2) = {0"3, 0"4}, and L(Xl) = {0"4' T}. Note that 0"1 i- T, 0"1 i- 0"2, 
0"2 i- 0"3, 0"3 i- 0"4, and 0"4 i- 7, although it may be that 0"1 = 0"3 or 0"4 or that 0"2 = 0"4, 
or that T is either of 0"2,0"3. Recall that T is neither a nor b. 

v 

U w 
L(v) = {a, b} 

Y2 

Figure 4: 

Since b E L(w), either b = 0"2 or b = 0"3. First, assume that b = 0"3. Now we can 
properly L-color G by setting cp(u) = a, cp(v) = b, cp(w) = 0"2, CP(Y2) = 0"1, CP(Yl) = T, 
CP(Xl) = 7, and CP(X2) = 0"3 ( = b i- T, 0"2). If b = 0"2, a similar coloring can be achieved. 

So now we may assume that no such T exists, after all, and L( u) = L( w) = 
{a, b} = L(v). 

Since all lists are of length 2, we may properly L-color each path PI : u, Xb X2, w, 
and P2 : U, Yl, Y2, w, starting with either a or b at u. If there exist proper L-colorings 
of each path starting and ending with a, or of each starting and ending with b, then 
we can properly L-color G. So it must be that a at u forces b at w along one of 
PI, P2 , and that b at u forces a at w along one of Pl, P2 . 

Without loss of generality, suppose that a at u forces b at w along Pl' By Lemma 
3 there exists 0"1 i- a such that L(xd = {a,O"d = L(X2)' Hall's condition implies 
that 0"1 i- b, for, if 0"1 = b, L and the 5-cycle u, v, W, X2, Xl, U do not satisfy the 
inequality in Hall's condition. [By Theorem 2(a) we know this without checking, 
because C5 is not properly colorable with two colors.] 

Therefore, it must be along P2 that bat u forces a at w; therefore, for some 0"2 i- b 
(and 0"2 i- a, for the same reason that 0"1 i- b), L(Yl) = L(Y2) = {n) t72}' Whether 
or not 0"1 = a2 is not important-let us assume that 0"1 i- 0"2. We now have that 
a(a, L, G) = a(b, L, G) = 2, a(O"i' L, G) = 1, i = 1,2; thus L: a(a, L, G) = 6 < 7 = 

(TEe 

IV(G)I, contradicting the assumption that G and L satisfy Hall's condition. 0 
Proof of Theorem 3(a). Let the vertices of G = K4-with-an-ear-of-length-2 

be labeled as in Figure 5, and suppose that L is a list assignment such that G and 
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L satisfy Hall's condition, and IL(z)1 ~ 2 for all Z E V(G). Since G - z has Hall 
number::; 2 for each z E V(G), by previous remarks and Theorem 2(b), it follows 
that G - z is properly L-colorable for each z E V (G). Therefore, we may as well 
suppose that IL(u)1 = 2; say L(u) = {a, b}. 

We may also suppose that L is critical with respect to the requirements it satisfies. 
This means, in this case, that if IL(z)1 > 2 and a E L(z), for some a E 0, z E V(G), 
then the list assignment L' obtained from L by removing a from L(z), and changing 
the L-lists in no other way, will not satisfy Hall's condition with G. [If L is not critical, 
then remove symbols from lists until none can be removed further without reducing 
a list to length 1 or violating Hall's condition,' and let this "reduced" assignment 
replace L. Surely a proper coloring with respect to the reduced assignment will be a 
proper L-coloring.] 

x y 

v w 

u 

L(u) = {a,b} 

Figure 5: 

We may as well suppose that in every proper L-coloring of the clique G - u, one 
of v, w is colored a and the other b. Keeping this firmly in mind, we first show that 
neither L( v) nor L( w) contains a, b, and a third symbol. Suppose, to the contrary, 
that a, b E L( v) and IL( v) 1 ~ 3. By the criticality of L, the list assignments obtained 
by removing a, respectively b, from L( v) must fail to satisfy Hall's condition with 
G. By Lemma 2 there are L-tight su.bgraphs Ha, Hb of G, containing v, such that in 
Ha(Hb), v is in every maximum independent set of vertices among those bearing a 
(b) on their lists. From the position of v in G, it follows that a (b) occurs on no list 
of Ha(Hb) other than L(v). 

