Packing and covering the complete graph with cubes*

Peter Adams and Darryn E. Bryant
Department of Mathematics
The University of Queensland
Queensland 4072, Australia

Saad I. El-Zanati

Department of Mathematics
Illinois State University
Normal, Illinois 61790-4520 U.S.A.

Abstract

A decomposition of $K_{n} \backslash L$, the complete graph of order n with a subgraph L (called the leave) removed, into edge disjoint copies of a graph G is called a maximum packing of K_{n} with G if L contains as few edges as possible. A decomposition of $K_{n} \cup P$, the complete graph union a graph P (called the padding), into edge disjoint copies of a graph G is called a minimum covering of K_{n} with G if P contains as few edges as possible. We construct maximum packings and minimum coverings of K_{n} with the 3 -cube for all n.

1 Introduction

A subgraph will be called a G-subgraph if it is isomorphic to a given graph G. A (partial) G-design of a graph X is a collection of edge disjoint G-subgraphs of X such that each edge of X is in (at most) exactly one G-subgraph. The spectrum for G-designs is the set of integers n such that there is a G-design of K_{n}. When n is not in the spectrum of G-designs two natural questions arise:
(1) For a given graph G, what is the maximum possible number of G-subgraphs of K_{n} such that no edge of K_{n} occurs in more than one G-subgraph?
(2) For a given graph G, what is the minimum possible number of G-subgraphs of K_{n} such that every edge of K_{n} occurs in at least one G-subgraph?

[^0]These questions are respectively called the maximum packing and minimum covering problem for G-designs. A partial G-design of K_{n} is called a maximum packing with leave L if there is no partial G-design of K_{n} having a leave with fewer edges (equivalently, containing more G-subgraphs). A G-covering of K_{n} with padding P is a collection of G-subgraphs of K_{n} such that every edge of $K_{n} \cup P$ is in exactly one G-subgraph. A G-covering of K_{n} is a minimum covering if there is no G-covering of K_{n} having a padding with fewer edges (equivalently, no G-covering of K_{n} containing fewer G-subgraphs). The minimum covering problem usually involves considering the case where the padding is required to be a simple graph and the case where multiple edges are permitted in the padding.

Maximum packings and minimum coverings of graphs have been and continue to be popular topics of research. In particular, maximum packings and minimum coverings of K_{n} have attracted the most attention. For K_{3}-designs, the maximum packing problem was solved by Schönheim [25] (see also Spencer [27]) and the minimum covering problem was solved by Fort and Hedlund [10]. For K_{4}-designs, Brouwer [4] solved the maximum packing problem and Mills [21,22] solved the minimum covering problem. Various results on maximum packings of K_{n} with cycles can be found in [9], [11], [12] and [14]. Maximum packings of K_{n} with various other specific graphs have also been considered (see [2], [13], [23] and [24] for examples). Maximum packings with triples of graphs other than K_{n} have also been considered (see [3] and [6]). Similarly, minimum coverings of K_{n} with various graphs have been investigated (see [15], [17], [18], [19], [23], [24] and [26] for examples). It is also worth mentioning the recent asymptotic results $[7,8]$ which settle the maximum packing and minimum covering problems for very large values of n.

The d-cube is the graph Q_{d} whose vertex set is the set of all binary d-tuples, and whose edge set consists of all pairs of vertices which differ in exactly one coordinate. Note that the 1 -cube is simply K_{2}, the 2 -cube is isomorphic to the 4 -cycle and the 3 -cube is the graph of the well known regular solid that we all know as the cube.

We note that the packings and coverings of K_{n} with 1-cubes are trivial. Maximum packings and minimum coverings of K_{n} with 2-cubes (i.e. 4 -cycles) are constructed for all values of n in [26]. Kotzig [16] was the first to investigate the spectrum problem for cubes in general. In [20], Maheo showed that the spectrum for 3 -cubes is precisely the set of all $n \equiv 1$ or $16(\bmod 24)$. Necessary and sufficient conditions for the existence of Q_{3}-designs of $K_{m, n}$ and $K_{n} \backslash K_{m}$ are found in [5] and in [1], respectively. We note further that the spectrum for Q_{d}-designs is still not completely settled when $d \geq 5$ is odd (see [5]).

