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Abstract 

It is shown in this paper that every correlation immune Boolean function 
of n variables can be written as f(x) = g(xGT

), where 9 is an alge
braic non-degenerate Boolean function of k (k :::; n) variables and G is 
a generating matrix of an tn, k, d] linear code. In this expression the 
correlation immunity of f(x) must be at least d - 1. In this paper we 
further prove when the correlation immunity exceeds this lower bound. 
A method which can theoretically search all possible correlation immune 
functions exhaustively is proposed. Constructions of higher order corre
lation immune functions as well as algebraic non-degenerate correlation 
immune functions are discussed in particular. It is also shown that many 
cryptographic properties of 9 can be inherited by the correlation immune 
function f(x) = g(xGT ) which enables us to construct correlation im
mune functions with other cryptographic properties. 

1 Introduction 

Correlation immune functions were introduced by Siegenthaler [20] in order to protect 
some shift register based stream ciphers against correlation attacks. Further cryp-
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tographic applications of correlation immune functions can be found in for example 
[1, 8, 9]. It is obvious that constructions of such functions are important, espe
cially in the case where the constructed functions can be controlled to have other 
cryptographic properties. Enumeration of Boolean functions having correlation im
munity and other cryptographic properties were studied in [17] and [131. There have 
been alternative ways for constructing correlation immune functions (see for example 
[2,3, 6, 19, 20, 22, 24]). However, the correlation immunity of the constructed func
tions from the methods known so far is mainly measured in terms of lower bounds. 
Apart from the correlation immunity, other cryptographic properties have been less 
considered in those constructions. In this paper we investigate the inherent structure 
of correlation immune functions in terms of algebraic degeneration and subsequently 
the constructions of functions with concrete correlation immunity are investigated. 
Additionally, it is shown that other cryptographic properties of the constructed func
tions can easily be controlled while the designed correlation immunity remains. 

Denote by F2 = {O, I} the binary field. A function f: F:; ---1> F2 is called a 
Boolean function of n variables. We write it as f(XI, ... , Xn) or simply f(x). The 
truth table of f(x) is a binary vector oflength 2n generated by f(x) when x, treated 
as a binary integer, runs through ° to 2n 

- 1. The Hamming weight of f(x), de
noted by WH(f), is the number of ones in its truth table. A function f(x) is called 
balanced if W H (f) = 2n

-
1. The function f (x) is called an affine function if there 

exist ao, aI, ... , an E F2 such that f(x) = ao EB alXI EB '" EB anxn, where EB means the 
modulo 2 addition. In particular, if ao = 0, f(x) is also called a linear function. We 
will denote by Fn, the set of all Boolean functions of n variables and by en, the set 
of affine ones. 

For x and y in F:;, we will denote by (x, y) = XIYl EB X2Y2 EB ... EB XnYn the inner 
product of x and y. It is noticed that when one of them is a constant and the other 
is a vector of n variables, the inner product then yields a new variable. The inner 
product can also be written as X· yT, where yT is the transpose of y. Some concepts 
from the theory of error-correcting codes [14] are included here which will be used 
in the forthcoming discussion. An [n, k, d] linear code C is a subspace of F:; of 
dimension k and with minimum distance d, i.e., the minimum Hamming weight of 
its code words is d. A generating matrix G of C is a k x n matrix of which the row 
vectors form a basis of C. For any matrix D we will denote by CD the linear code 
linearly spanned by the row vectors of D. 

2 Algebraic degeneration 

Let f(x) E Fn. Then there are up to n variables which contribute to the output of 
the function f(x). However there are cases where some variables do not contribute 
to the output of the function. For example, for n = 3, f(x) = Xl EBx3 is independent 
of X2, i.e. regardless of whatever value is assigned to X2, as long as the values for 
Xl and X3 are fixed, the output of f(x) is fixed. This kind of function is called 
degenerate. If every variable contributes to the output of a function f(x), then f(x) 
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is called a non-degenerate function or a complete function. Properties of degeneration 
of Boolean functions have been studied in [18] and are not addressed in this paper. 
In this section we study another kind of degeneration. In order to distinguish this 
new concept from the known one, we call it the algebraic degeneration of Boolean 
functions. The algebraic degeneration of a Boolean function is defined as: if there 
exists an n x k (k < n) binary matrix D and a Boolean function g(y) E Fk such 
that f(x) == g(xD), then f(x) is called algebraic degenerate and g(y) is called an 
algebraically degenerated function associated with D. Note that matrix D is not 
unique and hence the degenerated l function g(y) is not unique. The maximum 
possible value of n - k is called the algebraic degeneration of f(x) and is denoted 
by AD(J). Here matrix D is assumed to be of rank k, because otherwise there will 
exist another algebraic degenerated function of lesser variables. A Boolean function 
which cannot be algebraically degenerated to a function with less variables is called 
an algebraic non-degenerate function. 

Algebraic degeneration is an important criterion for measuring the insecurity of 
cryptographic Boolean functions. For example an effective attack on nonlinear fil
tered generators was observed by Siegenthaler [21] when the nonlinear filtered func
tion is algebraic degenerate. 

It is obvious that an incomplete function, or equivalently a degenerate function, 
is algebraic degenerate as well. However a complete function could be algebraic 
degenerate. For example the exclusive-or of all variables is non-degenerate, and by 
a linear transformation it can be algebraically degenerated to a function of only one 
variable. In this sense the concept of algebraic degeration is weaker. 

In order to study the algebraic degeneration and correlation immunity of Boolean 
functions we introduce the Walsh transform of Boolean functions. Let f(x) E Fn. 
Then the Walsh transform of f (x) is expressed as 

Sf(W) = Lf(x)(-l)(w,x), (1) 
x 

where w, x E F!j and (w, x) = WIXI EBW2X2 EB· .. E9wnxn is the inner product of vectors 
wand x. Accordingly, the inverse transform is expressed as 

f(x) = 2-n L Sf(w)( _1){w,x). (2) 
w 

Note that the summations in (1) and in (2) are over the real number field, and the 
Walsh transform of a Boolean function then is a real function. It should be noted that 
the value of (w, x) could be treated as a real value when executing the operations. 

It is easy to deduce that 

Lemma 1 Let f(x) E F n , D be an n x n nonsingular matrix over F2 . Let g(x) = 
f(xD). Then 

(3) 

1 We sometimes omit the word "algebraic" but mean the same thing. 
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where (D-1)T is the transpose of D- I . 

Lemma 2 Let f(x) E Fn, g(x) = 1 EB f(x). Then 

S(w)={2
n
-Sf (W) ifw=O, 

9 -Sf(w) if w =J. o. (4) 

Proof: Note that the value of the 1EBf(x) is equivalent to the real value of 1- f(x), 
and I:x( _l)(w,x) is 2n if w = 0 and 0 else. So we have 

Sg(W) I:xg(x)(-l)(w,x) 
I:x(1 EB f(x))( _l)(w,x) 
Lx(l - f(x)) ( _l)(w,x) 
I:x(-l)(w,x) - Lxf(x)(-l)(w,x) 

{ 
2n - Sf (w ) if W = 0, 
-Sf(w) if w =J. o. 

o 
Algebraic degeneration of Boolean functions can be described by means of Walsh 

transforms. A useful result can be found in [11] which describes the algebraic degen
eration of Boolean functions precisely. 

