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Abstract 

A graph is h-matchable if G-X has a perfect matching for every subset 
X ~ V(G) with IXI = h, and it is h-extendable if every matching of h 
edges can be extended to a perfect matching. It is proved that a graph G 
with even order is 2h-matchable if and only if (1) G is h-extendable; and 
(2) for any edge set D such that, for each e = xy E D, x,y E V(G) and 
e ~ E( G), G U D is h-extendable. Also nine known sufficient conditions 
for a graph to be h-extendable are stated, and sharp analogues of them 
all are obtained for matchability, each of which implies the corresponding 
result for extendability. 

1 Terminology and introduction 

All graphs considered in this paper are undirected, finite and simple. In general 
we follow the terminology of [1]. 

Let G be a graph. We denote by o(G) the number of odd components of G and 
by w(G) the number of the components of G. Let v E V(G) and X ~ V(G). We 
define N(v) = {u I u E V(G) and uv E E(G)} and N(X) = U N(v). Let S ~ V(G) 

vEX 
and let H be a subgraph of G. We ~se the notation Ns(v) = N(v) n S, NH(v) = 
N(v) n V(H), ds(v) = INs(v)1 and dH(v) = INH(v)l. Let G and H be two disjoint 
graphs. We denote by kH the union of k copies of Hi and by G+ H the join of G and 
H, which is the graph constructed from G and H by joining each vertex of G to all 
vertices of H. 

A graph G with n vertices is h-matchable where 0 ::; h :::; n-2, if for each sub
set X ~ V(G) with IXI = h, G-X has a perfect matching (a I-factor). When 
h = 0, G has a perfect matching. When h = 1 or 2, G is known as factor-critical or 
bicritical respectively. G is h-extendable for 0 ::; h :::; (n-2)/2 if G has a matching 
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of size h and any matching of size h in G is contained in a perfect matching of G. 
When h = 0, G has a perfect matching. 

The toughness of G is defined as: 
tough(G) = min { W(~IX) I X C V(G) and w(G-X) ~ 2 } 

if G is not a complete graph, and tough(G) = 00 if G is a complete graph. 
The binding number of G is defined as: 
bind(G) = min { I~~)I I 0 =1= X C V(G) and N(X) =1= V(G) }. 
The concept of h-extendability was introduced by Plummer [6] in 1980. Since 

then, several general sufficient conditions for h-extendability have been found (see 
[2], [4-8] and Section 4 below). For each of these conditions, we shall obtain an 
analogous sharp sufficient condition for a graph to be h-matchable, and we shall 
see in Section 4 that each of our new theorems implies the corresponding result for 
extend ability. Also we shall obtain a result to show the relation between matchability 
and extend ability in Section 2. 

2 A few properties of h-matchable graphs 

In this Section, we show some important properties of h-matchable graphs of 
which we shall make frequent use in the next section. 

Proposition 1: Let G be a graph with order nand h be an integer such that 0 ::; 
h ::; n-2 and h == n (mod 2). Then G is h-matchable if and only if, for each subset 
S ~ V(G) with lSI ~ h, o(G-S) ::; lSI - h. 
Proof. This follows easily from Tutte's well known characterization of perfect 
matchings [11] (see also [10], Theorem 3.3.12.) 0 

Corollary 2: Let G be anh-matchable graph. Then G is j-matchable for every j 
such that 0 ::; j ::; hand j == h (mod 2). 
Proof. We use Proposition 1. Suppose S ~ V(G) and lSI ~ j. If j ::; lSI < h, then 
SeT for some set T such that ITI = h, and then o(G-S) ::; o(G-T) + (h-j) ::; 
(lSI-h) + (h-j) = ISI-j; this holds because removing a vertex from a graph cannot 
reduce its number of odd components by more than 1. If lSI ~ h then o(G-S) ::; 
ISI-h ::; ISI-j. 0 

Corollary 3: Let G be a graph with order n that is not h-matchab1t:'; where 0 ::; h 
::; n-2 and h == n (mod 2). Then there is a set S C V(G) with lSI ~ h such that 
w(G-S) ~ o(G-S) ~ ISI-h+2 ~ 2. 
Proof. By Proposition 1, there is a set S ~ V(G) with lSI ~ h such that o(G-S) 
~ ISI-h+1. But o(G-S) has the same parity as n-ISI and hence as ISI-h, and so 
o(G-S) ~ ISI-h+2. The rest is obvious. 0 
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Lemma 4 ([2]): Let h 2:: 1. Then a graph G with even order is h-extendable if and 
only if o(G-S) ::s; ISI-2h for every S c V(G) such that G[S] contains h independent 
edges. 