In this paper we construct for every positive integer n, a maximum packing (see Section 2) and a minimum covering (see Section 3) of K_{n} with 3 -cubes. Since in many cases the number of possible leaves and paddings increases without bound as n approaches infinity, we present only one possible leave for each maximum packing and one possible padding for each minimum covering. We construct minimum coverings having paddings with multiple edges in all cases where such paddings contain fewer edges than any possible simple padding.

We will use the following notation. The graph consisting of t vertex disjoint copies of a graph G will be denoted by $t G$. For H a subgraph of a graph G, define $G \backslash H$ to
be the graph with vertex set $V(G \backslash H)=V(G)$ and edge set $E(G \backslash H)=E(G) \backslash E(H)$.
For two graphs G and $H, G \cup H$ will denote the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Let the 8 -tuple (a, b, c, d, e, f, g, h) denote the graph of the 3 -cube (henceforth denoted by C) as shown in Figure 1.

Figure 1: The 3-cube which we denote by C

2 The packing problem

Lemma 2.1 Let $\left|E\left(K_{n}\right)\right| \equiv r(\bmod 12)$, let $n-1 \equiv d(\bmod 3)$ and let L be a spanning subgraph (possibly containing isolated vertices) of K_{n} with $\operatorname{deg}(v) \equiv d$ (mod 3) for each $v \in L$. If $|E(L)|=\min \{\lambda \geq\lceil d n / 2\rceil \mid \lambda \equiv r(\bmod 12)\}$, then a partial C-design of K_{n} with leave L is a maximum packing.

Proof: Suppose there is a partial C-design D^{\prime} of K_{n} with leave L^{\prime} which contains more cubes than a partial C-design of K_{n} which satisfies the conditions of the lemma. Then $\left|E\left(L^{\prime}\right)\right| \leq|E(L)|-12 \leq\lceil d n / 2\rceil-1$. Since $\operatorname{deg}(v) \equiv d(\bmod 3)$ for each $v \in L^{\prime}$, we have a contradiction.

Lemma 2.2 Suppose there exists a partial C-design of K_{n} with leave L. Then there exists a partial C-design of K_{n+24} with leave L^{*} where $L^{*}=L$ if $n \equiv 1(\bmod 3)$, $L^{*}=L+12 K_{2}$ if $n \equiv 2(\bmod 3)$ and $L^{*}=L+6 C_{4}$ if $n \equiv 0(\bmod 3)$.

Proof: Note that the C-designs referred to below can be found in [5] or in the Appendix.

If $n \equiv 0(\bmod 3)$ then we construct a partial C-design of K_{n+24} by taking the union of the partial C-design of K_{n}, a C-design of $K_{n, 24}$ and a maximum packing of K_{24} with leave $6 C_{4}$.

If $n \equiv 2(\bmod 3)$ then we construct a partial C-design of K_{n+24} by taking the union of the partial C-design of K_{n}, a C-design of $K_{n-2,24}$ and a maximum packing of K_{26} with leave $13 K_{2}$. Note that $V\left(K_{26}\right)$ has two vertices in common with K_{n} and that these are joined by an edge which is in both L and $13 K_{2}$.

If $n \equiv 1(\bmod 3)$ then we construct a partial C-design of K_{n+24} by taking the union of the partial C-design of K_{n}, a C-design of $K_{n-1,24}$ and a C-design of K_{25}. Note that $V\left(K_{25}\right)$ has exactly one vertex in common with K_{n}.