Lemma 3(11) Let f(x) E Fn. Denote by V =-< {w: Sf(w) =J. O} >- the vector space 
generated by the vectors on which the Walsh transform takes nonzero values, or the 
linear span of S(J) = {w: Sf(w) =J. O}. Suppose dim(V) = k, and let hI, ... , hk be a 
basis of V. Write H = [hf, hi, ,." hI], where hi is the transposed vector of hi. Then 
there must exist a Boolean function g(y) E Fk such that 

f(x) = g(xH) = g(y). (5) 

It can also be shown [23J that the dimension of the vector space V is the least 
number k that f has an algebraic degenerated function in :Fk . 

Corollary 1 Let f(x) E Fn, A be an nxn nonsingular matrix, and let g(x) = f(xA). 
Then AD(g) = AD(J). 

Coronary 2 Let f(x) E Fn. If deg(J) = n then f is algebraic non-degenerate. 

3 Correlation immunity of Boolean functions 

Let f(x) E Fn. The function f(x) E :Fn is called correlation immune with respect to 
the subset T C {I, 2, ... , n} if the probability for f to take any value from {O, I} is not 
changed given that the value of {Xi, i E T} are fixed in advance while other variables 
are chosen independently at random. The function f(x) is called correlation immune 
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(CI) of order t if for every T of cardinality at most t, f is CI with respect to T. It 
is noticed that f(x) is CI of order t implies that it is CI of any order less than t 
as well. The largest possible value of t is called the correlation immunity of f. Let 
z = EBi=l CiXi be another (nonzero) variable, where Ci E {O, I}. Then the function 
f(x) is said to be correlation immune in z if the probability for f to take any value 
from {O, 1} is not changed given that z is assigned any fixed value in advance. 

Lemma 4 Let f(x) E :Fn . Then f(x) is CI of order t if and only if for every "( E F2n 

with W H ("() :::; t, f(x) is CI in z = (,,(, x). 

Proof: It is trivial to prove that f(x) is CI with respect to T E {I, 2, .. " n}, if and 
only if f(x) is CI in z = (,,(, x) for all "(: "(i = 1 implies that i E T. A generalisation 
of this observation is that f(x) is CI with respect to all T of cardinality:::; t, if and 
only if f(x) is CI in every z = (,,(,x) with WHC'Y) :::; t. Therefore the conclusion of 
lemma 4 follows. 0 

It should be noted that f(x) is CI in Zl and Z2 individually does not imply that 
it is CI in Zl EB Z2. For example, although f(xI, X2, X3) = X3 EB XIX2 EB XIX3 EB X2X3 is 
a 1-st order CI function, it is easy to verify that it is not CI in Xl EB X2. 

Let f(x) E :Fn , g(y) E :Fk , D = (if, 4, ... , df) be an n x k binary matrix 
with rankeD) = k, where di E Fr. Let f(x) = g(xD) = g(y). It is known that 
each Yi is the linear combination of xi's with coefficients the components of di , i.e., 
Yi = (x, di ) = x . d[. Let z = EBi=l CiXi be another variable. Then it is obvious that 
f(x) is CI in z if and only if g(y) is CI in z. Denote by "( = (CI, C2, ... , en). We have 

Lemma 5 If rank[D; "(T] = k + 1, where [A; B j means the concatenation of matrices 
A and B, then for any Boolean function g(y) E :Fk , g(xD) is independent of z = (,,(, x) 
and hence is CI in z. 

Proof: Let Y = (Yb Y2, ... , Yk) = xD. It is noticed that rank[D; "(Tl = k + 1 if and 
only if variables YI, Y2, ... , Yk together with z are all independent, and consequently 
g(xD) is independent of z. So we have 

Prob(g(xD) = liz = 1) = Prob(g(y) = liz = 1) = Prob(g(y) = 1). 

This means that g(xD) is CI in z. o 
The following lemma has been proved both in [22] and in [24] using different 

methods, 

Lemma 6 If G is a generating matrix of an [n, k, d] linear code, then for any g(y) E 
:Fk , the correlation immunity of f(x) = g(xGT ) is at least d - l. 

In order for the function f to have correlation immunity of order larger than d -1, 
by the definition of correlation immunity and lemma 4 and lemma 5, we need to make 
g(y), or equivalently f(x) = g(xGT ), to be CI in every z = (x, "() with WH ("() = d. 
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It is obvious that rank[GT, )'T] = k if and only if)' is a codeword of Gc, the linear 
code generated by G. By lemma 5 we know that for those '"Y with Hamming weight 
d which are not codewords of Cc , the function f is already CI in z = (x, )'). So we 
have 

Lemma 7 Let G be a generating matrix of an tn, k, d] linear code, and f(x) = 
g(xGT). Then f is CI of order 2: d if and only if for every a E F; with WH(aG) = 
d, g(y) is CI in z = (a, y). 

Proof: It can be proved by setting), = aG and consequently w~ have (a, y) = 
(x, )'). By lemma 4 the conclusion follows. D 

By generalising lemma 7 we have 

Theorem 1 Let G be a generating matrix of an tn, k, d] linear code, and f(x) = 
g(xGT). Then a necessary and sufficient condition for the function f to be GI of 
order m is that for every a E F; with d ::; WH(aG) ::; m, g(y) is CI in z = (a, y). 

Corollary 3 If the i-th row vector of G is a codeword with nonzero minimum Ham
ming weight d and the function g(y) is not CI in Yi, then the correlation immunity 
of f{x) = g(xGT) is exactly (d - 1). 

Now we consider the inverse question for general CI functions. Given an m-th 
order CI function f E Fnl can it be written as f(x) = g(xD), where g E :Fk is 
algebraic non-degenerate and DT is a generating matrix of an [n, k, d]linear code 
with k ::; nand d 2: I? The answer is yes according to lemma 8. Furthermore it can 
be shown that the code generated by DT is unique. 

Lemma 8 Let f(x) E Fn. Then it can be written as f(x) = g(xD), where 9 E :Fk 
is algebraic non-degenerate and DT is a generating matrix of an tn, k, d] linear code 
with k ::; nand d 2: 1. Moreover, the linear code is unique given that f(x) is fixed. 

Proof: From the discussion above, what we need to show is the uniqueness of the 
code. On the contrary we suppose f(x) = gl(xDd = g2(xD2), where GDT ::j=. CDT. 

1 2 

Then there must exist a column a of Dl which is linearly independent of the column 
vectors of D2• Without loss of generality let a be the first column of D1. Then by 
lemma 5 we know that f(x) is independent of (a,x), and equivalently gl(y) must be 
independent of Yl. This is in contradiction with the premise of the lemma. So the 
conclusion is true. D 

By lemma 8 we know that theorem 1 gives a necessary and sufficient condition for 
a general Boolean function to be CI. Since theorem 1 applies to every CI function, 
it can be used to develop exhaustive constructions of CI functions. 
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4 Some known constructions and their 
non-exhaustiveness 

One aim of this paper is to develop the construction of CI functions described in 
lemma 6. The limitations of the construction of lemma 6 is shown in the example in 
the appendix where we construct some CI functions which are beyond the capability 
of lemma 6. Besides the construction of CI functions described in lemma 6, there 
have been numerous methods in constructing CI functions (see for example [2, 3, 6, 
19, 20, 23, 12]). Some of these constructions are for functions over finite fields or 
Galois rings. As we are only concerned with Boolean functions in this paper, we 
will consider the following constructions which were initially studied in [20] and [2]. 
Some other constructions are extensions or variations of them. 