Therefore u is in neither Ha nor Hb; that is, both Ha and Hb are subgraphs of 
the clique G - u. Since G - u is a clique, and Hall's condition is satisfied, G - u is 
properly L-colorable; let <p be a proper L-coloring of G - u. Now, <p restricted to 
V(Ha) and V(Hb) properly L-colors Ha and Hb; but the tightness of Ha and Hb and 
the fact that a, resp. b, appears only in L( v) among the lists on Ha , resp. Hb, forces 
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<p(v) = a and <p(v) = b, an impossibility. 
Because Hall's condition is satisfied by G and L, L( u) U L( v) U L( w) must contain 

at least one symbol other than a and b. Without loss of generality, suppose that 
T E L( v) \ { a, b}. By previous remarks and the result of the preceding two paragraphs, 
L( v) must contain one of a, b, but not both. Without loss of generality, assume 
a E L( v) and b rj:: L( v), which forces b E L( w) (because G - u is properly L-colorable 
and for any proper L-coloring <p of G - u, {<p(v), <p(w)} = {a, b}). Then in every 
proper L-coloring of G - u, v will be colored a and w will be colored b. 

Since G - u is a clique, it follows that removing a from L( v) results in a list 
assignment that does not satisfy Hall's condition with G - u, and similarly upon 
removing b from L(w). Applying Lemma 2, there exist L-tight subgraphs HI, H2 
of G - u, with v E V(Ht} being the only v~rtex of HI bearing a on its L-list, 
and w E V(H2) being the only vertex of H2 bearing b on its L-list. From these 
considerations, the tightness of the Hi, and the fact that all lists are of cardinality 
at least two, it is easy to see that IV(Hi ) I ~ 3, i = 1,2. 

Case 1: Hl = H2 = G - u. Then IL(x) U L(y) U L(v) U L(w)1 = 4 and neither 
a nor b occurs in L(x) U L(y). But then o:(a, L, G) = o:(b, L, G) = 1 and we have 
L: o:(a, L, G) = 4 < IV(G)I. SO this case is impossible. 

(JEC 

Notice that the argument in the preceding case shows that if G - u is L-tight, 
then either a or b must be an element of L(x) U L(y). 

Case 2: HI = G -u and IV(H2)1 = 3. By remarks above, it cannot be that both 
x and yare in H2. Without loss of generality, assume that V(H2) = {v,w,y}. 

Let L(u) U L(v) U L(x) U L(y) = {a,b,T,a} (noting that HI is L-tight). Since 
L(y) contains neither a nor b, we have L(y) = {T, a-}. But then H2 is not L-tight, 
because a, b, T,a E L(v) U L(w) U L(y). 

The case IV(Hd\ = 3 and H2 = G - u is handled similarly. 
Case 3: IV(H1)1 = IV(H2)1 = 3. 

Subcase 3(i): HI = H2. If, say, V(HI ) = V(H2) = {v, w, x}, then L(x) contains at 
least two symbols, neither of them equal to a or b. But then IL(v)UL(w)UL(x)\ ~ 4, 
so HI = H2 is not L-tight; thus this subcase is impossible. 

Subcase 3(ii): {v, w} ~ V(Ht} n V(H2) and HI =1= H2. Without loss of gen
erality, assume that V(Ht} = {v, w, x} and V(H2) = {v, w, y}. The tightness of 
HI and H2 implies that 3 = IL(v) U L(w) U L(x)1 = \L(v) U L(w) U L(y)l. Since 
a, b, T E L( v) U L( w) it follows that only a, b, T lie on the lists of G - u, a clique with 
4 vertices, contradicting Hall's condition. 

Subcase 3(iii): {v, w} ~ V(HI ) and v ~ V(H2); then V(H2 ) = {x, y, w} and 
V(Ht} is one of {v, w, x}, {v, w, y}; without loss of generality, assume that V(HI) = 
{v, w, x}. Then L(x) = {b, T} = L('l}J) (because Hl is L-tight, a, b, T E L(v) U L(w), 
and a appears on no list on HI other than L(v)). But then b appears on a list, 
namely L(x), of H2 other than L(w), an impossibility. 

Subcase 3(iv): {v, w} ~ V(H2), w rj:: V(HI). This is dismissed by an argument 
similar to that preceding. 

Subcase 3(v): V(Ht} = {v,x,y}, V(H2) = {w,x,y}. Then neither a nor b 
appears in L(x) U L(y). Since 3 = \L(v) U L(x) U L(y)\ IL(w) U L(x) U L(y)1 and 

222 



IL(x)I,L(y)l2: 2, it must be that L(x) = L(y) = {T,,} for some symbol, different 
from a, b, and T. But then a(a, L, G) = 1, a = a, b, T", so L a(a, L, G) = 4 < 5 = 

(fEG 

IV(G)I, contradicting Hall's condition. 
The possibilities are exhausted; it must be that G is properly L-colorable, after 

~. 0 
Proof of Theorem 3(b) Let G be a graph as described in 3(b), with vertices 

labeled as in Figure 6. 