The next theorem shows the relation between 2h-matchable graphs and h-extend
able graphs. 

Theorem 5: A graph G with even order is 2h-matchable if and only if 
(1) G is h-extendable; and . 
(2) for any edge set D such that, for each e = xy E D, x, Y E V(G) and e ¢ E(G), 
G U D is h-extendable. 
Proof. Suppose G is 2h-matchable. By Proposition 1, o(G-S) ::s; ISI-2h for each 
S ~ V(G) with lSI 2:: 2h. By Lemma 4, Gis h-extendable. Let D be an edge set such 
that, for each e = xy E D, x, Y E V(G) and e ¢ E(G). And let G' = G u D. Since 
adding new edges to G the number of odd components in G-S does not increase for 
each set S ~ V(G), we have o(G'-S) ::s; ISI-2h for each S ~ V(G') with lSI 2:: 2h. 
Hence G' is h-extendable. 

Suppose G is not 2h-matchable. By Corollary 3, there is a set S ~ V(G) with 
lSI 2:: 2h such that o(G-S) 2:: ISI-2h+2. We have two cases. 
Case 1: G [S] contains h independent edges. 

Then by Lemma 4, G is not h-extendable. So (1) of this theorem does not hold. 
Case 2: G[S] contains less than h independent edges. 

However, lSI 2:: 2h. We can add a set D of edges such that, for each e = xy E D, 
x, yES and e ¢ E(G), into G[S] so that G[S] contains h independent edges. Let G' 
= G u D. Since o(G-S) 2:: ISI-2h+2, o(G'-S) 2:: ISI-2h+2, by Lemma 4, G' is not 
h-extendable. Hence (2) of this theorem does not hold. 0 

3 Some sufficient conditions for matchability 

In this section, we prove nine sufficient conditions for match ability that are anal
ogous to, and have similar proofs to, known sufficient conditions for extendability. 
Our first condition involves toughne~s. 

Theorem 6: Let G be a connected graph with order n and let h be an integer with 
o ::; h ::s; n-2 such that h == n (mod 2 ). Suppose that tough(G) > ~ , and tough(G) 
2:: 1 if h ::s; 1. Then G is h-matchable. 
Proof. Suppose not. Clearly tough(G) < n/2 and so h < n. 

By Corollary 3, there is a set S ~ V(G) with lSI 2:: h such that w(G-S) > 
lSI - h + 2 2::2. However, if h :::; 1 and tough(G) 2:: 1 then 

w(G-S) ::s; ISI/tough(G) :::; lSI < lSI - h + 2, 
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a contradiction. And if h 2: 2 and tough(G) > h/2 then 
w(G-S) S ISI/tough(G) < ISI/(h/2) 

S ¥1 + (iSI-h~(h-2) = lSI - h+2, 
another contradiction. The result follows. 0 

The lower bounds on toughness in Theorem 6 are sharp. Taking G = Kh + 
2Kl shows the sharpness of the bound for h 2: 2; tough(G) = ~ but G is not h
matchable because deleting the vertices of Kh from G, the resulting graph has no 
perfect matching. Taking H = Kr+ (r+I)Kl shows the sharpness of the bound for 
h = 1; tough(H) = r:l -+1- as r-+ 00. And H is not I-matchable because deleting 
a vertex in Kr from H results in a graph with no perfect matching. Taking H = Kr 
+ (r+2)Kl shows the sharpness of the bound for h = 0 by the same reason as above. 
The next theorem gives a binding number condition. 

Theorem 7: Let G be a connected graph with order n. Let h be an integer such 
that 0 S h S n-2 and h == n (mod 2). 
(i) If bind(G) > !! for h 2: 5, then G is h-matchable; 
(ii) If bind(G) > ~hit26 for h = 2, 4, then G is h-matchable; 
(iii) If bind(G) > h!3 for h = 1, 3, then G is h-matchable; 
(iv) If bind(G) 2: ~ , then G is h-matchable for h = O. 
Proof. Suppose G satisfies the hypotheses of this theorem but is not h-matchable. 
By Corollary 3, there is a set 8 ~ V(G) with 181 2: h such that 

o(G-S) 2: ISI- h+2 2: 2. (1) 
Suppose bind(G) = b and let i(G) denote the number of singleton components 

of G. Then we have two cases. 
Case 1: i(G-S) > O. 