Lemma 9 ([20]) Let h(x), h(x) E Fn be two m-th order C1 functions with WH(h) 
= W H(h). Then 

f(Xl l ""Xn+l) = xn+lh(x) EB (1 EB xn+dh(x) 

is an m-th order C1 function with WH(J) = 2WH(Jd. 

(6) 

Lemma 10 ([2]) Let fl (x) E Fn be balanced. Write x = (Xl EB 1, ... , Xn EB 1). Then 

1. f(Xl, ""Xn+l) = h(X)EBXn+l is a balanced (k+l)-th order C1 function in Fn+l 
if and only if h(x) is a k-th order C1 function of Fn. 

2. f(xl, ... , xn+d = h(x) EB Xn+l (Jl (x) EB h(x)) is a balanced (k + l)-th order C1 
function in Fn+l if and only if h (x) is a k-th order C1 function of Fn. 

The two constructions above are both based on known CI functions. In [2] a more 
direct construction is proposed which can be described as follows: 

Lemma 11 ([2]) Let nil n2, n be positive integers with nl + n2 = n, r(y), <Pi(Y) E 
Fn2 , i = 1, ... , nl. Let 

nl 

f(x; y) = E£1Xi<Pi(Y) EB r(y). (7) 
i=l 

Then f(x; y) is a balanced Boolean function in Fn with correlation immunity of order 

The non-exhaustiveness of the constructions studied in [2] (lemma 10 and lemma 11 
above) is obvious because they can only construct balanced CI functions. As for the 
non-exhaustiveness of the construction of lemma 9, it can easily be checked when 
the CI function Xl EB XIX2 EB XlX3 EB X2X3 is written as Xdi (Xi) EB (1 EB xi)h(Xi), where 
Xi is a collection of Xj excluding Xi, h(Xi) is always not CI at all. So it is beyond 
the capability of the construction described in lemma 9. We should also note that 
when a CI function is written in this way, WH(h) = WH(h) is always true which is 
just part of the premise of lemma 9. 
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5 Exhaustive construction of CI functions 

Theoretically by using lemma 6 and theorem 1 the complete set of or functions 
can be constructed. By applying theorem 1 we are able to see when the correlation 
immunity is larger than or equal to the minimum distance of the code. In order to do 
this, we need to construct Boolean functions which are CI in some of their variables 
and/or their linear combinations. Let Xi = (Xl, ... , Xi-I, Xi+l, ... , xn). Then we have 

Lemma 12 Let f(x) = xih(Xi) EEl h(Xi). Then f(x) is CI in Xi if and only if 

WH(h EB h) = WH(h)· (8) 

Proof: By writing f(x) = Xi (!I (Xi) EEl 12(xi)) EB (1 EEl xi)h(Xi) it can be seen that 
f(x) is CI in Xi if and only if WH(h EEl h) = WH(h) = ~WH(J). 0 

Lemma 13 Let f(x) E Fn. Then deg(J) < n if and only if 2!WH(J), i.e., the 
Hamming weight of f(x) is an even number. 

In [20] it was shown that if f(x) E Fn is CI (of order ~ 1), then deg(J) :s; n - 1. 
We further prove that 

Lemma 14 Let f(x) E Fn. If deg(J) = n then f(x) is not CI in any linear combi
nation of its variables. 

Proof: Assume the contrary, f(x) is CI in (a, x), and without loss of generality the 
first coordinate of a is assumed to be not zero. Denote by 6i the vector in F2 with 
i consecutive ones followed by zeros. Let D = [aT, 8T, ... , 8~]. Then g(x) = f(xD- I ) 
is CI in Xl and hence can be written as g(x) = Xlgl(Xl) EB g2(X1)' By lemma 12 we 
know that 

W H((gl EB g2) EEl g2) 
WH(gl EEl g2) + W H(g2) - 2WH((gl EEl g2) . g2) 
2WH(g2) - 2WH((gl EEl g2) . g2) 

is an even number and by lemma 13 we have deg(J) = deg(g) = deg(gl) + 1 < 
(n - 1) + 1 = n. This is a contradiction. So the conclusion of lemma 14 follows. 0 

Let f(x) = g(xGT
) be a Boolean function of Fn , where 9 is algebraic non

degenerate, and G is a generating matrix of an [n, k, d] linear code. It is easy to 
see that by a linear transform on the rows of G, we can always make the row vectors 
of G satisfy 

and there does not exist another basis /31, /32, .. ·,!3k of CG with WH(/31) :s; WH(/32) :s; 
... :s; WH (/3k) such that WH(!3i) < WH(gi) for some 1 :s; i :s; k. Constructions can 
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always be based on this assumption. Such a matrix will be called a minimum weight 
generating matrix. 

It is noticed that under a permutation of the variables of a Boolean function, 
the correlation immunity of the function is an invariant. To simplify the problem 
we will treat two CI functions as equivalent if they ate equivalent by a variable 
permutation. For the function f(x) = g(xGT ) a permutation of x is equivalent to 
the same permutation of the column vectors of G. Complements of CI functions can 
be left out in the first steps and then added at last. So the exhaustive construction 
can be outlined as follows: 

For all integers k E {I, 2, ... , n} perform the following steps: 

1. Search the minimum weight generating matrices Gi , i E I, of [n, k] codes such 
that they are not column-equivalent, where I is a set of complete index. 

2. List all nontrivial Boolean functions g(y) E :Fk such that g(O) = O. 

3. Match each g(y) with every G i to see if h(x) = g(xG'[) is CI of any order 
according to theorem 1. 

4. For those fi(X) with a certain order of CI, permute their variables to get an 
equivalent class of 01 functions. 

5. Complement every CI function obtained above. 

Theoretically the above step can exhaustively generate all the CI functions. How
ever because of the large number of CI functions of n variables when n is sufficiently 
large, it is not surprising to see that the above steps are not practically efficient in 
terms of computational complexity (such as step 3). So more efficient constructions 
of particular CI functions are required. 

6 Construction of high order CI functions 

From the above, every CI function can be written as g(xD), where 9 is an algebraic 
non-degenerate function and DT is a minimum weight generating matrix of an [n, k, d] 
linear code. In this section we will concentrate mainly on the construction of those 
functions whose correlation immunity is not less than d. 

