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Abstract 

The existence problem for biplanes has proved to be intractable: only 
finitely many are known. However, it can be turned into an extremal 
problem, on which some progress can be made. 

A biplane is a set of subsets (blocks) of {I, ... , n} such that 

(a) any two blocks meet in two points; 

(b) any two points lie in two blocks. 

It is easy to see that, for some integer k, every block of a biplane contains k points, 
and every point lies in k blocks; the number of points and the number of blocks are 
both equal to (~) + 1. Thus, a biplane is just a symmetric 2-design (SBIBD) with 
,\ = 2. 

Only finitely many biplanes are known at present. The known examples have 
k = 3, 4, 5, 6, 9, 11 and 13, having respectively 4, 7, 11, 16, 37, 56 and 79 points. 
(See, for example, Beth, Jungnickel and Lenz [1], or Brouwer's chapter [2] in the 
Handbook of Combinatorics.) With current methods, there seems to be no hope of 
deciding whether or not infinitely many biplanes exist. In view of the difficulty of 
this question and the scarcity of examples, we can turn it into an extremal problem: 

What is the smallest number m of subsets (blocks) of {I, ... ,n} such 
that 

( a) any two blocks meet in at most two points; 

(b) any two points lie in at least two blocks? 

It is the opposing inequalities which give this problem its particular subtlety. Note 
that, if we have a configuration which satisfies the conditions, then removing a point 
leaves one which still satisfies them; so the extremal m is a monotonic increasing 
function of n. 

This problem arose from a question in genetics, and was communicated to me 
by Gregory Gutin. It turns out that the application can be done more efficiently in 
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an entirely different way, using search techniques based on coding theory, which will 
not be discussed here. 

The following result gives some bounds for m. 

Theorem 1 Let m be the least number of subsets of {I, ... ,n} satisfying conditions 
(a) and (b) above. 

(i) m 2: n, with equality if and only a biplane with n points exists. 

(ii) m ~ (2 + o(l))n. 

Proof (i) Count incidences between point-pairs and block-pairs. If i is the number 
of such incidences, then 2G) ::; i, by (a), and 2(r;) 2: i, by (b); so the inequality 
follows. If equality holds, then both bounds are tight, so we have equality in both 
(a) and (b); that is, we have a biplane. 

(ii) Let n = q2 + q + 1, q a prime power, and let D be a planar difference set in 
Zj(n). This is a subset of Zj(n) of size q + 1, having the property that any non-zero 
element of Z j (n) has a unique representation as the difference of two elements of D. 
Equivalently, the translates of D are the lines of a projective plane on the point set 
Zj(n). Now it is a standard result that -D (and hence any translate of -D) is an 
oval in this projective plane; that is, meets any line in at most two points. (To see 
this, suppose that \(D + x) n (-D + y)\ 2: 2. By translation, we may assume that 
x = O. Then there exist d1l d2l d~, d~ E D such that d1 = -d~ + Y and d2 = -d~ + y. 
Thus, d1 - d2 = d~ - d~, and the difference set property shows that d1 = d~ and 
d2 = d~. If there were a third intersection, say d3 = -d~ + y, we would have d1 = d~ 
and d3 = d~, a contradiction.) Moreover, -D is itself a difference set, since it is 
the image of D under an automorphism of Zj(n); so its translates form another 
projective plane. 

N ow take all translates of D and - D. Any two points of Z j (n) lie in one translate 
of D and one of - D. The above remarks show that any two of these sets meet in at 
most two points. 

Now the gap between consecutive primes Pn and Pn+l is known to be o(Pn) (indeed, 
O(p~) for some c < 1). So by choosing q to be the smallest prime (power) such that 
q2 + q + 1 2: n, we obtain the stated result. 

The next result shows that, if n is just a little smaller than the number of points 
in a biplane, then a biplane with some points removed is optimal. 

Theorem 2 Suppose that k ;::: 4 and (k;l) + 1 < n < (~) + 1. Then the number m 
of sets required satisfies 
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Proof. Suppose that some block contains I points. Any two points of this block lie 
in at least one further block, and no two further blocks contain the same pair. So 
m ~ (;) + l. 

So we are done if some block contains k or more points. Suppose that the block 
sizes it, ... ,lm are all smaller than k. Then L:::l (~) counts the number of incidences 
between a pair of points and a block. Since each point-pair lies in at least two blocks, 
we have 

as required. 
Note that, if m < (~) + 1, then every block contains at most k - 1 points. 
For example, this theorem shows that, for 73 :::; n :::; 79, we have m ~ 79. Since 

there is a biplane with 79 points, this bound is attained. 

There is a dual version of this theorem which sometimes gives better information. 
The proof is obtained by reversing all the inequalities. 

Theorem 3 Suppose that I ~ 4 and G) + 1 < m < e~l) + 1. Then the greatest 
number n of points for which m sets can be found satisfies 

The proof also shows that, if n > (D + 1, then every point is on at least 1 + 1 
blocks. This fact can be used to rule out some further cases. 

Theorem 4 Suppose that some configuration of m subsets of an n-set satisfies our 
hypothesis, where (k;l) + 1 < n :::; m < (~) + 1. Then 

nk :::; m(k - 1). 

For the proofs of Theorems 2 and 3 show that every block contains at most k - 1 
points, and any point lies on at least k blocks. Counting incidences gives the result. 

For example, for n = 12, Theorem 2 shows that m ~ 14. But 12 ·6 > 14 . 5, 
so that for n 12 we actually have m ~ 15. This case can be ruled out with the 
help of a computer search, so that in fact for n = 12 we have m ~ 16. This value is 
attained, by deleting four points from a 16-point biplane. 

Next I give some values. All are obtained from the above theorems except for 
n = 8 and n = 12. In the first case, an example is obtained with ten blocks, by 
taking translates of the sets {0,2,4,6} and {O, 1,3,4} mod 8. The case n = 12 was 
discussed in the preceding paragraph. 

I have no good bounds for n = 17. Theorem 4 shows that m ~ 20, while deleting 
three blocks from a 37-point biplane shows that m :::; 34. 
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The problem can be generalised. Indeed there is a four-parameter generalisation 
which asks: 

Let p, q, r, s be given. What is the smallest number m of subsets 
(blocks) of {I, ... , n} such that 

(a) any p blocks meet in at most q points; 

(b) any r points lie in at least s blocks? 

Most of the general results given above can be extended to this situation. How
ever, no analogue of the upper bound of Theorem 1 is known in general. 
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