Xm 

• • • 

• • • 
Yl Yt 

Figure 6: 

Note that m+t is even, and either m or t may be zero; m = 0, for instance, means 
that VI and V2 are adjacent. Suppose that L is a list assignment such that G and L 
satisfy Hall's condition, and IL(z)1 ~ 2 for all z E V(G). Suppose that there is no 
proper L-coloring of G. [For those who abhor proofs by contradiction: every inference 
below proceeding from the assumption that there is no proper L-coloring of G can be 
introduced, in the absence of this assumption, by a sentence of the form "We may as 
well suppose that ... ~ otherwise there is clearly a proper L-coloring of G." Viewed 
in this way, the proof constitutes a list of instructions for finding a proper L-coloring 
of G.J Since, for z E V (G), G - z is either a graph with every block a clique, or 
G - z = (}(m + t + 3,2,1), G - z is properly L-colorable. Therefore, IL(z)1 = 2 for 
z E {UI' U2, Xl, ... , Xm , YI,"" Yt} and IL(z)1 ::; 3 for z E {VI, WI, V2, W2}. 

By previous results and remarks, it is also the case that for every e E E(G), 
h( G - e) ::; 2, and therefore G - e is properly L-colorable. Therefore, in every proper 
L-coloring of G - e, the ends of e receive the same color. (Otherwise, the proper 
L-coloring of G - e would also properly L-color G.) 

Suppose L(UI) = {al,bl } and L(U2) = {a2,b2}. It must be that in every proper 
L-coloring of G - Ui, Vi and Wi are colored with ai and bi, i = 1,2. This implies that 
{ai, bi} ~ L(Vi) U L(Wi), i = 1,2. 

First we show that L(Vi) =f. {ai,bi} =f. L(Wi), i = 1,2. Suppose, to the contrary, 
that L(vd = {aI, bd. Let e = VIX be the edge of G incident to VI and to Xl (if 
m 2: 1) or to V2 (if m = 0). Let 'P be a proper L-coloring of G - e. By previous 
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remarks, CP(VI) = cp(x); without loss of generality, suppose that al = CP(VI) = cp(x). 
Then,~, defined by ~(Ul) = aI, ~(VI) = bl , and ~ = cP on V(G)\{Ul,vd, properly 
L-colors G. 

Now let 'IjJ be a proper L-coloring of G - U2. By remarks above, {a2' b2} = 
{-W( V2), -W( W2)}' Without loss of generality, let -W( V2) a2 and '!/J( W2) = b2. Because 
-W is a proper coloring, at least one of -W(VI), -W(WI) must be something other than 
aI, bl ; without loss of generality, assume -w(vd = 7 ¢:. {all bd· 

Let Phigh be the path with vertices VI, Xl, ... , X m , V2 and let Plow be the path 
with vertices WI, YI, ... ,Yt, W2· First note that in every proper L-coloring of Phigh 
with 7 at VI, V2 must be colored a2 or b2; if not, if there were a proper L-coloring 
of Phigh with 7 at VI and some a¢:.{ a2, b2} at, V2, then we could put this coloring 

together with -W on {ud U Plow' and then color U2 with a2(# b2 = '!/J(W2)) to obtain 
a proper L-coloring of G. 

So, assuming there is no proper L-coloring of G (as we have been), 7 at VI forces 
"a2 or b2" at V2, along Phigh' Apply Lemma 3 with the b there being either a2, if 
b2 ¢:. L(V2), or "a2 or b2", i.e., a2, b2 combined for the moment into a single color, in 
L(V2), in case {a2' b2} ~ L(V2)' Since L(V2) =I- {a21 b2}, L(V2) must contain something 
other than "a2 or b2". Then Lemma 3 implies the existence of 7 = ao, al, ... , am 
such that L(Xi) = {ai-I, ail, i = 1, ... ,m and L( V2) = {a2' am} or {a2' b2, am}, and 
am ¢:. {a2' b2}. [This holds as well when m = 0; ao = am = r ¢:. {a2' b2}; recall that 
7 ¢:. {al,bl }, also.] 

Observe that the choice of am at V2 forces the choice of "not 7" , i.e. of any color 
in L( VI) besides 7, at VI, along Phigh' We know that L( vd contains one or both of 
aI, bl (because one of these must color VI in a proper L-coloring of G - UI). It follows 
that -W(WI) E {aI, bd, because if, on the contrary, -W( WI) ¢:. {aI, bd, then we can color 
Phigh starting with am at V2, along to one of aI, bl at VI, put that together with -W 
on Plow' and then finish off by coloring U2 with a2 and Ul with whichever of aI, bI 

is not coloring Vb to obtain a proper L-coloring of G. Without loss of generality, 
assume that '!/J(WI) = bl . 

By the same sort of reasoning, we may assume that L( VI) \ { aI, bl , 7} is empty, so 
L (vd consists of 7 and either al alone or both al and bl . 

Since L( W2) =I- {a2' b2}, L( W2) contains a symbol 'Yother than a2, b2. Since all lists 
are of cardinality;:::: 2, we can properly L-color Plow starting with "I at W2. It must 
be that in every such coloring, WI is colored with 7 = -w(vd, because otherwise we 
could put such a coloring together with -W on Phigh and finish off a proper coloring 
of G by coloring Ul, U2, with no difficulty. That is, "I at W2 forces 7 at WI along 
Plow' (Before this, we did not know that 7 E L(wd.) By Lemma 3, IL(wdl = 2, so 
L( wd = {bl, 7}. 