For any Boolean function f (x) E :Fn , set 

fl f = {£5 E F;:, f (x) is CI in (£5, x)}. (9) 

Then by theorem 1 we have 

Theorem 2 Let g(y) E :Fk and G be a generating matrix of an in, k, dJ linear code. 
Set f(x) = g(xGT ). Then the correlation immunity of f(x) is 

(10) 
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Moreover we have 
AD(J) = n - k + AD(g). (11) 

Proof The former part (equation 10) comes directly from theorem 1. So we need 
only to prove the latter part. Assume AD(g) = t, i.e., there exists an algebraic non
degenerate function gl E Fk - t and a k x (k - t) matrix D such that g(y) = gl(yD). 
So f(x) = gl (xGT D), and AD(J) ~ n - (k - t) = n - k + AD(g). 

On the other hand, since rank( G) = k, we can assume, without loss of generality, 
that the first k columns of G are linearly independent and we write G = [G 1; G2]. 

Then g(y) = f(yG11
, 0,' ··,0). This means that if f can be algebraically degenerated 

to a function of r variables then 9 can be algebraically degenerated to a function of 
no more than r variables, i.e., k - AD(g) :::; n - AD(J) or AD(J) :::; n - k + AD(g). 

In light of the above discussion, the conclusion follows. 0 

In order to determine tlf for a general Boolean function f(x) E Fn we have 

Theorem 3 Let f(x) E Fn and 8 E Pt. Then 8 E tlf if and only if 

(12) 

Proof: 8 E tlf ¢=> f(x) is Cl in (8, x) ¢=> Prob(J(x) = 11(6, x) 0) 
Prob(J(x) = 11(6, x) = 1) ¢=> L:(J,x)=o f(x) - L:(J,X)=l f(x) = 0 ¢=> 

5f (6) = L:x f(x)( _1)(J,x) = L:(J,x)=o f(x) - L:(J,x)=l f(x) = O. 0 

By theorem 3, (10) can be rewritten as 
min WH(aG) 1. (10') 

a: 59 (a) =f. 0 
It is seen that using the techniques of Walsh transforms the correlation immunity of 
f(x) = g(xGT ) can easily be determined by (10'). 

Note that g(y) can always be chosen as algebraic non-degenerate which enables 
us to construct Cl functions with least possible algebraic degeneration. When we 
use theorem 2 to construct Cl functions, it is noticed that an [n, k, d]linear code 
normally has several code words of Hamming weight d. So in general it is hard to 
find a Boolean function which can match a generating matrix of this linear code to 
generate Cl functions of order ~ d. However it is easy to find Boolean functions 
which are Cl in part of their variables and their linear combinations as shown in the 
following. 

Corollary 4 Let g(y) E Fk be CJ in its first t variables and their nonzero linear 
combinations. Let G be a generating matrix of an [n - t, k - t, d] linear code. Then 
the correlation immunity of function f(x) = g(xGT ) is at least d - 1, where 

A [D 0 1 G= 0 G ' 

and D is an arbitrary nonsingular binary matrix of order txt. 
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We note that when corollary 4 is used to construct CI functions, the size of D 
is normally small as the cases demonstrated in the example of the appendix. For 
special cases we have 

Corollary 5 If G is a generating matrix of an tn, k, d] linear code and the row 
vectors of G include all the code words of Hamming weight d, then for any algebraic 
non-degenerate Boolean function g(y) of k variables with correlation immunity of 
order t, f(x) = g(xGT ) is a CI function of order t + 1. 

7 Construction of CI functions with 
associated cryptographic properties 

In practice a CI function is required to satisfy other cryptographic properties as well. 
Cryptographic properties of Boolean functions which have commonly been studied 
include the following: 

• Balance: Let f(x) E Fn. The balance of f(x) is defined as 

Bal(f) 1 -IWH(J) - 2n - 11/2n - 1 

{ 
WH(J)/2n-l if WH(f) ~ 2n-1, 

= (2n - WH(J))/2n- 1 if WH(f) > 2n- 1• 

When Bal(J) = 1, f(x) is called balanced and when Bal(f) = 0, f(x) is called 
extremely unbalanced as f(x) is a constant in this case. 

• Algebraic degree: The algebraic degree or simply degree of a Boolean func
tion is defined as the largest number of variables in one product term of its 
polynomial expression and denoted by deg(J). 

• Nonlinearity: The nonlinearity of a Boolean function f(x) E Fnl denoted by 
Nfl is the minimum distance of f from all affine functions in en. 

• Propagation criterion: A Boolean function f(x) E Fn is said to satisfy the 
propagation criterion with respect to a non-zero vector a if f(x) EB f(x EB a) is 
balanced. 

A Boolean function f(x) is said to satisfy the propagation criterion of order k if 
it satisfies the propagation criterion with respect to all a with 1 ::; WH(a) ::; k, 
and denoted by PC(f) = k. 

Note: Strict Avalanche Criterion (SAC) is equivalent to the propagation crite
rion of order 1 (PC (J) = 1) and perfect nonlinearity defined in [15] is equivalent 
to the propagation criterion of order n (PC(J) = n). 

• Linear structure: A boolean function f(x) E Fn is said to have a linear 
structure a E Fr if f(x) EB f(x EEl a) == C, where C is a constant of {O, I}. In 
particular a is called an invariant linear structure if c = ° and a complement 
linear structure if c = 1. 
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• Algebraic degeneration: As described earlier in this paper. 

From the discussions above we know that every CI function can be written as 
f(x) = g(xGT), where 9 is an algebraic non-degenerate Boolean function of k vari
ables and G is a generating matrix of an [n, k, d] linear code. We will show that some 
cryptographic properties of 9 can be inherited by the CI function f. 

7.1 CI functions with good balance 

From the view point of cryptographic applications, we aim to construct CI functions 
with as good a balance as possible. The balance of CI function given in the form 
f(x) = g(xar) can easily be controlled by choosing 9 to be of a good balance. 

Lemma 15 Let f(x) = g(xD), where 9 is an algebraic non-degenerate Boolean func
tion of k variables and DT is a generating matrix of an tn, k, dJ linear code. Then 

Bal(g) = Bal(f). 

Particularly, f(x) is balanced if and only if g(y) is such. 

Proof Denote by KerD = {x: xD = a}. For any y E F~, since rank(D) = k, 
there must exist an x E F:; such that y = xD. So x + K er D is the set of all 
solutions of equation xD = y. This means that when there exists an y such that 
g(y) = 1, there will exist 2n - k Xi such that XiD = Y and f(Xi) = 1. So we have that 
WH(f) = 2n - k • WH(g). By the definition we have the conclusion. 0 

7.2 functions with high algebraic degree 

Algebraic degree is one criterion to measure the nonlinearity of Boolean functions. 
In practical applications, a CI function is required to have as high algebraic degree 
as possible. Otherwise there may be a risk in decreasing its security when the low 
order approximation technique [16] is applied. It can be shown that the degree of f 
is the same as that ,of g. 

Lemma 16 : Let f (x) E Fn and A be an n x n nonsingular binary matrix. Then 
deg(f(xA)) = deg(J(x)). 