Let X = V(G)-S. Since Na(X) "! V(G), n-i(G-S) 2: INa(X)I2: blXI = bn-bISI. 
So 

i(G-S) S bISI-(b-I)n. (2) 
By (1) and (2), 

o(G-S)-i(G-S) 2: ISI- h+2-bISI+(b-I)n 
= (b-I)(n-ISI)-h+2. (3) 

However, counting the vertices in V(G)-S and using (3), we have 
n-ISI 2: i(G-S)+3(0(G-S)-i(G-S)) 

2: i(G-S)+3(b-I)(n-ISI)-3h+6. 
Then 

(3b-4)(n-ISI) S 3h-6-i(G-S). (4) 
If i(G-S) 2: 2, since n-ISI2: 0(0.-8) 2: 2 by (1), we deduce from (4) that 3h-6-2 

2: 2(3b-4). So b S ~, contradicting the hypotheses for all h of this theorem. 
Otherwise, i(G-S) = 1 and n-ISI 2: 4 since o(G-S) 2: 2 by (1). By (4), we have 

3h-7 2: 4(3b-4). Hence b S 3~;9, contradicting the hypotheses for all h of this 
theorem. 
Case 2: i(G-S) = O. 

We have two subcases. 

204 



Case (2.1): h ?: 3. 
Let r be the order of a smallest odd component of G-S and let X be the set 

of a vertex from a smallest odd component of G-S and all vertices of any other 
ISI-h+1 odd components ofG-S. Since NG(X) =f. V(G), we have ISI+(IXI-1)+(r-1) 
?: ING(X)I ?: biXI. So (b-1)IXI ~ ISI+r-2. As IXI ?: r(ISI - h+1)+1, we have 
(b-1)[r(ISI- h+1)+1] ~ ISI+r-2. Then 

(r - b~l)ISI ~ ~=~+(h-1)r-1. (5) 
Since r ?: 3 > b~l and lSI?: h, (5) implies that 

b < 2r±h-l. (6) 
- r±l . 

Since h ?: 3, the function f(r) = (2r+h-1)/(r+1) attains its maximum value at 
r = 3. Thus b :::; f(3) = ht5, contradicting the hypotheses for h ?: 3. 
Case (2.2): h = 0, 1, 2. 

Let X be the set of all vertices of any lSI - h+ 1 odd components of G-S. Then 
lSI + IXI ?: ING(X)I ?: blXI· SO IXI :::; ISI/(b-1). Combining this with IXI ?: 
3(ISI - h+1), we get 

b ~ 3(1sll~l±l) + 1. (7) 
Since lSI> h we have b < §. = 7h±26 for h = 2 and b < i = h±3 for h = 1. Also the - , - 3 24 -3 3 
function f(m) = m/3(m-h+1) +1 = m/3(m+1) + 1 for h = 0 is a strictly monotone 
increasing function and f(m) < ~ for all m ?: 1. Obviously, f(m)-t ~- as m-t 00. 

Since lSI?: 1 because G is connected, by (7), b < ~. Thus we have contradictions to 
the hypotheses for h = 0, 1, 2. 0 

Taking G = Kh +2KI shows the sharpness of the bound on binding number for h 
?: 5 and H = Kh +2K3 shows the sharpness of the bound for 1 :::; h:::; 4 in Theorem 7. 
Let F = Km±l +(m+3)K3 (m ?: 0). Then bind(F) =~!~: -+ ~- as m-+ 00, where 
we choose X to be the set of all vertices of m+2 copies of K3 in F such that bind(F) 
= IN(X)I/IXI. But bind(F) < ~ for all m. Then F shows the sharpness of the bound 
for h = O. Theorems 8 and 9 give a neighbourhood union condition and a degree 
sum condition for h-matchable graphs. 

Theorem 8: Let G be a k-connected graph with order nand h an integer such that 
o :::; h ~ n-2 and h == n (mod 2). Suppose there is an integer t, 1 :::; t ~ k-h+2, 
such that for each independent set I = {WI, W2, ... , Wt}, IN(I)I ?: n+h-1-k. Then 
G is h-matchable. 
Proof. Suppose not. By Corollary 3, there is a set S C V(G) with lSI?: h such 
that w(G-S) ?: ISI-h+2 ?: 2. Since G is k-connected, lSI ~ k and so w(G-S) ?: 
k-h+2 ?: t. Let CI , C 2 , •• " Cw(G-S) be the components of G-S; choose a Wi E 