We are now ready to construct maximum packings of K_{n} for all positive integers n. For $n \leq 7$, a maximum packing of K_{n} contains zero copies of C and has leave K_{n}. For $8 \leq n \leq 31$ and $n=34$, a maximum packing of K_{n} is given in the Appendix and the corresponding leave L_{n} is shown in Table 1. Note that the case $n=10$ is special. It can be shown by exhaustive computer search that there do not exist three edge disjoint copies of C in K_{10} and so the leave in a maximum packing of K_{10} must contain at least 21 edges. However, there exists a maximum packing of K_{34} having just nine edges in its leave, so we start the recursive construction for the case $n \equiv 10(\bmod 24)$ at $n=34$. For $n=32,33$ and for $n \geq 35$, we construct a maximum packing of K_{n} by repeated application of Lemma 2.2 to the maximum packings given for K_{n} with $n \in$ $\{8,9,11,12,13, \ldots, 31,34\}$. It is straight forward to verify, using Lemma 2.1 that the partial C-designs obtained in this manner are maximum packings. We now describe the leaves of the constructed maximum packings. Let $t \in\{8,9,11,12,13, \ldots, 31,34\}$, let L_{t} denote the leave of a maximum packing of K_{t} as shown in Table 1, and let $x \geq 0$. If $t \equiv 0(\bmod 3)$, then the leave of the constructed maximum packing of $K_{24 x+t}$ is the vertex disjoint union of L_{t} with $6 x C_{4}$. If $t \equiv 1(\bmod 3)$, then the leave of the constructed maximum packing of $K_{24 x+t}$ is L_{t}. If $t \equiv 2(\bmod 3)$, then the leave of the constructed maximum packing of $K_{24 x+t}$ is the vertex disjoint union of L_{t} with a 1 -factor on the remaining $24 x$ vertices of $K_{24 x+t}$.

Combining the above results, we have the following theorem:
Theorem 2.3 A maximum packing of K_{n} has leave of size:

21	for $n=7$ and 10	n	for $n \equiv 0,3(\bmod 24)$
0	for $n \equiv 1,16(\bmod 24)$	$n+3$	for $n \equiv 9,18(\bmod 24)$
6	for $n \equiv 4,13(\bmod 24)$	$n+6$	for $n \equiv 12,15(\bmod 24)$
9	for $n \equiv 7,10(\bmod 24), n \geq 31$	$n+9$	for $n \equiv 6,21(\bmod 24)$
15	for $n \equiv 19,22(\bmod 24)$	$\frac{n}{2}$	for $n \equiv 2,8,14,20(\bmod 24)$
$\frac{n+3}{2}$	for $n \equiv 11,23(\bmod 24)$	$\frac{n+15}{2}$	for $n \equiv 5,17(\bmod 24)$

Table 1: The leave L_{n} for a maximum packing of K_{n} with 3 -cubes in the cases $8 \leq n \leq 31$ and $n=34$ (continued on subsequent pages).

Table 1. (continued)

Table 1. (continued)

	L_{29}
	L_{31}

Table 1. (continued)

3 The covering problem

Lemma 3.1 A C-covering of K_{n} which contains $\lceil n\lceil(n-1) / 3\rceil / 8\rceil$ copies of C is a minimum covering.
Proof: Each vertex of K_{n} must occur in at least $\lceil(n-1) / 3\rceil$ copies of C and so there must be at least $\lceil n\lceil(n-1) / 3\rceil / 8\rceil$ copies of C.
Lemma 3.2 Suppose there exists a C-covering of K_{n} with padding P. Then there exists a C-covering of K_{n+24} with padding P^{*} where $P^{*}=P$ if $n \equiv 1(\bmod 3)$, $P^{*}=P+6 C_{4}$ if $n \equiv 2(\bmod 3)$ and $P^{*}=P+12 K_{2}$ if $n \equiv 0(\bmod 3)$.