Proof: Denote by JI(x) = f(xA). It is obvious that the expansion of f(xA) does 
not generate a term with degree> deg(f(x)), so we have deg(JI(x)) :S deg(f(x)). 
On the other hand, from the non-singularity of A we have f (x) = JI (xA -1) and 
hence deg(J(x)) :S deg(JI(x)). Therefore, deg(JI(x)) = deg(J(x)). 0 

Theorem 4 Let D be an n x k (k :S n) binary matrix and let f(x) = g(xD), where 
9 E Fk . Then deg(J) = deg(g) holds for any 9 if and only if rank(D) = k. 
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Proof By row-transformation, matrix D can be written as 

where A is an n x n nonsingular matrix, IT is an r x r (r :::; k) identity matrix and 
P is a k x k permutation matrix. Then 

f(x) = g(xD) = g(xA (~ ~) P) 

Denote by JI(x) = f(xA- 1), gl(Y) = g(yP), where x E F2n and y E GFk (2). Then 

fl (x) = f(xA- 1) = g(XA-I D) = g(x (~ ~) P) 

=gl(x( ~ n)=gl(X1, ... ,x"o, ... ,O). 

From the equation above we see that 

holds for any gl(y) E :Fk if and only if r = k, i.e., if and only if rank(D)=k. Notice 
that by lemma 16, deg(gl) = deg(g) and deg(JI) = deg(J). So we have deg(J) = 
deg(g) holds for any g(y) E :Fk if and only if rank(D)=k. D 

From theorem 4 we see that the maximum algebraic degree of the function written 
as f(x) = g(xD) is k. In this case by corollary 3 and lemma 14, the correlation immu
nity of f(x) is exactly d - 1, where DT is the generating matrix of an [n, k, d] linear 
code. This is consistent with Siegenthaler's inequality [20]. The discussion above 
also shows that we can construct CI functions which meet the equality (maximum 
correlation immunity/algebraic degree) of Siegenthaler's inequality. 

7.3 CI functions with high nonlinearity 

Nonlinearity of Boolean functions is a measurement of the distance of Boolean func
tions to the nearest affine one [15]. If the nonlinearity of a Boolean function is very 
low, then it can be approximated by an affine Boolean function with high correlation 
with the affine function [7] and hence is cryptographically insecure. By using the 
Walsh spectral techniques it is easy to deduce that 

Lemma 17 

Nf = min{WH(J), 2n 
- WH(J), 2n

-
1 

- max ISf(w)I}. (13) 
w#O 
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Lemma 18 Let f(x) = g(xGT ), where 9 is an algebraic non-degenerate Boolean 
function of k variables and G is a generating matrix of an tn, k, dj linear code. Then 

Nf :s; 2n - k Ng • 

Proof By the definition of nonlinearity there exists an affine function l(y) of k 
variables such that WH(g(y) ffi l(y)) = Ng • Hence we have WH(g(xGT

) ffi l(xGT )) = 
2n- k Ng and again by the definition we have N f :s; 2n - k Ng • 0 

Furthermore we can prove 

Theorem 5 Let D be an n x k (k :s; n) binary matrix. Then rank(D) = k if and 
only if for any Boolean function g(y) E Fk and f(x) = g(xD) we have 

N - 2n - kN f - g' 

In order to prove theorem 5, the following lemmas will be used. 

Lemma 19 Let V be a vector subspace of Fr. Then 

L (_l)(w, x) = { #(V) 
xEV 0 

ifwEV.L, 
otherwise, 

(14) 

(15) 

where #(A) denotes the cardinality of the set A and V.l = {y: (x, y) = 0 for every 
x E V} is the orthogonal space of V. 

Lemma 20 Let JI(x) = h(xA), where A is an n x n nonsingular matrix. Then 
Nfl = N/2' 

Lemma 21 Let D = [ ~l 1 be an n x k binary matrix, where Dl is a k x k non

singular matrix. Let f(x) = g(xD). Then N f = 2n - k Ng • 

Proof For any vector a E Fr we will write !Xl = (a1,' . " ak). It is easy to see 
that 

K er D = {(O, ... ,0, Xk+b ... , X n ): Xi E F2 }, 

(K er D).l = {(XI, ... , Xk, 0, ... ,0): Xi E F2 }. 

Noticing that Rf = (KerD).L ffi KerD, we have 

Sf(W) L:x f(x)( -l)(w, x) 

L:x g(xD)( -l)(w, x) 

L:xE(KerD).l L:yEKerD g((x ffi y)D)( -l)(w, (xEfly)) 

L:xE(KerD).l g(xD)( -l)(w, x) L:yEKerD( -l)(w, y). 
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By lemma 19 we know that St(w) = 0 if W tt (K er D).l... If W E (K er D)l. we have 

St(w) 2n- k I:xE(KerD).L g(xD)( -l)(w, x) 

2n - k I:xE(KerD).L g(J2I DI )( -1)(f!:!.1> ifl) (by lemma 1) 
2n - k S9(~1 (DII f). 

This means that 
maxw¥:o ISt(w)1 = max 2n-kISg(~I)I. 

WI -I- 0 

Notice that WH(f) = 2n
-

k W H (g). By lemma 17 we have Nt = 2n
-

k N g • o 

Proof of theorem 5: Necessity: Since rank(D) = k, there must exist a nonsingular 

n x n matrix R such that RD = D' = [ ~l ]. Write 

JI(x) = f(xR) = g(xRD) = g(xD'). 

Then by lemma 21 we have Nit = 2n - k Ng • But by lemma 20 we have Nt = Nit. So 
the conclusion follows. 

Sufficiency: On the contrary we assume that rank(D) < k. Then the columns of 
D = [£if, .. " liT] are linearly dependent, i.e., for some i-th column of D, there must 
exist aj E F2 such that 

If di is an all-zero vector, then for any j -I- i, set g(y) = YiYj to be a quadratic 
function which has nonzero nonlinearity, f(x) = g(xD) = (xdf)(xdJ) = 0 has zero 
nonlinearity. If di is a nonzero vector, then set g(y) = Yi(alYl EB ... EB ai-lYi-1 EB 
ai+IYi+l EB ... EB akYk) to be a quadratic function which has nonzero nonlinearity. 
Then 

f(x) g(xD) 
(xd'f)(alx£if EB ... EB ai-lxd'f_l EB ai+lxd'f+l EB ... EB akxdf) 
(xd'f) (xd'f) 
xd'f 

is a linear function which has zero nonlinearity. This is a contradiction with (14) 
and hence the conclusion of theorem 5 is true. 0 

From theorem 5 we know that, if a C1 function is constructed in the form f(x) = 
g(xD), where D is an n x k matrix with rank(D) = k, then f(x) has maximum 
possible nonlinearity if and only if g(x) has the maximum possible nonlinearity as 
well. There have been alternative methods for constructing Boolean functions with 
high nonlinearity (refer to [4, 5, 19, 27]). With Boolean functions having high order 
nonlinearity, CI functions having high nonlinearity can be constructed according to 
theorem 5. 
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7.4 CI functions with propagation criterion 

Unlike other properties, the propagation property is not inheritable from 9 to f for 
the expression f(x) = g(xD), i.e., 9 satisfies propagation criterion does not guarantee 
that f does. For example, let 

1 0 0 0 0 
0 1 0 0 0 

D= 0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
1 1 1 1 1 

Although g(y) = YIY2 EB Y2Y3 EB Y3Y4 EB Y4Y5 EB YIY5 satisfies the propagation criterion 
of order 4, f(x) = g(xD) = XIX2 EB X2X3 EB X3X4 EB X4X5 EB XIX5 EB X6 does not satisfy 
the propagation criterion of order 1. In order to study the way that the propagation 
property of f relates to that of 9 more precisely, for f(x) E Fn , we denote by 
NP(J) = {a E F:f, f(x) EB f(x EB a) is not balanced}. 