V(Ci ) for each i, and let I = {WI, W2, "', wd. Then I is an independent set. 
Since IV(Ci)1 ?:1 for t+1 ~ i ~ w(G-S), it follows that 

t 
n ?: lSI + l: IV(Ci)1 + w(G-S)-t 

i=l 

?: lSI + IV(Ci)1 + ISI-h+2-t 

so that 

205 



t 
L: (IV(Ci)l-l) s n+h-2-2ISI· (8) 
i=l 

Thus 
t 

IN(I)I s L: (IV(C i )l-l)+ISI 
i=l 

S n+h-2-ISI 
S n+h-2-k, 

contrary to an hypothesis. 0 

Theorem 9: Let G be a k-connected graph with order nand h an integer such that 
o ~ h S n-2 and h == n (mod 2). Suppose there is an integer t, 1 S t S k-h+2, 
such that for each independent set I = {Wl,W2, -... ,Wt} ~ V(G), 

t ' 

L:d(wi) ~ t(n+h-2)/2 + 1. 
i=l 

Then G is h-matchable. 
Proof. Suppose not. By Corollary 3, there is a set S ~ V(G) with lSI ~ h such 
that 

w(G-S) ~ ISI-h+2 ~ 2. (9) 
Suppose first that t ~ 2. Construct I exactly as in the proof of Theorem 8, and note 
that, since IV(Ci)1 ~ 1 for all i, (8) gives 

lSI s (n+h-2)/2. (10) 
Hence 

t t 
L: d(wi) S L: (IV(Ci) l-l)+tISI 
i=l i=l 

S n+h-2+(t-2)ISI by (8) 

S t(n+h-2)/2 by (10), 

contrary to an hypothesis. 
This completes the proof when t ~ 2, so suppose t = 1. Then the hypotheses ofthe 

theorem imply d(w) ~ (n+h)/2 for each wE V(G), so that IV(Ci)1 ~ (n+h)/2-ISI+l 
for each i. Let x := mini IV(Ci)1 and w := w(G-S). Then we have just seen 

2x ?: n+h-2ISI+2. (11) 
Counting the vertices in G gives 

n ~ lSI + wx. (12) 
Adding (9), (11) and (12) and rearranging gives (w-2)x S w-4, which is impossible 
since w ~2 from (9), and x is a positive integer. This contradiction completes the 
proof of Theorem 9. 0 

For any integers h, k, t such that 0 S h S k and 1 S t S k-h+2, G = 
Kk +(k-h+2)K1 shows that the bounds in Theorems 8 and 9 are sharp. For any 

t 
independent set I = {WbW2' ... ,Wt} ~ V(G), IN(I)I ~ k = n+h-2-k and L d(wi) 

i=l 
~ tk = t(n+h-2)/2 . But G is not h-matchable. 

Now we introduce the following definitions. Let K:(G), a(G) and 8(G) denote 
the connectivity, independence number and minimum degree of G. If u, v E V(G), 
let d(u,v) denote the distance between u and v, let N2{v) ={ u I u E V(G) and 
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d(u,v) = 2 }, and let Gv = G[{v}UNc(v)]. If d(u,v) = 2, let nu,v(w) = max{ lSI I S 
is independent and {u,v} ~ S ~ N(w) for a vertex w E N(u) n N(v) } and o:*(u,v) = 
maxw{nu,v(w) I w E N(u) n N(v) }. We can now define the following five conditions. 

Cl(h): For each v E V(G), K(Gv ) ~ o:(Gv)+h-1. 
C2 (h): For each v E V(G) and each independent set R ~ N2 (v), IN(v) n N(R)I ~ 
IRI+h. 
C3 (h): For each u, v E V(G) such that d(u,v) = 2, IN(u) n N(v)1 ~ o:*(u,v)+h-1. 
C4 (h): For each v E:: V(G) and nonadjacent ver~ices u, w E N(v), dc,,(u)+dcJw) ~ 
dG(v)+h. 
C5 (h): beG) ~ (n+h)/2. 

Now we prove the following theorem. 

Theorem 10: Let G be a connected graph with order nand h an integer such that 
o ::; h S n-2 and h == n (mod 2). If G satisfies any of the conditions Ci(h) (1 SiS 
5), then G is h-matchable. . 
Proof. By [4] Theorem 9 and [5] Theorem 1, Cl(h) and C2 (h) hold for h ~ 1. By 
[4] and [5], Ci(h) implies Ci+1 (h) for h ~ 0 and i = 2, 3, 4. 

