More on sequences in groups
 Cheng-De Wang Philip A. Leonard
 Department of Mathematics
 Arizona State University
 Tempe, AZ 85287-1804, USA

Abstract

We bring to conclusion the investigation of three problems about sequencings for finite groups: the existence of harmonious sequences in dicyclic groups, the R-sequenceability of dicyclic groups, and the Rsequenceability of the nonabelian groups of order $p q$, where p and q are primes.

Introduction

Various types of sequences of the elements of a finite group have been studied in connection with questions in combinatorics. In this article we discuss harmonious sequences and R-sequences, both of which are connected to complete mappings of a finite group G.

Definition 1 A complete mapping of G is a permutation $g \rightarrow \theta(g)$ of the elements of G such that $\phi: g \rightarrow g \theta(g)$ is again a permutation of the elements of G. In this case, the mapping ϕ is called an orthomorphism of G.

The idea of a complete mapping was introduced by H. B. Mann [5] and studied later by L. J. Paige [6]. Results related to this notion and to those that follow are discussed in A. D. Keeedwell's recent survey [4].

Definition 2 A group G of order m is called harmonious if its m elements can be listed in a sequence

$$
g_{1}, g_{2}, \ldots, g_{m}
$$

such that the products

$$
g_{1} g_{2}, g_{2} g_{3}, \ldots, g_{m-1} g_{m}, g_{m} g_{1}
$$

of consecutive elements are all distinct.

These sequences were introduced in [1]; if G has a harmonious sequence, then $\theta=\left(g_{1}, g_{2}, \ldots, g_{m}\right)$ is a complete mapping of G, expressed as a single m-cycle. Harmonious groups include all groups of odd order, the nontrivial finite abelian groups having noncyclic Sylow 2-subgroups (except for the elementary abelian 2groups), and the dihedral groups D_{n} of order $2 n$ whenever n is divisible by 4 or $n=6 m, m$ odd [1]. In Section 1 we discuss harmoniousness in dicyclic groups.
Definition 3 A group of order m is called R-sequenceable if its m elements can be listed in a sequence

$$
g_{1}=1, g_{2}, \ldots, g_{m}
$$

such that the partial products $g_{1}, g_{1} g_{2}, g_{1} g_{2} g_{3}, \ldots, g_{1} g_{2} g_{3} \ldots g_{m-1}$, are all distinct and $g_{1} g_{2} g_{3} \ldots g_{m-1} g_{m}=1$.

If G has an R-sequencing, then there is a complete mapping θ of G such that the corresponding orthomorphism ϕ fixes one element and permutes the remaining elements in a single cycle. The dihedral group D_{n} is R-sequenceable if and only if n is even [3]. We treat this concept for dicyclic groups in Section 2, and for the nonabelian groups of order $p q$ (p and q prime) in Section 3.

In each of the next three sections, the complete result is designated as a Theorem. Previous results are indicated as Propositions; the new contributions are clearly indicated in our discussion.

1 Harmoniousness of dicyclic groups

For an $n \times n$ matrix M, the (i, j)-entry of M is denoted by $M(i, j)$. For a permutation τ of degree n, the collection of n elements $\{M(i, \tau(i)), i=1,2, \ldots, n\}$ is denoted by $\tau(M)$. The dicyclic group $Q_{2 n}$ of order $4 n$ is defined by

$$
Q_{2 n}=\left\langle\alpha, \beta: \alpha^{2 n}=1, \beta^{2}=\alpha^{n}, \alpha \beta=\beta \alpha^{-1}\right\rangle .
$$

The following proposition was proved in [7].
Proposition 1 Let A and B be two $n \times n$ matrices defined by

$$
\begin{aligned}
& A(i, j)=i+j-2 \quad \bmod 2 n, \quad i, j=1,2, \ldots, n \\
& B(i, j)=n-i-j+1 \quad \bmod 2 n, \quad i, j=1,2, \ldots, n .
\end{aligned}
$$

Then the dicyclic group $Q_{2 n}$ is harmonious if there exist two permutations π and θ of degree n such that $\theta \circ \pi$ is an n-cycle and $\pi(A) \cup \theta(B)$ is a complete set of residues modulo $2 n$.