Theorem 6 Let f(x) = g(xD), where g(y) E :Fk and D is an n x k binary matrix 
with rank(D) = k. Then the propagation criterion order of f(x) is 

PC(J) = min WH(a) - 1. 
aD E NP(g) 

Proof: We first prove that a E NP(f) if and only if aD E NP(g). It is easy to 
verify (refer the proof of lemma 15) that when rank(D) = k, xD forms k uniform 
random variables provided that x is a collection of n uniform random variables. 
So g(xD) EB g(xD EB (3) is unbalanced if and only if 13 E NP(g). So a E NP(f) 
{:=} f(x) EB f(x EB a) is unbalanced ~ g(xD) EB g(xD EB aD) is unbalanced ~ 
aD E N P (g ). By the definition that 

PC(J) = min WH(a) - 1 
a E NP(J) 

the conclusion follows. 0 

Particularly, when 9 satisfies the propagation criterion of the maximum order k, 
i.e., 9 is a bent function (or 9 is perfect nonlinear and k is even in this case), we have 

Corollary 6 Let 9 E :Fk be such that 9 satisfies the propagation criterion of order 
k, i.e., 9 is perfect nonlinear, and let D be an n x k matrix with rank(D) = k. Then 
f(x) = g(xD) satisfies the propagation criterion of order k. 

Proof Note that g(y) E :Fk satisfies the propagation criterion of order k if and only 
if NP(g) = {O}. Since rank(D) = k, it is obvious that aD E NP(g) or equivalently 
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aD = 0 only if WH(a) ~ k + 1. We can also find an a with WH(a) = k + 1 such 
that aD = O. So by theorem 6 the conclusion of corollary 6 is true. 0 

In the case of corollary 6, function f(x) has the same propagation criterion order 
as that of g(y). Is it possible that f(x) has a higher propagation criterion order than 
that of g(y)? The answer is yes as demonstrated by the following example. It can be 
verified that g(Xl' ... , xs) = XIX2 EB X3X4 EB Xs satisfies propagation criterion of order 
O. Let 

1 1 1 0 0 
0 0 1 1 1 

A= 
1 0 0 1 0 
0 1 0 0 1 
1 0 0 0 0 
1 1 1 1 1 

Then f(Xl' ... , X6) = g((XI' ... , x6)A) = Xl EB XIX2 EB X2 X 3 EB X4 EB XIX4 EB X3 X 4 EB XIXS EB 
X4XS EB X6 EB XIX6 EB X4X6 EB XSX6 satisfies the propagation criterion of order 3. We can 
easily find more such examples. However, as the propagation criterion characteristics 
of different functions are very different, and the choice of the matrices can be variant, 
we do not have a systematic way for constructing CI functions in the form f (x) = 
g(xD) such that the propagation criterion order of f is higher than that of g. We 
leave this as an open problem. 

7.5 Linear structure characteristics of CI functions 

It is known that the more linear structures a Boolean function has, the closer the 
function is related to an affine function. In the extreme case when every vector is a 
linear structure of a Boolean function, it must be an affine one. From a cryptographic 
point of view, a Boolean function is required to have as few linear structures as possi
ble. However, when a Boolean function can be written as f(x) = g(xD), it definitely 
has linear structures if k < n. The relationship between the linear structures of f 
and that of 9 can be described as follows. 

Theorem 7 Let f(x) = g(xD), where D is an n x k (k ::; n) matrix with rank(D) = 
k. Then a is an invariant (a complement) linear structure of f if and only if aD is 
an invariant (a complement) linear structure of g. 

Proof The sufficiency is obvious. So we only need to present the proof of the 
necessity. Assume the contrary, i.e., there exists a vector a E Fr such that f(x) EB 
f(xt;Ba) == c and g(Y)EBg(YEBaD) 1= c. Let g(y')EBg(y'EBaD) i- c. Since rank(D) = k, 
there must exist an Xf E Fr such that y' = x'D. So we have 

f(x') EB f(x' EB a) = g(x'D) EB g((x' EB a)D) = g(y') EB g(y' EB aD) i- c. 

This is a contradiction of the assumption. So the conclusion is true. o 
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Corollary 7 Let f(x) = g(xD), where D is an nx k (k :s; n) matrix with rank(D) = 
k. Denote by V, and Vg the set of linear structures of f and 9 respectively. Then 
dim(V,) = (n -- k) + dim(Vg), where dim(.) means the dimension of a vector space. 

It can be seen from corollary 7 that even if 9 has no nonzero linear structures, f 
may have because the all-zero vector is an invariant linear structure (trivial) of every 
function. It also implies that a Boolean function may have many invariant linear 
structures but no complement ones. 

We have shown above that if a function is algebraic degenerate, it must have 
nonzero invariant linear structures. Is this aiso a sufficient condition for a Boolean 
function to be algebraic degenerate? The following gives a positive answer. 

Theorem 8 Let f(x) E Fn) V1(f) be the linear space of all the invariant linear 
structures of f (x) and dim(VI (f)) = k. Then there must exist a nonsingular matrix 
A over F2 such that 

g(Xl' ... , xn) = f((XI, ... , xn)A) gl(Xk+1, ... , xn), 

where 91 (Xk+1' ... , xn) has no nonzero invariant linear structures. Moreover, 
91(Xk+1, ... ,xn) has a complementary linear structure, or equivalently it can be writ
ten as gl(Xk+1, ... , xn) = Xk+l EEl g2(Xk+2, ... , xn), if and only if f has a complementary 
linear structure. 

Proof: Let A be an n x n binary matrix such that the first k rows of A, aI, ... , ak, 
form a basis of V1(f). Let ei E Fr be the vector with the i-th coordinate being 
one and zero elsewhere. Set g(x) = f(xA). It is easy to check that el, ... , ek form 
a basis of V1(g). This means that g(x) is independent of Xl, ... , Xk and hence can 
be written as g(x) = gl(Xk+l, ... , xn). Also note that a is a complementary linear 
structure of f(x) if and only if aA-I is a complementary linear structure of g(x). So 
the conclusion follows. 0 

Note that this result is similar to the one in [10]. However here we precisely 
describe the value of k which is the dimension of V1(f). The proof here is also 
simpler. 

From theorem 8 we have 

Corollary 8 Let f(x) E Fn, VI (f) be the linear space of all the invariant linear 
structures of f(x). Then AD(f) = dim(VI(f)). Particularly, f(x) is algebraically 
non-degenerate if and only if it has no nonzero invariant linear structures. 

Corollary 8 gives a relationship between the algebraic degeneration and linear 
structure characteristics of Boolean functions. We further know that an algebraic 
non-degenerate function can have at most one complementary linear structure. 

