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Abstract 

A proper edge coloring of a simple graph G from some lists assigned to 
the edges of G is of interest. A. Hilton and P. Johnson (1990) considered 
a necessary condition for the list coloring of a graph and called it Hall's 
condition. They introduced the Hall index of a graph G, h'(G), as the 
smallest positive integer m such that there exists a list coloring whenever 
the lists are of length at least m and Hall's condition is satisfied. They 
characterized all graphs G with h' (G) = 1. In this paper we characterize 
the graphs with Hall index 2. 

1 Introduction and Preliminaries 

We consider finite simple graphs and follow the notations in [1]. An L-list coloring, 
or L-coloring for short, of a graph G is an assignment of colors to the vertices such 
that each vertex v receives a color from a prescribed list L( v) of colors and the 
adjacent vertices receive distinct colors. If an L-coloring exists then the following 
inequality, called Hall's condition, holds: 

2: tH(a,L) ~ IV(H)I; 
(j 

here H is an arbitrary subgraph of G and tH(a, L) denotes the maximum number 
of independent vertices of H having the color a in their lists, and (J ranges over 
UVEV(H) L( v). In what follows, we use the same notions and notations for the corre
sponding edge concepts. Specially we widely use the following definition: 

Definition 1. [4] A graph G with a list assignment L to the edges of G satisfies 
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Hall's condition if for each subgraph H of G, we have: 

IE(H)I ~ L tH(a, L). 
I7EUe L(e) 

We denote UeEE(G) L(e) by [, throughout this paper. Although Hall's condition is 
necessary for the existence of L-coloring, it is not sufficient unless we suppose that 
the sizes of lists are large enough. The following definitions appeared in [7]. 

Definition 2. The Hall number of a graph G, h(G), is the smallest positive integer 
m such that, for every list assignment L of G with IL(v)1 2: m, v E V(G), if (G, L) 
satisfies Hall's condition, then G has an L-coloring. 

Definition 3. The Hall index of a graph G, h'(G), is defined as h(L(G)), where 
L( G) is the line graph of G and is defined to be the graph whose vertex set is in one 
to one correspondence with E( G) and two vertices of L( G) are adjacent if and only 
if the corresponding edges of G are incident. 

We use the following lemmas frequently: 

Lemma A. [4, 5] For a graph G we have h( G) = 1 iff every block of G is a complete 
graph. 

Lemma B. [7] For a connected graph G we have h' (G) = 1 iff G is a nontrivial tree 
or K 3 . 

Lemma C. [7] If H is a subgraph of G then h'(H) :s; h'(G). 

In this paper we characterize the graphs with Hall index 2. Our main theorem is: 

Theorem (Main Theorem). A graph G has Hall index at most 2, if and only if every 
component of G is one of the following graphs. 

a) A tree. 

b) A cycle. 

c) A graph with maximum degree 3 which contains exactly one cycle and only one 
vertex of degree 3, that lies on the cycle also; see Figure 15. 

d) A bipartite graph with maximum degree 3 having exactly one cycle and at most 
two vertices of degree 3 which lie on the cycle and are non-adjacent; see Figure 
16. 

e) A graph whose set of cycles consist of some vertex disjoint triangles such that 
every triangle has exactly two vertices of degree 2 and one vertex of degree 3; 
see Figure 18. 
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f) A graph whose set of cycles consist of one triangle such that it has exactly one 
vertex of degree 4 and the other vertices of graph have degree at most 2; see 
Figure 17. 

2 Some Forbidden Subgraphs 

The following obvious lemma provides a useful technique for verifying Hall's condi
tion. 

Lemma 1. A graph G with a list assignment L satisfies Hall's condition if G satis
fies (*) and for every edge e of G, G - e has an L-coloring. 

To characterize the graphs with Hall index at most two, we start by introducing 
some forbidden subgraphs. First we repeat the following definition. 

Definition 4. A B-graph consists of two distinguished vertices x and y together with 
three internally disjoint paths from x to y. Thus a B-graph Bk,l,m can be specified by 
giving k, l, and m, the lengths of three paths. 

Proposition 1. Let G be a B-graph, Bk,l,m; then h'(G) > 2. 

Proof. Obviously every B-graph is isomorphic to one of the graphs shown in the 
following figures. 

m = k = 2, 1 = 1 m = k = 2, 1> 1 

Figure 1. Figure 2 Figure 3. 