Sketch of the proof. Let $f=\theta \circ \cdot \pi$. Let c be an integer with $1 \leq c \leq n$. For any fixed integer d, we define

$$
\begin{aligned}
b_{2 i-1} & =-f^{i-1}(c)+d, \\
b_{2 i} & =f^{i-1}(c)+d-1, \\
a_{2 i-1} & =\pi f^{i-1}(c)-1, \\
a_{2 i} & =\pi f^{i-1}(c)+n-1 .
\end{aligned}
$$

We notice that

$$
\begin{aligned}
& b_{2 i}+a_{2 i-1}=A\left(f^{i-1}(c), \pi f^{i-1}(c)\right)+d \text { and } \\
& b_{2 i+1}-a_{2 i}=B\left(\pi f^{i-1}(c), f^{i}(c)\right)+d
\end{aligned}
$$

Direct calculation shows that

$$
\left\{b_{2 i}-b_{2 i-1}+n: i=1,2, \ldots, n\right\} \cup\left\{a_{2 i}+a_{2 i-1}: i=1,2, \ldots, n\right\}
$$

is a complete set of residues modulo $2 n$ and

$$
\left\{b_{2 i+1}-a_{2 i}: i=1,2, \ldots, n\right\} \cup\left\{b_{2 i}+a_{2 i-1}: i=1,2, \ldots, n\right\}=\pi(A) \cup \theta(B)+d
$$

which is also a complete set of residues modulo $2 n$ by our hypothesis. Therefore, the following sequence is a harmonious sequence of $Q_{2 n}$:

$$
\beta \alpha^{b_{1}}, \beta \alpha^{b_{2}}, \alpha^{a_{1}}, \alpha^{a_{2}}, \beta \alpha^{b_{3}}, \beta \alpha^{b_{4}}, \alpha^{a_{3}}, \alpha^{a_{4}}, \ldots, \beta \alpha^{b_{2 n-1}}, \beta \alpha^{b_{2 n}}, \alpha^{a_{2 n-1}}, \alpha^{a_{2 n}} .
$$

By using Proposition 1 the following result was proved in [7].
Proposition 2 If n is a multiple of 4 or 6 , the dicyclic group $Q_{2 n}$ is harmonious.
It remains to deal with the case of $n=4 k+2$. We define two permutations π and θ of degree n by

$$
\begin{aligned}
& \pi(x)= \begin{cases}x+2 k+1 & \text { if } 1 \leq x \leq k \\
x+2 k+2 & \text { if } k+1 \leq x \leq 2 k \\
x-2 k & \text { if } 2 k+1 \leq x \leq 3 k+1 \\
3 k+2 & \text { if } x=3 k+2 \\
x-2 k-1 & \text { if } 3 k+3 \leq x \leq 4 k+2\end{cases} \\
& \theta(y)= \begin{cases}1 & \text { if } y=1 \\
4 k+2 & \text { if } y=2 \\
y+2 k-1 & \text { if } 3 \leq y \leq k+2 \\
k+1 & \text { if } y=k+3 \\
y+2 k-2 & \text { if } k+4 \leq y \leq 2 k+3 \\
y-2 k-2 & \text { if } 2 k+4 \leq y \leq 3 k+2 \\
y-2 k-1 & \text { if } 3 k+3 \leq y \leq 4 k+2\end{cases}
\end{aligned}
$$

By the definitions of matrices A and B in Proposition 1, we obtain

$$
\begin{gathered}
\pi(A)=\{2 k, 2 k+1,2 k+2,2 k+3, \ldots, 4 k, 4 k+2,4 k+3,4 k+4,4 k+5, \ldots, 6 k \\
\quad 6 k+1,6 k+2\}
\end{gathered}
$$

and

$$
\begin{aligned}
\theta(B)= & \{0,1,2,3, \ldots, 2 k-3,2 k-2,2 k-1,4 k+1,6 k+3,6 k+4, \ldots, 8 k+1, \\
& 8 k+2,8 k+3\} .
\end{aligned}
$$