Now we show that L(W2) = {b2, "I}, and "y = am· We know that b'2, ~r' E L(W2)' 
The equality L(W2) = {b2, "I), and"Y = am, will follow if there is a proper L-coloring of 
G - Ul, with am coloring V2' [L( wd = {bI, 7} arose from the assumption of a proper 
L-coloring '!/J of G - U2, with 7 ¢:. {aI, bl } coloring vd We obtain such a coloring by 
coloring Plow with '!/J, and Phigh with am at V2, al at VI-we have already seen that 
a proper such coloring exists-and, finally, a2 at U2. 
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We hope that you have been keeping accounts! At this point, we have that 
L(W2) = {b2,'}'}, L(wt) = {bl,T}, L(VI) = {al,T} or {al,bl,T}, and L(V2) = {a2,')'} 
or {a2,b2,')'}, with al,bl,T distinct and a2,b2,'}' distinct. More importantly, ')' at W2 
forces T at WI along Plow' and T at WI forces,), at W2 along Plow [either by reversing 
the roles of UI and U2, or-if not, put a proper coloring of Plow with T at WI and b2 
at W2 together with a proper coloring of Phigh with')' at V2 and al at VI and then 
finish off with bl at UI and a2 at U2]. 

By Corollary 3 it follows that L(wd = L(YI) = ... = L(Yt) = L(W2)' 
Case 1. t is even. Then the length of Plow is odd, and by Corollary 3 we have that 

')' =f. T, so')' = bl , T = b2, and the common list along Plow is {bt , b2} = {')', T}. In this 
case we will see that it is possible to properly L-color G. Properly L-color Plow with 
b2 = T at WI and b1 = '}' at W2, and color Ui with bi, i = 1,2. Now we try to properly 
color Phigh; just to make things harder, delete bl from L( vd and b2 from L( V2), if 
either is there; now L( VI) = {aI, T} = {aI, b2} and L(V2) = {a2, '}'} = {a2, bd, and T 
at VI forces a2 at V2, along Phigh' 

We hope to color Phigh with al at VI and a2 at V2, because such a coloring will 
go well with the coloring already done to make a proper L-coloring of G. We can 
find such a coloring unless al at Vl forces ')' at V2 along Phigh' If that were the 
case, then by Corollary 2, L = {aI, T} = {a2, ')'} at every vertex of Phigh' But since 
T = b2 f. a2, that would mean that T = ')', contradicting T f. ,)" in this case. 

Case 2. t is odd. Then the length of Plow is even, so ')' = T and the common 
list along Plow is {T,o-} for some a- f. T. Since L(WI) = {T,bd and L(W2) = {T,b2}, 
we have that a- = bl = b2 . 

Rashly removing bl = b2 from L(Vl)' L(V2)' if necessary, we try to properly L
color G by properly coloring Plow with T on WI and W2, b1 = b2 on Ui, i = 1,2 and 
starting in with al on Vl, with the hope of coloring Phigh with ai on Vi, i = 1,2. 
Recall that T on VI forces a2 on V2, along Phigh' If al on VI forces, T = ')' on V2 
along Phigh, then L = {aI, T} = {a2' T} at all vertices of Phigh, by Corollary 2, so 
al = a2. But the length of Phigh is even, because the length of Plow was, so al at 
VI does not force T at V2 along Phigh, after all-it forces a2 = al' Thus there is a 
proper L-coloring of G, after all! 0 

Lemma 4 Suppose V E V(G) andfor each non-negative integerC, Ge =Cuff(G, K 3 ,C), 
with the joining path attached to G at v. If h(Ge) = 2 for some C, then h(Gf.) = 2 
for all C = 0,1,2, .... 

Proof: It suffices to show that, for'C > 0, h(G,J = 2 if and only if h(Go) = 2. First 
suppose that h(Go) = 2, C> 0, and the vertices of Ge are labeled as in Figure 7. 

In case C > 1, let the internal vertices along the joining path P from v to W be 
Ul, ... , Ue-l· 

Suppose that L is a list assignment to Ge such that Gf. and L satisfy Hall's 
condition and IL(z)1 2:: 2 for all z E V(Ge), but there is no proper L-coloring of Ge. 