34 k(k +1) 34 k(k + 1) 

13 1(k + 1) 13 2(k + 1) 

12 12 12 12 12 12 12 

2(k + 2) 2(k + 2) 1(k+m) 

(k + 2)(k +3) (k+m l)(k+m) (k + 2)(k + 3) (k + m - 1)(k + m) 

k ~ 2, m > 2, I is odd k ~ 2, m > 2, I is even 

Figure 4. Figure 5. 
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The list assignments indicated in the above figures show that h' (G) > 2. We show 
it for Figure 4 and Figure 5. 
In both cases it is obvious that the graph G with the indicated list assignments, L, 
does not have an L-coloring, and for each edge e of G, G - e has an L-coloring. 
By Lemma 1, it is enough to check that (G, L) satisfies (*). If I is odd, we have 
te(l, L) + te(2, L) ~ 1+2 and te(3, L) = ... = te(k + m, L) = 1. If I is even we 
have; te(1, L) = te(2, L) = 1+2 and te(3, L) = .. , = te(k + m, L) = 1. Therefore, 
2:aE£ te(eJ, L) ~ 1+ k + m = IE(G)I, and hence (G, L) satisfies Hall's condition. So, 
h'(G) > 2. 0 

Proposition 2. Each of the graphs shown in Figures 6 -14, in which the lengths of 
the cycles in Figures 6,8 and 9 are at least 4 and the length of the cycle in Figure 7 
is at least 3, has Hall index at least 3. 

in_~l'n lin 12 ~i-m 
. 12 lil ... i-m-lim. 

'. 13 1J-m 
3il 

Figure 6. Figure 7. 

~
13 

14 12 

13 24 

Figure 8. Figure 9. Figure 10. 

23 23 

23 

:~ 23 

12 12 
12 12 13 13 

12 

13/ 

••• -.e>--12-e-r_2-13 at-·· • 23 

12 23 

23 13 13 13 13 
12 

Figure 11. The cycle is odd Figure 12. The cycle is even 
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12 12 

Figure 13. Figure 14. 

Proof. The list assignments indicated in the above figures show that their Hall 
indexes are greater than 2. We show this only for the graph G which is shown in 
Figure 11. The other cases are easy to check. Let L be the list assignment shown 
in Figure 11. It is obvious that G does not have an L-coloring, but for each edge e 
of G, G - e has an L-coloring. Now by Lemma 1, it is enough to show that (G, L) 
satisfies (*). Suppose dG (x, y) = k and n is the length of the cycle. We have two 
cases: 
Case 1) k is even: tc(l, L) = ~ + 1, tc(2, L) = n;l, and tG(3, L) = n-~-l + 2. 
Case 2) k is odd: tc(l, L) = kil + 1, tc(2, L) = n;l, and tc(3, L) = n;k + 1. 
In each case we have L:UEL: tG(a, L) = n + 2 = IE(G)I. Hence, h'(G) > 2. 0 

3 The Graphs with Hall Index two 

As we discussed in the last section it is easy, by the Propositions 1, 2, and Lemma 
C, to see that the only graphs that may have Hall index at most 2 are the subgraphs 
of the graphs shown in Figures 15,16,17, and 18. 
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... .. 
Figure 15. 

/ Figure 16. The cycle is even 

• • 

Figure 17. Figure 18. 

In the following theorems we prove that these graphs actually have Hall index 2. 

Theorem 1. Let G be a graph which is obtain by joining two leaves of K 1,4. Then 
G has Hall index 2. 

Proof: The line graph of G is K4 with an 'ear' of length 2, and this is proven to 
have Hall number 2 in [3]. 0 

Theorem 2. The Hall index of the graph shown in Figure 15, is equal to 2. 

Proof. Without loss of generality we can consider the graph G shown in Figure 
15.a. 

18 



< ... ~ 
Figure 15.a. 

The line graph of G is 8m ,2,1, for some m 2: 2, and these graphs are shown to have 
Hall number 2 in [5]. 0 

Theorem 3. Let G be an even cycle together with two pendant edges, with no edge 
of the cycle incident to both. Then G has Hall index 2. 

Proof. The line graph of G is shown to have Hall number 2 in [3J. o 

Theorem 4. Let G be a graph with the vertex set V (G) = {x, y, z, w} and edge set 
E( G) = {xy, xz, yz, xw} (see Figure 19). Let L be a list assignment to the edges of 
G such that IL(xw)1 2: 1 and the other lists each have size at least two. If (G, L) 
satisfies Hall condition then G has an L-coloring. 