Therefore, $\pi(A) \cup \theta(B)$ is a complete set of residues modulo $2 n$.
Considering k modulo 3 , we find that in two cases $\theta \circ \pi$ is a cycle of length n. If $k=3 t$, by direct calculation, we have $\theta \circ \pi=(14 k 4 k-34 k-64 k-9 \ldots 3 k+6$ $3 k+33 k+13 k 3 k-13 k-2 \ldots 2 k+32 k+24 k+24 k-14 k-44 k-7 \ldots$ $3 k+53 k+2 k k-1 k-2 k-3 \ldots 324 k+14 k-24 k-5 \ldots 3 k+73 k+4$ $k+1 k+2 k+3 \ldots 2 k 2 k+1$) which is an n-cycle.

If $k=3 t+2$, we have $\theta \circ \pi=(14 k 4 k-34 k-64 k-9 \ldots 3 k+53 k+2 k k-1$ $k-2 k-3 \ldots 324 k+14 k-24 k-5 \ldots 3 k+63 k+33 k+13 k 3 k-13 k-2 \ldots$ $2 k+32 k+24 k+24 k-14 k-44 k-7 \ldots 3 k+73 k+4 k+1 k+2 k+3 \ldots 2 k 2 k+1)$ which is a cycle of length n.

Therefore, by Proposition 1 we can state
Proposition 3 If $n=12 t+2$ or $n=12 t+10$, the dicyclic group $Q_{2 n}$ is harmonious.
In the remaining we have case $n=12 t+6$, and this is covered by Proposition 2. It is shown in [1] that $Q_{2 n}$ is not harmonious if n is an odd integer or $n=2$. Hence, by Propositions 2 and 3 the following is true:

Theorem $1 Q_{2 n}$ is harmonious if and only if n is an even integer greater than 2.
It is obvious that a harmonious group may have many harmonious sequences. We can, for example, give an alternative construction for the case of $n=8 k+2$ as follows.

Let π and θ be permutations of degree n defined by

$$
\begin{aligned}
& \pi(x)= \begin{cases}4 k+2+x & \text { if } 1 \leq x \leq 2 k-1 \\
4 k+4+x & \text { if } 2 k \leq x \leq 4 k-2 \text { and } x \text { is even } \\
2 k+1 & \text { if } x=2 k+1 \\
4 k+x & \text { if } 2 k+3 \leq x \leq 4 k+1 \text { and } x \text { is odd } \\
4 k+2 & \text { if } x=4 k \\
x-4 k-1 & \text { if } 4 k+2 \leq x \leq 8 k+2 \text { and } x \neq 6 k+2 \\
6 k+2 & \text { if } x=6 k+2\end{cases} \\
& \theta(y)= \begin{cases}y & \text { if } y=1 \\
4 k+y & \text { if } 2 \leq y \leq 4 k+2 \\
y-4 k-1 & \text { if } 4 k+3 \leq y \leq 8 k+2\end{cases}
\end{aligned}
$$

By the definitions of matrices A and B in Proposition 1, we have

$$
\begin{aligned}
\pi(A)= & \{4 k, 4 k+1,4 k+2, \ldots, 8 k-1,8 k, 8 k+2,8 k+3, \ldots, 12 k+2\} \\
& \bmod 2 n \text { and } \\
\theta(B)= & \{0,1,2, \ldots, 4 k-1,8 k+1,12 k+3,12 k+4, \ldots, 16 k+3\} \bmod 2 n .
\end{aligned}
$$

Therefore $\pi(A) \cup \theta(B)$ is a complete set of residues modulo $2 n$.
By direct calculation, we have $\theta \circ \pi=\left(\begin{array}{ll}123 \ldots 2 k-1 & 2 k 2 k+3\end{array} 2 k+2\right.$ $2 k+52 k+42 k+72 k+6 \ldots 4 k+14 k 8 k+28 k+18 k 8 k-1 \ldots 6 k+3$ $6 k+22 k+16 k+16 k 6 k-1 \ldots 4 k+2$) which is an n-cycle.