Lemma 22 Let f(x) E Fn, where a is a complementary linear structure of f(x). 
Then there exists an n x n nonsingular matrix D such that g(x) = f(xD) = Xl EEl 
gl(X2, ... ,xn)' where gl has no linear structures. In this case, f(x) is balanced. 
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Proof: Let D = [ ~l 1 be a nonsingular matrix. Then el is a complementary 

linear structure of g(x) and by theorem 8 g(x) can be written as Xl EB gl (X2' ... , Xn). It 
is easy to verify that /3 = (0, b2, ... , bn ) is an invariant linear structure of f (X) if and 
only if /31 = (b2, ... , bn) is an invariant linear structure of gl, and /3 = (1, b2, ... , bn) is 
an invariant linear structure of f(x) if and only if /31 = (b2 , ... , bn ) is a complementary 
linear structure of gl. Since f (x) has no invariant linear structures, gl must have no 
linear structures. 0 

Considering the CI functions without linear s~ructures, from the discussion above 
it is known that they are algebraic non-degenerate functions which do not have a 
complementary linear structure. From lemma 22 it is known that those unbalanced 
CI functions which are algebraic non-degenerate satisfy the requirement, i.e., they 
do not have linear structures. In the next section we give constructions of algebraic 
non-degenerate CI functions which can be formulated by the constructions for CI 
functions having no linear structures. 

7.6 Construction of algebraic non-degenerate 
CI functions 

Note that the construction of CI functions discussed above is based on the expres
sion f(x) = g(xD). When D is a square nonsingular matrix, this method is no 
longer effective. So we need other methods to construct algebraic non-degenerate CI 
functions. 

It is seen that for any i E {I, ... , n} and for any Boolean function f (x) E Tn, it 
can be written as f(x) = Xd1(Xi) EB (1 EB xi)h(Xi), and by lemma 12 we know that 
f(x) is CI in Xi implies that WH(h) = WH(h). We adopt the result of lemma 9 for 
the construction of non-degenerate CI functions here. 

In order for the method of lemma 9 to be able to construct algebraic non-degenerate 
CI functions, we need to know when f is algebraic non-degenerate. Denote by 
w = (w, Wn+l) and x = (x, Xn+1). Then for the functions of (6) we have 

Sf(w) = L f(x)( _l)(w,x) 
x 

(16) 

It is easy to check that when the dimension of the linear span of {w: Sh (w) + 
S h (w) =1= O} is n, the dimension of the linear span of {w : Sf (w) =1= O} is n + 1 and 
hence f is algebraic non-degenerate. So we have 

Theorem 9 Let h(x),h(x) E Tn be two m-th order CI functions with WH(h) = 
WH(h)· If -< w: Sh (w) + Sfz(w) =1= 0 >- forms the whole vector space prj then 
f(Xl,"" Xn+l) = xn+1h(x) EB (1 EB xn+dh(x) is an algebraic non-degenerate m-th 
order CI function of n + 1 variables. 
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Theorem 9 gives a sufficient condition for function f defined by (6) to be algebraic 
non-degenerate. When the condition of theorem 9 can be satisfied is still not clear. 
It is anticipated that when one or both of hand 12 are algebraic non-degenerate, 
f is likely to be so. It is noticed that in the example of the appendix, 96 algebraic 
non-degenerate CI functions are listed, among them half have Hamming weight 6 
and another half have Hamming weight 10. By checkin~ every pair of them with 
the same Hamming weight we found that among 2 x e26 = 9120 pairs, there are 
7680 pairs which can form an algebraic non-degenerate C function of five variables 
according to (6) while another 1440 pairs cannot. 

In practice it is suggested to use the definition to check whether the constructed 
CI function according to lemma 9 is algebraiGally non-degenerate. Notice in the 
proof of theorem 9 that for every w = (w, wn+d, (_l)Wn+l Sh (w) + Shew) = 0 if and 
only if Shew) + (-1)Wn+1S/2(W) = O. So we have 

Corollary 9 Let hex), 12 (x) E Fn. Then xn+lh(x) EEl (1 EEl xn+l)h(x) is algebraic 
non-degenerate if and only if (1 EElxn+l)h (x) EElxn+lh(x) is algebraic non-degenerate. 

Let f(x) E Fn. Now we consider the function F(x) = F(xi, . .. , Xn+1) = Xn+l EEl 
f(x). It is easy to check that AD(F) ::; AD(J) + 1. So F(x) is algebraic degenerate 
if f(x) is such. When f(x) is algebraic non-degenerate, the algebraic degeneration of 
F(x) is at most one. It is interesting to know when F(x) is algebraic non-degenerate 
as well. We have 

Theorem 10 Let f(x) E Fn be an algebraic non-degenerate function and F(x) = 
Xn+1 EEl f(x). Then F(x) is algebraic non-degenerate il and only if I(x) has no 
complement linear structures. 

Proof: Necessity: Assume that I(x) has a complement linear structure (x, then 
(a,l) is an invariant linear structure of F(x). By theorem 8, F(x) is algebraic 
degenerate. 

Sufficiency: If Xn+l EEl I(x) is algebraic, then by corollary 8, Xn+1 EEl I(x) must have 
an invariant linear structure (al, "'j an+l)' It can easily be verified in this case that 
(aI, ... , an) is an invariant linear structure of f(x) if an+l = 0 and is a complementary 
linear structure of I (x) if an +1 = 1. 0 

By theorem 10 and lemma 10 we know that, if I(x) is a balanced algebraic non
degenerate m-th order CI function and has no complement linear structures, then 
Xn+1 EEl I(x) is a balanced algebraic non-degenerate (m + 1)-th order CI function of 
n+ 1 variables. Note that this construction cannot be preceded further as Xn+1 EEl f(x) 
has at least one complement linear structure. As an example of this construction, 
we found that the function 
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is balanced, algebraic non-degenerate, and 1-st order CI, and has no complement 
linear structures. Then by theorem 10 and lemma 10 we can construct a Boolean 
function X6 EB f(x) which is balanced, algebraic non-degenerate, 2-nd order CI, and 
having only one complementary linear structure (000001). 

8 Conclusion 

In this paper ·we have revealed the inherent structure of CI functions and described 
constructions for such functions. We particularly used the universal form f(x) = 
g(xGT ), where 9 is an algebraic non-degenerate function of k variables and G is a 
generating matrix of an [n, k] linear code. It is also shown that most other cryp
tographic properties of g, such as balance, nonlinearity, etc., can be inherited by 
the CI function f. We have studied the constructions of CI functions satisfying 
at least one more cryptographic property. Based on the study it can naturally be 
extended for the constructions of CI functions having additional cryptographic prop
erties. Preliminary constructions for algebraic non-dE:)generate CI functions are also 
given. 
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Appendix: 
An example of exhaustive construction 

It is not surprising that to accomplish an exhaustive construction of CI functions of 
n variables is not practical when n is fairly large, even if the method described in 
section 5 is used. However, as an interesting practice we show here a small example 
of how all the CI functions are constructed. 