Figure 19. 

Proof. The line graph of G is (}2,2,1, shown to have Hall number 2 in [5], so the 
conclusion follows if IL(xw)1 2: 2. suppose L(xw) = {I}. Since G - yz is a tree, 
and therefore properly L-colorable, we may as well suppose that IL(yz)1 = 2. Now, 
keeping in mind that G - yz is properly L-colorable we see that the only way G can 
fail to be L-colorable is if, for some colors 2,3, we have L(yz) = {2,3} and L(xy), 
L(xz) ~ {I, 2, 3}. But then 

Ltc(a,L) = 3 < IE(G)I, 
(J 

contradiction the assumption that G and L satisfy Hall's condition. o 

Lemma 2. Suppose that (G,L) has anL-coloring and for some edgee ofG, L(e) = 
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{I, 2"", n}, such that in every L- coloring of G, e can take the colors only from the 
set {I, 2,"" k}. Define L' as follows: 
L'(f) = L(f) if f =1= e, and L'(e) = {k + 1,"', n}. Assume that (G, L') does 
not satisfy Hall's condition. Then G has a subgraph K which contains e such that, 
L.uE,CtK(O',L) ::; IE(K)I + me,K - 1, where me,K = I{i: tK(i,L) = tK(i,L') + 
1, and 1::; i ::; k} I. 

Proof. Since (G, L') does not satisfy Hall's condition, there exists a subgraph K of 
G such that: 

(1) 

But K must contain e, otherwise, K is a subgraph of G with the list assignment L 
and since (G, L) satisfies Hall's condition, (1) can not hold. Now, we have: 

Therefore 

tK(O', L) ::; tK(a, L') + 1 
tK(O', L) = tK(a, L') 

0'= 1,2",' ,k 
a =1= 1,2, ... ,k. 

L.UE'c t K (a, L) < L.UE'c' t K (a, L') + me,K 
< IE(K)I + me,K' 

Thus the lemma holds. o 

Theorem 5. Let G be a graph whose set of cycles consists of some triangles such 
that every triangle has exactly two vertices of degree 2 and one vertex of degree 3. 
(See Figure 18). Let L be a list assignment of colors to the edges of G such that 
IL(e)1 ;::: 2 and (G, L) satisfies Hall's condition. Then G has an L- coloring. 

Proof. Assume G is connected. We prove this theorem by induction on the number 
of triangles. If G has no triangle, then G is a tree and by Lemma B the theorem 
holds. Let G be such a graph with k + 1 triangles. Suppose H* is a triangle of G 
with vertices x, y, and z, where degG x = 3. Let e = yz, el = XZ, and e2 = xy. 
By induction, every branch of G with root x has an L-coloring. Let f be the edge 
other than el and e2 incident to x and G1 be the subgraph induced bye, el, e2 and 
f and let L1 be a list assignment as follows. Ll (f) be the set of colors which appear 
in various L-colorings of the branch which begins with f and Ll(ei) = L(ei), for 
i = 1,2 and Ll (e) = L(e). Now, we show that (Gl , Ll ) satisfies Hall's condition. 
If not then Ll (I) =1= L(f) and Gl has a subgraph H such that f E E(H) and 
EUE'c tH(O', Ld < IE(H) I· By Lemma 2, there is a subgraph HI of the corresponding 
branch which contains f such that L.uE'c tHl (a, L) ::; IE(Hl)1 + mj,Hl - 1. Consider 
the subgraph K of G induced by the edges of H and the edges of the HI. Now, we 
have: 

EUE'c tK(O', L) ::; L.UE'c tH(O', Ld + EUE'c tHl (a, L) -lmj,Hll 
< IE(H)I + (IE(Hl)l- 1) 
= IE(K)I· 

Then K does not satisfy (*), a contradiction. Therefore (G1 , L1 ) satisfies Hall's 
condition and by Theorem 4 it has an Ll- coloring and consequently, G has an L
coloring as desired. 0 
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Now by the previous theorems and propositions the main theorem, stated in the 
introduction, holds. 

Hilton and Johnson conjectured [6] that every graph has Hall index 3, but in [2] the 
authors prove that from every graph which has Hall index greater than 2, one can 
construct a graph with Hall index greater than k, for each k 2:: 2. 
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