2 The R-sequenceability of dicyclic groups

The following two propositions were proved in [8].
Proposition $4 Q_{2 n}$ is R-sequenceable if there are integers $a_{2}, a_{3}, \ldots, a_{2 n-1}$ and b_{1}, $b_{2}, \ldots, b_{2 n}$ satisfying
(1) $0, a_{2}, a_{3}, \ldots, a_{2 n-1}$ are distinct $\bmod 2 n$,
(2) $b_{1}, b_{2}, \ldots, b_{2 n}$ are distinct $\bmod 2 n$,
(3) $0, a_{2}, a_{3}-a_{2}, \ldots, a_{n}-a_{n-1}, b_{n+1}-b_{n}, b_{n+2}-b_{n+1}, \ldots, b_{2 n}-b_{2 n-1}$ are distinct $\bmod 2 n$,
(4) $b_{1}+a_{n}, b_{1}+a_{n+1}+n, b_{2}+a_{n+1}, b_{2}+a_{n+2}+n, b_{3}+a_{n+2}, \ldots, b_{n-1}+a_{2 n-1}+n, b_{n}+$ $a_{2 n-1}, b_{2 n}+n$ are distinct $\bmod 2 n$.

Proposition 5 Let A and B be two $n \times n$ matrices defined by

$$
\begin{aligned}
& A(i, j)= \begin{cases}3 n / 2+i+j-1 & \bmod 2 n \text { if } i \leq n / 2 \\
3 n / 2+i+j & \bmod 2 n \text { if } i>n / 2\end{cases} \\
& B(i, j)= \begin{cases}n / 2+i+j-1 & \bmod 2 n \text { if } i \leq n / 2 \\
n / 2+i+j & \bmod 2 n \text { if } i>n / 2 .\end{cases}
\end{aligned}
$$

Then the dicyclic group $Q_{2 n}$ is R-sequenceable if there exist two permutations π and θ of degree n such that $\pi \circ \theta^{-1}$ is a cycle of length n with $\theta(1)=n$, and $\pi(A) \cup \theta(B)$ is a complete set of residues modulo $2 n$.

Theorem $2 Q_{2 n}$ is R-sequenceable if and only if n is an even integer greater than 2.

Proof. It was shown in [8] that for $n=2$, and for n odd, $Q_{2 n}$ is not R-sequenceable, and for $n \equiv 0 \bmod 4, Q_{2 n}$ is R-sequenceable. Thus we assume that $n=4 k-2$ where $k>1$ is an integer. We modify the proof of the case of $n=4 k$ in [8] by defining the permutations of π and θ by

$$
\begin{aligned}
\pi(x) & = \begin{cases}x+2 k-1 & \text { if } 1 \leq x \leq 2 k-1, \\
x-2 k+1 & \text { if } 2 k \leq x \leq 4 k-2,\end{cases} \\
\theta(y) & = \begin{cases}y+2 k-2 & \text { if } 2 \leq y \leq 2 k-1, y \neq k+1, \\
y-2 k+2 & \text { if } 2 k \leq y \leq 4 k-3, y \neq 3 k-2, \text { together with }\end{cases} \\
\theta(1) & =4 k-2, \theta(4 k-2)=1, \theta(k+1)=k, \text { and } \theta(3 k-2)=3 k-1 .
\end{aligned}
$$

By the definitions of A and B in Proposition 5, we have $\pi(A)=\{1,2,3, \ldots, 4 k-2\}$ and $\theta(B)=\{4 k-1,4 k, 4 k+1, \ldots, 8 k-4\}$. Hence $\pi(A) \cup \theta(B)$ is a complete set of residues modulo $2 n$.

Notice $k>1$. By direct calculation, we have $\pi \circ \theta^{-1}=(2 k-12 k-2 \ldots$ $k+1 k 3 k 3 k+13 k+2 \ldots 4 k-22 k 2 k+12 k+2 \ldots 3 k-1 k-1 k-2 \ldots 21)$ which is a cycle of length n. Hence by Proposition 5, $Q_{2 n}$ is R-sequenceable.

By using Proposition 4 we can give a distinct R-sequencing of $Q_{2 n}$ from the construction indicated in the proof of Theorem 2. This construction can serve as an alternative proof to Theorem 2 for the case $n=8 k+2$.