Since G is an induced subgraph of Go, h(G) ~ h(Go) = 2, so h(G) = 2, because 
if h(G) = 1 then every block of G is a clique, so the same would be true of Ge. 
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By Lemma 1, G£ - x and G£ - y have Hall number 2. Therefore, it must be that 
IL(x)1 = IL(y)1 = 2; for if, say, IL(x)1 2:: 3, then clearly Ge would be properly 
L-colorable. Also, IL(w)1 ::; 3. 

x 

-<1 
{a,b} = L(x) 

{a, b} = L(y) 

y 

Figure 7: 

As in the proof of Theorem 3(a), we may assume criticality: for any list L(z), 
z E V(G£), with IL(z)1 2:: 3, removing any single symbol from L(z) and disturbing 
no other list results in a list assignment that does not satisfy Hall's condition with 
G£. We may also assume that for each a E C, the subgraph G£(a') of G£ induced 
by {z E V(Ge); a E L(z)} is connected; if it is not, replace a in the lists on the 
different components of G£(a) by different symbols in C, none previously appearing 
in any L-lists on G£. It is straightforward to see that after this replacement, the 
new list assignment satisfies Hall's condition with G£, and that there is a proper 
coloring of Gf., from the new assignment if and only if there is one with the old. 
(The assignment after replacement satisfies Hall's condition with G£ if and only if 
the original assignment does; this is laboriously proven in [1]. The "only if" part of 
this proposition implies that the replacement also preserves the criticality mentioned 
above-alternatively, a critical list assignment with every Ge(a) connected can be 
achieved by a sequence of symbol replacements alternating with list pruning.] 

By Lemma 1, there is a proper L-coloring <p ofG£-{x, y}. Since IL(x)1 = IL(y)1 = 
2 and G£ is not properly L..:colorable, it must be that L(x)\<p(w) = L(y)\<p(w), a 
singleton. Thus, for some a #- b, L(x) = L(y) = {a, b}, and at least one of a, b, say 
b, is in L(w). 

First we show that not both of a, b can be in L( w). Suppose, to the contrary, 
that {a, b} ~ L(w). Because Hall's condition is satisfied, the triangle with vertices 
w, x, y is properly L-colorable, so L( w) must contain some symbol c ¢ {a, b}. Thus 
L(w) = {a,b,c}. 

Removing any of a, b, c from L( w) results in a new list assignment which does not 
satisfy Hall's condition with G£. Applying Lemma 2 in the cases of removing a or 
b we see that there are L-tight induced subgraphs Hal Hb of G£, containing w, such 
that w is in every maximum independent set of vertices of H T , among those bearing 
r on their L-lists, for r = a, b. Then neither Ha nor Hb contains either of x, y; i.e., 
Ha and Hb are subgraphs of Gr{x, y}, which is properly L-colorable. A proper L
coloring of Gr{x, y} properly L-colors Ha and Hb, both L-tight-so w would have 
to be colored a and b in such a coloring, an impossibility. 
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Thus a ~ L(w) and b, C E L(w). Because G£(a) is connected, a appears only in 
L(x) and L(y), among the lists on G£. This observation will be useful, very shortly. 

G is properly L-colorable (since, as noted above, h(G) = 2). Since G£ is not 
properly L-colorable, it must be the case that for any proper L-coloring of G, what
ever v is colored will force b at w along P. From Lemma 3 and Corollary 2 it follows 
that IL(w)1 = 2, so L(w) = {b, c}, and there is only one symbol 7 with which v can 
be colored, in any proper L-coloring of G. lf I! = 1, 7 = c. Otherwise, if I! > 1, let 
L(uj) = {aj-l, aj}, j = 1, ... ,I! - 1 (as in Lemma 32, with ao = 7 and 0-£-1 = c. 

In any case, 7 =I a. We define a list assignment L on Go, with Go as in Figure 8, 
by L = L on V(G) and L(x) = L(y) = {a,7} .. 

x L(x) = {a,7} 

y L(y) = {a, 7 } 

Figure 8: 

Clearly Go is not properly I-colorable, since in every proper L-coloring of G, v 
must be colored with 7. If we show that Go and L satisfy Hall's condition, we will 
be done with this part of the proof. Suppose that H is an induced subgraph of Go. 
lf H is a subgraph of G, then (*) holds, with H there replaced by H (and note that 
L = L on G), so suppose that one or both of x, yare in H. If H contains only one, 
say x, then the fact that (*) holds with H replaced by H - x and L by I implies the 
same for H, since a appears on no L-lists on G. So suppose that x, y E V(H), and 
( *) does not hold, for Land H. 

Again, the facts that (*) is satisfied by H-{x, y} and L, and that a appears in no 
L-list on G, implies that we may as well suppose that I: a(o-,L,H) = IV(H)I- 1, 

(fEe 

and that v is not only in H, but also is in every maximum independent set of 
vertices H - {x, y}, among those with 7 on their L-lists. [Otherwise, we would have 
a(7, L, H) = a(7, L, H - {x, y}) + 1, so 

La(o-,L,H) = L a(a,L,H-{x,y})+2 

2:: 1 V (H - {x, y} ) I + 2 = I V (H) I· ) 