Now we prove the result of C2 (h) for h = O. 
Suppose G is not h-matchable. By Corollary 3, there is a set S ~ V(G) with lSI 

~ 1 (since G is connected) such that 
w(G-S) ~ o(G-S) ~ ISI-h+2 ~ 2. (13) 

We choose S such that lSI is as small as possible subject to (13). Then we have the 
following claim. 
Claim 1: For each vertex v in an odd component such that Ns(v) =1= 0, there is 
an independent set R ~ N2 (v) such that IN(v) n N(R)I < IRI = IRI+h for h = 0, 
(contradicting the hypothesis of C2 (h) for h = 0). 

Suppose not. Then there is a vertex v in an odd component C with Ns(v) =1= 0 
such that the vertices in Ns(v) are adjacent to at least INs(v) 1+2 odd component C, 
CI , C2 , .. " Ct ( t ~ INs (v)I+1 ). (Otherwise, let S' = S\Ns(v), we have IS'I < lSI 
and IS'I-o(G-S') S ISI-o(G-S), contrary to the choice of S). Now we choose a 
vertex Wi in Ci which is adjacent to Ns(v) for 1 ::; i ::; t. Then R = {WI, W2, ... , 

wd satisfies the inequality IN(R) n N(v)1 = INs(v)1 < IRI, as claimed. 
In the following, we shall prove C1 (h) holds for h = O. 
Suppose G is not h-matchable .. By Corollary 3, there is a set S ~ V(G) with 

lSI ~ 1 such that 
o(G-S) ~ ISI-h+2 = ISI+2 > 2 (14) 
We choose S to be a minimum set subject to the inequality (14). 
Let lSI = s, o(G-S) = t and CI , C2 , ••• , Ct be the odd components of G-S. Let 

S = {VI, V2, ... , vs} and ki be the number of odd components in G-S which are 
adjacent to Vi. Without loss of generality, assume ki ::; k2 ::; ... S ks. 

Let kmj = max{ ki I Vi is adjacent to Cj and 1 SiS s} (j = 1,2" . ·,t). Without 
loss of generality, assume kml S km2 S ... ::; kmt · 
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Claim 2: ki ~ 3 for all i such that 1 ::; i ::; s. 
Suppose ki ::; 2 for some i. Then we use S' = S\ {Vi} to replace S. We have 

o(G-S') ~ o(G-S)-1 ~ ISI+2-1 = IS'I+2, contradicting the choice of S. 
Claim 3: For each Vi E S, if Vi is adjacent to Cjl then Cj is adjacent to at least ki 

vertices in S. 
Since Vi is adjacent to ki odd components in G-S, there is an independent set of 

order ki in N(Vi). Let u E V(Cj ) such that ViU E E(G). By condition C1(0), there 
are at least ki -l internally disjoint paths from u to w E V(C k ), where ViW E E(G) 
and k =I- j. These paths must go through vertices of S. So Cj is adjacent to at least 
ki-l vertices in S. 

Suppose Cj is adjacent to exactly ki-l vertices Vi, UI, U2, ... , Uk;-2 in S. Let Cj , 

D1 , D2,' .. , Dki - 1 be the odd components in G~S which are adjacent to Vi. Since 
there are ki-l internally disjoint paths from u to each of D1, D 2, ... , Dki - 1 and these 
paths must go through Vi, UI, U2,' .. , Uki-2, each of Cj , Db D2, ... , Dki - l is adjacent 
to all of Vi, UI,' .. , Uki-2. 

If Uk is only adjacent to Cj , D1, .. " Dki - l for k = 1,2,' . ·,ki -2, then let S' = 
S\{Vi, Ul,' . ',Uki-2} and we have o(G-S') = o(G-S)-(ki-l) ~ ISI+2-(ki-l) = 
IS'I+2, contradicting the choice of S. 

Hence a Uk (1 ::; k ::; ki-2) is adjacent to at least ki+l odd components in G-S. 
But Uk is adjacent to Cj , so Cj is adjacent to at least (ki+l)-1 = ki vertices in S by 
the above argument. Hence Claim 3 is proved. 