We define the sequences (1) and (2) in Proposition 4 as follows:
Sequence (1), of $2 n-1$ elements, can be given in seven segments, with numbers of elements and rule of construction given by
(i) $8 k+2$ elements: $0,8 k+1,1,8 k, 2,8 k-1, \ldots, 4 k, 4 k+1$;
(ii) $2 k$ elements: $16 k+3,16 k+2,16 k+5, \ldots, 14 k+5,14 k+4$;
(iii) $2 k-2$ elements: $14 k+1,14 k+2,14 k-1,14 k, 14 k-3,14 k-2, \ldots, 12 k+5$, $12 k+6$;
(iv) $2 k$ elements: $12 k+3,12 k+2,12 k+1,12 k, \ldots, 10 k+4$;
(v) The single element $14 k+3$;
(vi) $2 k+1$ elements: $10 k+3,10 k+2, \ldots, 8 k+3$;
(vii) The final element $12 k+4$.

Similarly sequence (2), of $2 n$ elements, is given by
(i) $2 k+1$ elements: $8 k+1,8 k, 8 k-1, \ldots, 6 k+1$;
(ii) $2 k-2$ elements: $6 k-2,6 k-1,6 k-4,6 k-3,6 k-6,6 k-5, \ldots, 4 k+2$, $4 k+3$;
(iii) $2 k$ elements: $4 k, 4 k-1,4 k-2, \ldots, 2 k+1$;
(iv) the single element $6 k$;
(v) $2 k+1$ elements: $2 k, 2 k-1,2 k-2, \ldots, 1,0$;
(vi) the single element $4 k+1$;
(vii) $8 k+2$ elements: $12 k+3,12 k+2,12 k+4,12 k+1,12 k+5,12 k, 12 k+6$, $12 k-1, \ldots, 16 k+3,8 k+2$.
In the following examples, semicolons separate the segments in the listing of sequence elements. $k=1$, one segment of each sequence is vacuous (noted by a repeated semicolon).

When $k=1$, so that $n=8 k+2=10$, the sequences are
$\left(1_{1}\right): 0,9,1,8,2,7,3,6,4,5 ; 19,18 ; 15,14 ; 17 ; 13,12,11 ; 16$, and
$\left(2_{1}\right): 9,8,7 ; 4,3 ; 6 ; 2,1,0 ; 5 ; 15,14,16,13,17,12,18,11,19,10$.
When $k=2$, so that $n=8 k+2=18$, the sequences are
$\left(1_{2}\right): 0,17,1,16,2,15,3,14,4,13,5,12,6,11,7,10 ; 8,9 ; 35,34,33,32 ; 29,30$; $27,26,25,24 ; 31 ; 23,22,21,20,19 ; 28$, and
$\left(2_{2}\right): 17,16,15,14,13 ; 10,9 ; 8,7,6,5 ; 12 ; 4,3,2,1,0 ; 9 ; 27,26,28,25,29,24,30$, $23,31,22,32,21,33,20,34,19,35,18$.

$3 \quad R$-sequenceability of groups of order $p q$

First we state an alternative definition of R-sequenceability. It is easily seen that this definition is equivalent to Definition 3.

Definition $4 \quad$ (a) A group G of order m is called R-sequenceable if its nonidentity elements can be listed in a sequence

$$
g_{1}, g_{2}, \ldots, g_{m-1}
$$

such that

$$
g_{1}^{-1} g_{2}, g_{2}^{-1} g_{3}, \ldots, g_{m-2}^{-1} g_{m-1}, g_{m-1}^{-1} g_{1}
$$

are all distinct.
(b) If, further, $g_{1}=g_{2} g_{m-1}=g_{m-1} g_{2}, G$ is called R^{*}-sequenceable.

The nonabelian group G of order $p q$ where p, q are primes with $q \equiv 1(\bmod p)$ is defined, using r such that $r^{p} \equiv 1(\bmod q), r \not \equiv 1(\bmod q)$, as follows:

$$
G=\{(u, v) \mid u \in \mathbf{Z} / p \mathbf{Z}, v \in \mathbf{Z} / q \mathbf{Z}\}
$$

with multiplication defined by

$$
(u, v)(x, y)=\left(u+x, v r^{x}+y\right) .
$$

The following result was proved by Keedwell [3].
Proposition 6 The nonabelian group of order pq is R-sequenceable if p has 2 as a primitive root.