Let H be the subgraph of G£ induced by V(H) U {Ub ... ,U£-I, w}; i.e., H is 
obtained by joining the triangle with vertices w, x, and y to H - {x, y} by the path 
P, with v being the point of attachment. Clearly IV(H)I = IV(H)I + I!. If 
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L a(a, L, H) ::; I: a(a, L, H) + f (**) 
(fEe 

then 
L a(a, L, H) ::; IV(H)I- 1 + f = IV(H)I- 1, 
(fEe 

contradicting the assumption that G l and L satisfy Hall's condition. 
To see that (**) holds (with equality, in fact), think of L a(a, L, H) being added 

(fEe 

to by the lists along P, to get up to L a(a, L, H). The occurrence of a in the lists 
(fEe 

on x and y contributes 1 to both sums; the occurrence of Tin L(x), L(y) contributes 
nothing to the sum L a(a, L, H), because of the earlier conclusion about v being 

(f 

in every maximum independent set of vertices of H - {x, y}, among those with T 

on their lists. For the same reason, the occurrence of T = aD in L(UI) (or (L(w), if 
£ = 1) contributes nothing to L(f a(a, L, H). For 1 :::; j :::; f - 1 (supposing f ~ 2), 
the two appearances of aj contribute 1 to this sum, and, finally, b contributes one 
more, for a total of f, whence (**), with equality. . 

This account glosses over the possibility that some aj might equal aj+2, including 
the possibility that b might be the same as al-2' Nonetheless, the account is accurate. 
To see this, recollect that Gl(a) is connected, for each a E C; from this and the facts 
that L(uj) = {aj_baj}, j = 1, ... ,£-1, and L(w) = {b,c} = {b,al-l}, it is easy 
to see that T appears on the lists of an even number of consecutive vertices of P, 
starting at v, that b appears on an odd number of consecutive vertices of P - v, 
counting back from w, and that each a E {aI, ... , ai-I} \ {T, b} appears on the lists 
of a subpath of P - v of even order. It may be that a1 E L( v), or not. In any of 
the several cases (al = b, al ::I b, al E L(v), or ai ~ L(v)) it is straightforward 
to see that the claim of the preceding paragraph is true: for 1 :::; j ::; f - 1, the 
appearance of aj in L(uj) and in L(uj+d (where U£ = w) contributes 1 to the sum 
La(a,L,H), over La(a,L,H), the appearance ofT in L(Ul) contributes nothing, 
(f (f 

and the appearance of b in L(x), L(y) and L(w) contributes 1. This completes the 
proof that if h(Go) = 2, then h(G£) = 2 for any f > O. 

Now suppose that h(Gt) = 2 for some e > O. We want to show that h(Go) = 2. 
As before, we conclude immediately that h( G) = 2. 

Suppose that L is a list assignment to V(Go) satisfying Hall's condition with Go, 
and IL(z)1 ~ 2 for all z E V(Go), and suppose that there is no proper L-coloring 
of Go. As in the first half of the proof, we aim for a contradiction by producing a 
list assignment L, this time to V(G l ), from which there is no proper coloring of Gl, 
although IL(z)1 ~ 2 for all z E V(G£) and Gl and L satisfy Hall's condition. 

Also as before, we may assume that L is critical, i.e., if IL(z)1 2 3 then removing 
any single symbol from L(z) results in a list assignment that does not satisfy Hall's 
condition with Go. 

Let the vertices of Go and G£ be labeled as in Figures 8 and 7 (and ignore the 
lists in those figures). Since h(G) = 2, Go - x and Go - yare properly L-colorable, 
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by Lemma 1, so IL(x)1 = IL(y)1 = 2. The proper L-colorability of G then implies, 
as in the first part of the proof, that L(x) = L(y) = {a,b}, say, and in every proper 
L-coloring of G, v is colored with a or with b. 

Because Hall's condition is satisfied, the K3 induced by v, x, and y is properly 
L-colorable, so L( v) contains a symbol not in {a, b}. We show that L( v) does not 
contain both a and b. If a, b E L(v) then IL(v)1 ~ 3; by criticality and Lemma 2 there 
exist L-tight subgraphs Ha , Hb of Go, each containing v, with v in every maximum 
independent set of vertices of Ha , resp. Hb, among those with a, resp. b, on their 
lists. Then nf~ithp,r x nor y is a vertex in either Ha or Hb; i.e., Ha, Hb are subgraphs 
of G. There is a proper L-coloring of G, and the properties of Ha, Hb imply that in 
any such, v must be colored with both a and b, an impossibility. 

Thus exactly one of a, b, say b, is in L( v), so in every proper L-coloring of G, v is 
colored b. 