Considering all vertices in S adjacent to Cj , by Claim 3, Cj is adjacent to at least 
k mj vertices in S. For the convenience of explanation, if a vertex in S is adjacent to k 
odd components of G-S, then we say that it sends k edges to the odd components. 
If an odd component C of G-S has k neighbours in S, then we say that C sends k 
edges to S. Now the vertices in S send kl +k2 + .. ·+ks edges to the odd components 
of G-S. And the odd components of G-S send at least kml +km2 + .. +kmt edges 
to S. So we have 

kl +k2 + .. ·+ks ~ kml +km2 + .. ·+kmt (15) 
s s 

Claim 4: E ki ::; E kmi 
i=l i=l 

By induction, we shall prove that kmi ~ ki (i = 1,2,' . ·,s). Then the claim holds. 
By the definition of kmi , kml ~ k1 . 

Assume that kmi ~ ki for all i < j. Now i = j. If there is an odd component Cp 

E {CI, C2 , ••• , Cj } such that Cp is adjacent to Vq for some q ~ j, then kmj 2: kmp 

~ kq 2: kj . Otherwise, CI, C2 , •• " Cj are only adjacent to VI, V2, .. " Vj-I. Then 
kl +k2 + .. ·+kj- I ~ kml +km2 + .. ·+kmj . By induction hypothesis, kmi ~ ki (i = 
1,2", ·,j-l), and kmj ~ 1. So kml+km2 + .. ·+kmj_l+kmj >kl+k2 + ... +kj - 1, a 
contradiction. 

Since kms+l ~ 1, by Claim 4, kml +km2 + .. ·+kmt >kI +k2 + .. ·+ks , contradicting 
(15). This last contradiction completes the proof of Theorem 10. 0 

Taking G = Kh+2Kl shows that the results of Theorem 10 for C1 (h) and C2(h) 
for h ~ 1 are sharp. Taking H = Kr+(r+2)Kl shows that the results of Theorem 10 
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for CI (h) and C2 (h) for h = 0 to be sharp. The above counterexamples also show 
the sharpness of the results of Theorem 10 for Ci(h) for i = 3,4,5 and h ~ O. 

4 Sufficient conditions for extendability 

In view of Theorem 5, Theorems 6-10 immediately imply the following known results 
(and Theorems 8 and 9 gives short proofs of Corollaries 13 and 14). 

Corollary 11 ([7]): Let G be a connected graph with even order. If tough(G) > h 
for h ~ 1, then G is h-extendable. 

Corollary 12 ([2]): Let G be a connected graph with even order. If bind(G) > 
max {h, (7h+13)/12} for h ~ 1, then G is h-extendable. 

Corollary 13 ([8]): Let G be a k-connected graph with even order n. Further, 
suppose there is an integer t, 1 ::; t ::; k-2h+2, such that for each independent set 
I = {WI, W2, ... , Wt}, IN(I)I ~ n-k+2h-1. Then if 
(a) h = 1, G is bicritical (and hence I-extendable) and if 
(b) h ~ 2, G is h-extendable. 

Corollary 14 ([8]): Let G be a k-connected graph with even order n. Further, 
suppose there is an integer t, 1 ::; t ::; k-2h+2, such that for each independent set 

t 

I = {Wl,W2' ... ,wd ~ V(G), L: d(wi) ~ t«n-2)/2+h)+1. Then if 
i=l 

(a) h = 1, G is bicritical (and hence I-extendable) and if 
(b) h ~ 2, G is h-extendable. 

Corollary 15 ([4,5,6]): Let G be a connected graph with even order nand h an 
integer such that 1 ::; h ::; (n-2)/2. If G satisfies any of the conditions Ci(2h) (1 ::; 
i ~ 5), then G is h-extendable. 

Remark 1: We notice that when we prove a graph to be h-extendable we seldom 
use the edges in G[S] for the S in Lemma 4. So "almost all" sufficient conditions for 
a graph to be h-extendable actually.force the graph to be 2h-matchable. Hence we 
can obtain analogous conditions for a graph to be h-matchable. 
Remark 2: Akira Saito [9] raised a problem about adding new edges to an h
extendable graph to obtain new h-extendable graphs. However, Gyori and Plummer 
[3] showed that adding any new edge to some h-extendable graphs, which are neither 
Kn nor Km,m, cannot keep h-extendability. 

By Theorem 5, when we prove that some sufficient conditions for a graph to 
be h-extendable actually force the graph to be 2h-matchable, then adding any new 
edges to the graph results in many new h-extendable graphs which may not satisfy 
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the original sufficient conditions. For example, conditions C i (2h) (1 :::; i :::; 4) in 
Corollary 15 can apply to graphs with arbitrary large diameter (see [4]), adding new 
edges to the graphs, we can obtain many new h-extendable graphs which do not 
satisfy Ci (2h) . 
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