This result can be extended, essentially by means of a modification of the direct product theorem in [2].

Theorem 3 The nonabelian group of order $p q$ is R-sequenceable.
Proof. In view of Proposition 6 we assume $p>5$. The (additive) cyclic group $\mathbf{Z} / p \mathbf{Z}$ is R^{*}-sequenceable [2]; let g_{1}, \ldots, g_{p-1} be an R^{*}-sequencing with $g_{1}=g_{2}+g_{p-1}$.

In order to list the nonidentity elements of G, we introduce $p \times q$ matrices A and B, defined over $\mathbf{Z} / p \mathbf{Z}$ and $\mathbf{Z} / q \mathbf{Z}$, respectively. Entries a_{11} and b_{11} are left blank; group elements are given as ($a_{i j}, b_{i j}$), and are sequenced by reading column-by-column from A and B.

Let $a_{i j}=g_{1}$ for $i=1,2 \leq j \leq(q+1) / 2$, and for $i=2,1 \leq j \leq(q+1) / 2$. For $i=1,2$ and $j>(q+1) / 2$, let $a_{i j}=0$. For $i>2$ and $1 \leq j \leq q$, let $a_{i j}=g_{i-1}$. The definition of B uses the nonzero element $c=-r^{g_{1}-g_{p-2}-g_{2}}$ of $\mathbf{Z} / q \mathbf{Z}$; all arithmetic is in $\mathbf{Z} / q \mathbf{Z}$. For $j \geq 2$, let $b_{1 j}=b_{3 j}=(j-1) \cdot c$. Complete row 3 by letting $b_{31}=0$, and define row 2 by letting $b_{2 j}=-b_{3 j}, 1 \leq j \leq q$. For $4 \leq i \leq p-1$ (except as noted below), row i is the q-tuple ($0, q-1, q-2, \ldots, 2,1$). The final row
is $\left(r^{k}, 2 r^{k}, \ldots,(q-1) r^{k}, 0\right)$, where $k=g_{p-1}-g_{p-2} \bmod p$. (A modification is needed when $c r^{g_{3}-g_{2}} \equiv-1$, or equivalently, when $g_{3}-g_{2}+g_{p-1}-g_{p-2} \equiv 0 \bmod p$. In this case, row 4 of B is defined by the q-tuple ($0,1,2, \ldots, q-1$), affecting rows 4 and 5 of B^{\prime} below.)

To verify that $\left(a_{i j}, b_{i j}\right)$ form the desired R-sequencing of G, one must study the matrices A^{\prime} and B^{\prime} with a_{11}^{\prime} and b_{11}^{\prime} blank and other entries defined by

$$
\left(a_{i j}^{\prime}, b_{i j}^{\prime}\right)= \begin{cases}\left(a_{i-1, j}, b_{i-1, j}\right)^{-1}\left(a_{i j}, b_{i j}\right) & \text { if } i>1, \\ \left(a_{p, j-1}, b_{p, j-1}\right)^{-1}\left(a_{i j}, b_{i j}\right) & \text { if } i=1 \text { and } j>1,\end{cases}
$$

together with $\left(a_{21}^{\prime} b_{21}^{\prime}\right)=\left(a_{p q} b_{p q}\right)^{-1}\left(a_{21} b_{21}\right)$. Thus the $\left(a_{i j}^{\prime}, b_{i j}^{\prime}\right)$ list the products required by Definition 3.

The verification that the listed products are distinct is aided by the following observations:
(i) The matrix A^{\prime} has a particularly simple form, namely,

$$
\left[\begin{array}{ccccccc}
- & g_{1}-g_{p-1} & \cdots & g_{1}-g_{p-1} & g_{2}-g_{1} & \cdots & g_{2}-g_{1} \\
g_{1}-g_{p-1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
g_{2}-g_{1} & g_{2}-g_{1} & \cdots & g_{2}-g_{1} & g_{1}-g_{p-1} & \cdots & g_{1}-g_{p-1} \\
g_{3}-g_{2} & g_{3}-g_{2} & \cdots & & & & g_{3}-g_{2} \\
\cdots & & & & & & \\
g_{p-1}-g_{p-2} & g_{p-1}-g_{p-2} & \cdots & & & & g_{p-1}-g_{p-2}
\end{array}\right]
$$