Make a list assignment L to G£ by taking L = L on V(G), L(x) = L(y) = {O', T} 
and L( w) = {T, /' }, /' -:f:. 0', where T, 0' are new symbols that appear nowhere in the 
lists on the vertices of G, and so is /" if e > 1; if e = 1, /' = b. If e > 1, equip the 
internal vertices of P with lists of 2 symbols each, so that b at v forces T at w, along 
P. Clearly G£ is not properly L-colorable. It remains to show that G£ and L satisfy 
Hall's condition. Suppose H is an induced subgraph of G£. We want to show that 

La(a,L,H) ~ IV(H)I· 
uEC 

Let HI = H n G, i.e., the subgraph induced (in G) by V(G) n V(H). We have 
that 2: a(O', L, HI) ~ IV(H1)1; from the relation of H to HI, and the nature of the 

uEC 

new lists on G£ - V(G), it is straightforward to see that there is only one set of 
circumstances in which (*)' could fail: H contains v, UI, ... ,U£-l, W, x, and y, v is 
in every maximum independent set of vertices of HI, among those with b on their 
L-lists (so the occurrence of b in L(ud, or L(w) if e = 1, contributes nothing to 
2: a(O', L, H)), and HI is L-tight. 

uEC 

But these circumstances regarding HI, L, b, and v cannot hold, for consider H2 , 

the subgraph of Go induced by V (HI) u {x, y}. If v is in every maximum independent 
set of vertices in HI with b on their lists, then a(b, L, HI) = a(b, L, H2)' Meanwhile, 
clearly a( a, L, H2 ) :::; a( a, L, Hd + 1. So if HI is L tight, we would have 

IV(H2 )1 = IV(H1 ) + 2 = L a(O', L, Hd + 2 
uEC 

~ L a( 0', L, H 2 ) - 1 + 2, 
uEC 

contradicting that Go and L satisfy Hall's condition. 0 
Proof of Theorem 3(e) By Lemma 4, it suffices to prove the result for £ = o. 

Let A =Cuff(B(2, 2, 1), K 3, 0), as described in the theorem, be labeled as shown in 
Figure 9. Suppose that L is a list assignment to V(A), satisfying Hall's condition 
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with A, with IL(z) 1 2:: 2 for all Z E V(A), and suppose that there is no proper L
coloring of A; we aim to prove a contradiction. As in the proofs of Lemma 4 and 
Theorem 3(a), we can assume that L is critical. 

x L(x) = {a,b} 

w 

y L(y) = {a,b} 

Figure 9: 

Since L - x and L - y have Hall number 2, and L - w has Hall number 1, it must 
be that IL(x)1 = IL(y)1 = IL(w)1 = 2. Since A - {x, y} is properly L-colorable, and 
A isn't, it must be that L(x) = L(y) = {a, b}, say, and in every proper coloring of 
G = A - {x, y}, v is colored with one of a, b. 

Since the triangle T(v, x, y) with vertices v, x, y is properly L-colorable, there is 
a symbol c i:. {a, b} in L( v). As in earlier proofs, we use criticality to show that L( v) 
cannot contain both a and b. If, on the contrary, {a, b} £; L( v), then IL( v) 1 2:: 3; 
thinking of removing either of a, b from v, by criticality and Lemma 2 there exist 
L-tight subgraphs Ha , Hb of A such that v is in every maximum independent set of 
vertices of H7 among those bearing r on their lists, r = a, b. Thus neither Ha nor 
Hb contains either of x, y; Le., both Ha and Hb are subgraphs of G = A - {x, y}. 
But G is properly L-colorable, and any proper L-coloring of G colors Ha and Hb, as 
well, which leads to the absurd conclusion that v has to be colored both a and b, in 
such a coloring. 

So L( v) contains only one of a, b--say b, and in every proper coloring of G, v is 
colored with b. We have that b, c E L(v); next we show that L(v) = {b, c}. If not, 
then IL(v)1 2:: 3, and, thinking of removing b from L(v), we still have the L-tight 
subgraph Hb of G, referred to above, with v in every maximum independent set of 
vertices of Hb , among those with b on their lists. Let H be the subgraph of A induced 
by V(Hb) U {x,y}. Then a(b,L,H) = a(b,L,Hb), a(a,L,H) = a(a,L,Hb) + 1, and 
clearly a((]',L,H) = a((]',L,Hb) for all (]' E C\{a,b}, so, because Hb is tight, 

La((]',L,H) = La((]',L,Hb) + 1 
uEC uEC· 

= IV(Hb)1 + 1 < IV(Hb)1 + 2 = IV(H)I, 

contradicting the assumption that A and L satisfy Hall's condition. 
So L(v) = {b, c}. Now, observe that A - UIV is a graph with every block a clique, 

and so has Hall number 1. Therefore, there is a proper L-coloring of A - Ul v, and in 
every such, Ul and v must receive the same color; that color must be c, since in every 
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proper L-coloring of T ( v, x, y), v is colored c. Similarly, in every proper L-coloring of 
A - U2V, U2 and v are colored c. It follows not only that c E L(Ul) n L(U2), but also 
that there are at least two different proper L-colorings of the triangle T ( Ul, U2, w) 
with vertices Ul, U2, W, in one of which Ul is colored c, and in the other U2 is colored 
c. Furthermore, in any proper L-coloring of that triangle, one or the other of Ul, U2 
must be colored c-otherwise, a coloring of W, Ul, and U2 could be extended to a 
proper L-coloring of A. 