Proof: Note that the required C-designs can be found in [5] or in the Appendix. If $n \equiv 1(\bmod 3)$, we construct a C-covering of K_{n+24} by taking the union of the C-covering of K_{n}, a C-design of $K_{n-1,24}$ and a C-design of K_{25}. Note that $V\left(K_{25}\right)$ has exactly one vertex in common with K_{n}. If $n \equiv 2(\bmod 3)$, we construct a C covering of K_{n+24} by taking the union of the C-covering of K_{n}, a C-design of $K_{n-2,24}$, a maximum packing of K_{26} with leave $13 K_{2}$ (one of the edges in this leave has the two vertices which are not in the C-design of $K_{n-2,24}$ as its endpoints) and a C-covering of $12 K_{2}$. If $n \equiv 0(\bmod 3)$, we construct a C-covering of K_{n+24} by taking the union of the C-covering of K_{n}, a C-design of $K_{n, 24}$ and a minimum C-covering of K_{24}.

We are now ready to construct minimum coverings of K_{n} for all positive integers n. For $2 \leq n \leq 7$, no covering of K_{n} exists. For $8 \leq n \leq 31$ and $n=34$, minimum coverings of K_{n} are given in the Appendix and the corresponding paddings are shown in Table 2. Note that the cases $n \equiv 7$ and $10(\bmod 24)$ are special: the number of edges in K_{n} is $9(\bmod 12)$ and hence it is possible that a minimum covering of K_{n} will have a padding that consists of just three edges. However, such a padding must have all vertices of degree $0(\bmod 3)$ and so the only such padding is the multigraph consisting of a triple edge on two vertices. If we require that the padding be a simple graph, then it must contain at least 15 edges. It can be shown by exhaustive computer search that it is not possible to cover the edges of K_{10} with four or fewer copies of C (even if non-simple paddings are permitted) and so the minimum covering of K_{10} has a padding consisting of at least 15 edges. A covering of K_{10} and a covering of K_{31} each with simple 15 edge paddings is given in the Appendix. Minimum coverings of K_{31} and K_{34} with paddings consisting of a triple edge are also given in the Appendix. Hence, by repeated application of Lemma 3.2 to our minimum coverings of K_{10}, K_{31} and K_{34}, we have minimum coverings of $K_{24 x+7}$ and $K_{24 x+10}$ (for all $x \geq 0$) in both the case when simple paddings are required and also in the case where they are not. If non-simple paddings are permitted, then the padding for these minimum coverings is always a triple edge. If simple paddings are required, then for the case $n \equiv 10$ $(\bmod 24)$, the padding is isomorphic to the 15 edge padding of K_{10} shown in Table 2 and for the case $n \equiv 7(\bmod 24)$, the padding is isomorphic to the 15 edge padding of K_{31} shown in Table 2. The cases $n \equiv 7,10(\bmod 24)$ are the only ones for which it is possible to obtain a smaller minimum covering if non-simple paddings are permitted.

For the remaining congruence classes of n, with $n \geq 32$, we construct a minimum covering of K_{n} by repeated application of Lemma 3.2 to the minimum coverings given for K_{n} with $n \in\{8,9,11,12, \ldots, 30\}$. It is straight forward to verify, using Lemma 3.1 that the C-coverings obtained in this manner are minimum coverings. We now describe the paddings of the constructed minimum coverings. Let $t \in\{8,9,11,12, \ldots, 31\}$, let P_{t} denote the padding of a minimum covering of K_{t} as shown in Table 2, and let $x \geq 0$. If $t \equiv 0(\bmod 3)$, then the padding of the constructed minimum covering of $K_{24 x+t}$ is the vertex disjoint union of P_{t} with a 1-factor on the remaining $24 x$ vertices of $K_{24 x+t}$. If $t \equiv 1(\bmod 3)$, then the padding of the constructed minimum covering of $K_{24 x+t}$ is P_{t}. If $t \equiv 2(\bmod 3)$, then the padding of the constructed minimum covering of $K_{24 x+t}$ is the vertex disjoint union of P_{t} with $6 x C_{4}$.