so that, from row 4 onwards, it suffices to verify that the entries in each row of B^{\prime} are distinct.
(ii) $q=2 h p+1$ and $r^{p}=1$, so that none of $r^{g_{2}}$ or $r^{g_{2}-g_{1}}, r^{g_{4}-g_{3}}, \ldots, r^{g_{p-2}-g_{p-3}}$ can be -1 .
(iii) The analysis of row 1 and row 3 is made easy by observing the two equalities

$$
c-r^{g_{1}-g_{p-2}}=c r^{g_{2}}+c, \quad c-r^{-g_{p-2}}=c r^{g_{2}-g_{1}}+c .
$$

(iv) The last row of B^{\prime} is given by $\left(r^{k}, 3 r^{k}, \ldots,(q-2) r^{k}, 0,2 r^{k}, 4 r^{k} \ldots,(q-1) r^{k}\right)$.
(v) If $c r^{g_{3}-g_{2}}=-1$, then row 4 of B^{\prime} as "generally" defined consists entirely of zeros. The modification noted above corrects this difficulty so that the affected rows of B^{\prime} have distinct entries.
Remark: It should be pointed out that the R-sequencing of the previous result is, in fact, an R^{*}-sequencing because $\left(g_{1}, 0\right)=\left(g_{2}, 0\right)\left(g_{p-1}, 0\right)=\left(g_{p-1}, 0\right)\left(g_{2}, 0\right)$.

It is useful to have an example for the construction of the R-sequencing in Theorem 3. We include the smallest example for which the prime p does not have 2 as a primitive root.

Example. The nonabelian group G of order 203 has $p=7$ and $q=29$. We use the R^{*}-sequencing $3,2,5,6,4,1$ of $\mathbf{Z} / 7 \mathbf{Z}$, so that A is as follows:

$$
\left[\begin{array}{ccccccccccccccccccccccccccccc}
-3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 \\
5 & 5 \\
6 & 6 \\
4 & 4 \\
1 & 1
\end{array}\right]
$$

Use $r=7$ (which implies $c=6$). Since $g_{3}-g_{2}+g_{p-1}-g_{p-2} \equiv 0 \bmod 7$, we modify row 4 and obtain the following matrix as B :

By the definitions of the elements $\left(a_{i j}^{\prime}, b_{i j}^{\prime}\right)$ we have A^{\prime} as follows:

$$
\left[\begin{array}{lllllllllllllllllllllllllllll}
- & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
2 & 0 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 \\
1 & 1 \\
5 & 5 \\
4 & 4
\end{array}\right]
$$

and, finally, B^{\prime} is as follows:

The listing of the elements $\left(a_{i j}, b_{i j}\right)$ by columns gives the indicated R^{*}-sequencing of G, as can be checked by examining the ($a_{i j}^{\prime}, b_{i j}^{\prime}$).

References

[1] R. Beals, J.A. Gallian, P. Headley and D. Jungreis, Harmonious groups, J. Combinatorial Theory A 56 (1991), 223-238.
[2] R.J. Friedlander, B. Gordon, and M.D. Miller, On a group sequencing problem of Ringel, Congr. Numer. 21 (1978), 307-321.
[3] A.D. Keedwell, On R-sequenceability and R_{h}-sequenceability of groups, Ann. Discrete Math. 18 (1983), 535-548.
[4] A.D. Keedwell, Complete mappings and sequencings of finite groups, in "CRC Handbook of Combinatorial Designs" (C.J. Colbourn and J.H. Dinitz eds.), CRC Press,(1996), 246-253.
[5] H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13 (1942), 418-423.
[6] L.J. Paige, Complete mappings of finite groups, Pacific J. Math. 1 (1951), 111116.
[7] C-D. Wang, On the harmoniousness of dicyclic groups, Discrete Math. 120 (1993), 221-225.
[8] C-D. Wang, On the R-sequenceability of dicyclic groups, Discrete Math. 125 (1994), 393-398.