Next we observe that c fJ. L(w); if, on the contrary, c E L(w), then, since w is 
not colored c in any proper coloring of T(Ul' U2, w), and c E L(Ul) n L(U2), it must 
be that L( Ul) = L( U2) = {c, d} for some d (distinct from c, but not necessarily from 
b or a). However, it then follows that (*) fails for H = A - w (by direct calculation; 
it also follows that Hall's condition is violated somehow because H is not properly 
L-colorable), contradicting the assumption that A and L satisfy Hall's condition. 

So, recalling that IL(w)1 = 2, we have that c fJ. L(w) = {d,e}, for some d, 
e E C. Also, by the observation above about H = A - w, it is not possible that 
L( Ul) = L( U2) = {j, c} for any symbol j E C. 

From this and previous conclusions about T(Ul' U2, w), it must be that d, e E 

L( ud u L( U2) ~ {c, d, e}. But then, by direct computation, (*) fails with H replaced 
by A, contradicting the assumption that Hall's condition is satisfied by A and L. 0 

Proof of Theorem 4. By previous results, either proven here or in [7] or in [9], 
for each graph A claimed to be Hall-2+-critical in Theorem 4, and each z E V(A), 
h(A - z) s: 2, so all that remains is to produce, for each A, a list assignment L to 
V(A), satisfying Hall's condition with A, such that IL(z)1 2:: 2 for all z E V(A), and 
such that there is no proper L-coloring of A. These list assignments are given picto
rially, using positive integers for colors (without brackets and commas, sometimes, 
so 12 stands for {I, 2}, for example). In the cases listed under (j) assignments are 
given for the case f = 0 only, and this suffices to show that h(A) > 2 for all f, by 
Lemma 4. Regarding part (d), the theorem of Tuza [11] mentioned earlier implies 
that h(A) = 3; we give an assignment showing h(A) > 2, anyway. 

In every case, it is straightforward to see that no proper coloring is possible. 
Verifying that Hall's condition is satisfied is a little harder; in each case, check that 
( *) holds with H = A, and then verify that A - z is properly colorable for each 
z E V(A), from the given list assignment. 

The graphs in all but (d), (e), (g), and (j)(3) are line graphs, and the list as
signments in most of these cases are due entirely to the first author; they will also 
appear, in edge assignment form, in his paper [3], which completely characterizes the 
line graphs with Hall number ::; 2. . 
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23 45 45 
000 

13

7
24 

12 

(a), nine edges omitted 

14 13 

14<I><1>12 

13 24 
(c) 

123 12 

12~124 
(d) 

232 

34 34 

12 24 

1,2 +£ 25 

(b), with .e = ear length; in 

case £ > 3, the lists on the 

vertices between 25 and 1, 2 + £ 

are {k - 1, k}, k = 6, ... , 2 + £ 

123 123 

12 1234 

124 124 

(e) 



13 

13 

23 

13 

12 12 

1,£+ 2 

3 forces 1 along P 
The cycle is of length £ + 2 ~ 3; 
P is of length £ 

(f) 

(h) 

56 

56 

12 

(j)(1 ) 

13 

13 

233 

12 23 

13 \R-----~ 12 

3 forces 2 along P 

(g) 

12 

23 

(i) 

12 

13 

• 
• 
• 13 

m-1,m 
(j)(2) 



12 

13 

23 

(j)(3) 

23 12 

12 23 

(£). P pI p" , , , 
all of length one 

13 34 

12 

k + 1, k + 2 

••• 

••• 
-E-- 12 -----

45 

45 

1,£ + 1 

12 

12 

13 
(k) 

12 
--0 ••• 

23 f, f + 1 

(f); P, p" of length one, 
pI of length £ > 1 

l,k +2 

('+---G- ••• 2,k+m+ 1 
2, k + 2 k + 2, k + 3 k + m, k + m + 1 

(£); P, pI, p" of lengths k, f, m 2:: 2, 
all even 

234 

23 

34 

1,£ + 1 

1, f 1 

2,£ + 1 



13 34 k + 1, k + 2 
••••• 2,k+ 2 

12 12 

•••• • 
--12 ---

•••• • 0 l,k + m + 1 
2,k+2 k+2,k+3 k+m,k+m+ 1 

(£); P, pI, P" of lengths k, f, m :2: 3, 
all odd 

This completes the proof of Theorem 4. 0 
The last two list assignments show that the graph in Theorem 4(£) has Hall 

number > 2 whatever the lengths of P, pi, P"; but if, say, P and pI have lengths of 
different parity, and the length of P" is > 1, then the graph has a proper induced 
subgraph of the type of Theorem 4(h), and so is not Hall-2+-critical. 

Our thanks to the referee for several helpful comments and corrections. 
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