We consider the correlation immunity of Boolean functions of n = 4 variables. All 
cr functions will be presented by means of representatives, i.e., their complements 
and/ or variable-permutation equivalences. First of all we know that 

is cr of order WH('Y) - 1 if'Y = (Cl' C2, C3, C4) =1= 0, or 4 if'Y = O. Then we consider 
functions in the form g(xGT ), where g is an algebraic non-degenerate Boolean func
tion of 2 variables and G is a generating matrix of [4, 2] code. It is easy to see that g 
is algebraic non-degenerate if and only if deg(g) = 2, and by lemma 14 such a func
tion is not cr in any linear combination of its variables. All possible representatives 
of such functions are as follows: 

YlY2, 
YIY2 E9 Yl, 
YlY2 E9 Y2, 
YIY2 E9 Yl EB Y2· 

In order for the constructed function to be cr of order at least one, the only possible 
codes useful are [4, 2, 2] codes. Recall that a permutation on the column vectors of 
matrix G is equivalent to the same permutation performed on the variables of the 
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constructed CI functions. So under column permutation equivalence we have three 
different linear codes with matrices 

[ 
1 100 1 [1 100 1 [1 100 1 
1010 ' 0011 ' 1011 . 

By corollary 3 we know that all the constructed functions (with 12 representatives) 
are exactly 1-st order correlation immune. All these functions also have the properties 
that algebraic degree = 2, nonlinearity = 4, number of invariant linear structures = 
4, number of complement linear structures = o. 

Now we consider algebraic non-degenerate functions of 3 variables and the family 
of [4, 3] linear codes. It is known that there are. totally 223 = 256 Boolean functions 
of 3 variables. Among them half are of degree 3 which are algebraic non-degenerate 
according to corollary 2 (they are useless in constructing CI functions according to 
corollary 3 because every [4, 3] linear code has a code word with Hamming weight 
one), and 23+1 = 16 are affine ones. So only 112 functions are of degree 2 with half 
are complements of the other. It can be checked that those algebraic degenerate 
functions can always be written as YlY2, YlY2 EEl Yl, YIY2 EEl Y2 and YIY2 EEl Yl EEl Y2 and 
their complements. When YI and Y2 are as follows (order is ignored): 

{ 
YI = Xl EEl X2 {YI = Xl EEl X3 {YI = X2 EEl X3 {YI = Xl EEl X2 

Y2 = X3 'Y2 = X2 'Y2 = Xl 'Y2 = X2 EEl X3 ' 

they form 16 algebraic degenerate functions of degree 2. When Yl = 1 while Y2 is any 
Boolean function of two variables from Xl, X2, X3 with degree 2, YIY2 has 12 different 
forms. All together we have 28 algebraic degenerate functions of degree 2 and with 
constant term O. So there are 28 algebraic non-degenerate Boolean functions of 
degree 2 which have constant term 0, namely 

XIX2 EEl {X3' Xl EEl X3, X2 EEl X3, Xl EEl X2 EEl X3}, 

XIX3 EEl {X2' Xl EEl X2, X2 EEl X3, Xl EEl X2 EEl X3}, 

X2 X 3 EEl {Xl, Xl EEl X2, Xl EEl X3, Xl EEl X2 EEl X3}, 

XIX2 EEl XIX3 EEl {X2' X3, Xl EEl X2, Xl EEl X3}, 

XIX2 EEl X2 X 3 EEl {Xl, X3, Xl EEl X2, X2 EEl X3}, 

XlX3 EEl X2 X 3 EEl {XI, X2, Xl EEl X3, X2 EEl X3}, 

XIX2 EEl XIX3 EEl X2 X 3 EEl {O, Xl EEl X2, Xl EEl X3, X2 EEl X3} 

It is easy to check that no function above is Cr. So by theorem 1, in order for the 
function g(xGT ) to be CI, there are at most 2 linearly independent code words with 
Hamming weight one. Therefore only the following minimum weight generating ma
trices of (4, 3] linear codes need to be considered (without being column permutation 
equivalent) : 
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Matching the 28 functions above with G1 , we can construct 28 first order cr functions. 
These functions are actually constructed based on lemma 6 and have been discussed 
in [24]. By theorem 1 if g(y) is cr in Yl then g(xGf) is cr of order ~ 1. Among the 
above algebraic non-degenerate functions only the following ones are cr in Xl: 

XIX2 EB {X3' Xl EB X3, X2 EB X3, Xl EB X2 EB X3} 

XIX3 EB {X2' Xl EB X2, X2 EB X3, Xl EB X2 EB X3} 

XIX2 EB XIX3 EB {X2' X3, Xl EB X2, Xl EB X3}. 

Matching them with G2 we can generate 12 l-st order cr functions of 4 variables. 
By variable permutations more cr functions can be generated. Note that all these 
functions are not constructible by the methods in [24]. 

It can also be checked that functions 

are also cr in X2 as well. Matching with G3 we can get 4 more 1-st order cr functions 
of 4 variables which are not constructible by the methods in [24] either. rn addition, 
all of the above constructed functions also have the properties that algebraic degree = 
2, nonlinearity = 4, number of invariant linear structures = 2, number of complement 
linear structures = 2. 

By computing search we found that there are 192 functions in :F4 which are alge
braic non-degenerate and with 1-st order correlation immunity. They also have the 
properties that algebraic degree = 3, nonlinearity = 4, number of invariant linear 
structures = 1, number of complement linear structures = 0, and propagation crite
rion order = O. 96 of them are listed below by truth table expression and the other 
96 are just the complements of those in the list. 

0001011010011000 0001011010100100 0001011011000010 0001100101101000 
0001100110100100 0001100111000010 0001101001100100 0001101010010100 
0001101011000001 0001110001100010 0001110010010010 0001110010100001 
00100101011010000010010110011000 0010010111000010 0010011001011000 
0010011010010100 0010011011000001 0010100101011000 0010100101100100 
0010100111000001 0010110001010010 
0011010001001010 001101001 0000110 
0011100001001001 0011100010000101 
0011110111101001 0011111011010110 
0100001101101000 0100001110011000 
0100011010010010 0100011010100001 
0100100110100001 010010100011 01 00 
0101001000101100 0101001010000110 
0101100000101001 0101100010000011 
0101101111101001 0101111010110110 
0110000100101100 0110000101001010 
0110001001001001 0110001010000101 
0110010010000011 0110011110111100 
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0010110001100001 0010110010010001 
0011010010001001 0011100001000110 
0011110111011010 0011110111100110 
0011111011011001 0011111011100101 
0100001110100100 0100011000111000 
0100100100111000 0100100101100010 
0100101001100001 0100101010010001 
0101001010001001 0101100000100110 
0101101110111100 
0101111010111001 
0110000110001001 
0110010000011010 
0110011111011010 

0101101111100110 
0101111011100011 
0110001000011100 
0110010000101001 
0110011111101001 



0110100000011001 0110100000100101 0110100001000011 0110101101111100 
0110101111011001 0110101111100101 0110110101111010 0110110110111001 
0110110111100011 0110111001111001 0110111010110101 0110111011010011 
0111011010011110 0111011010101101 0111011011001011 0111100101101110 
0111100110101101 0111100111001011 0111101001101101 0111101010011101 
0111101011000111 0111110001101011 0111110010011011 0111110010100111 

All the CI functions of 4 variables can be obtained by a variable permutation 
and/ or the complementation of the above constructed functions. 

(Received 1/4/99) 

166 