Combining the above results, we have the following theorem:
Theorem 3.3 For $2 \leq n \leq 7$, no covering of K_{n} exists. For the remaining values of n, a minimum covering of K_{n} has padding of size:

15	for $n=10$	0	for $n \equiv 1,16(\bmod 24)$
3	for $n \equiv 7,10(\bmod 24), n \geq 31$	15	for $n \equiv 7,10(\bmod 24), n \geq 31$
	(non-simple paddings allowed)	(if simple paddings required)	
6	for $n \equiv 4,13(\bmod 24)$	for $n \equiv 19,22(\bmod 24)$	
n	for $n \equiv 8,23(\bmod 24)$	$n+3$	for $n \equiv 14,17(\bmod 24)$
$n+6$	for $n \equiv 11,20(\bmod 24)$	$n+9$	for $n \equiv 2,5(\bmod 24)$
$\frac{n+12}{2}$	for $n \equiv 6,18(\bmod 24)$	$\frac{n}{2}$	for $n \equiv 0,12(\bmod 24)$
$\frac{n+15}{2}$	for $n \equiv 3,9,15,21(\bmod 24)$		

Table 2: The padding P_{n} for a minimum covering of K_{n} with 3 -cubes in the cases $8 \leq n \leq 31$ and $n=34$. Note that for $n=31$ and $n=24$, the minimum covering is smaller if multiple edges are permitted in the padding. In these cases, the multigraph paddings are denoted by P_{31}^{*} and P_{34}^{*} respectively (continued on subsequent pages).
(20)

Table 2. (continued)

	P_{22}

Table 2. (continued)

Table 2. (continued)

Acknowledgement: This paper is part of research conducted while the last author was visiting the Centre for Discrete Mathematics and Computing at the University of Queensland. The support and hospitality of the Centre are gratefully acknowledged.

References

[1] P. Adams, D. E. Bryant, S. I. El-Zanati and C. Vanden Eynden, d-cube decompositions of $K_{n} \backslash K_{m}$, Graphs Combin. 13 (1997), 1-7.
[2] E. J. Billington and C. C. Lindner, Maximum packings of bowtie designs, J. Combin. Math. Combin. Comput. 27 (1998), 227-249.
[3] E. J. Billington and C. C. Lindner, Maximum packings of uniform group divisible triple systems, J. Combin. Des. 4 (1996), 397-404.
[4] A. E. Brouwer, Optimal packings of K_{4} 's into K_{n} 's, J. Combin. Theory Ser. A 26 (1979), 278-297.
[5] D. E. Bryant, S. I. El-Zanati and R. Gardner, Decompositions of $K_{m, n}$ and K_{n} into cubes, Australas. J. Combin. 9 (1994), 285-290.
[6] D. E. Bryant and A. Khodkar, Maximum packings of $K_{v}-K_{u}$ with triples, Ars Comb., to appear.
[7] Y. Caro and R. Yuster, Covering graphs: the covering problem solved, J. Combin. Theory Ser. A 83 (1998), 273-282.
[8] Y. Caro and R. Yuster, Packing graphs: the packing problem solved, Electron. J. Combin. 4 (1997), Research Paper 1, approx. 7 pp.
[9] S. I. El-Zanati, Maximum packings with odd cycles, Discrete Math. 131 (1994), 91-97.
[10] M. K. Fort, Jr. and G. A. Hedlund, Minimal covering of pairs by triples, Pacific J. Math. 8 (1958), 709-719.
[11] C. M. Grinstead, On coverings and packings of the complete graph with cycles, Ars Comb. 3 (1977), 25-37.
[12] D. G. Hoffman, C. C. Lindner and C. A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1998), 417-426.
[13] D. G. Hoffman, C. C. Lindner, M. J. Sharry and A. Penfold Street, Maximum packings of K_{n} with copies of $K_{4}-e$, Aequationes Mathematicae 51 (1996) 247269.
[14] J. A. Kennedy, Maximum packings of K_{n} with hexagons, Austras. J. Combin. 7 (1993), 101-110.
[15] J. A. Kennedy, Minimum coverings of K_{n} with hexagons, Austras. J. Combin. 16 (1997), 295-303.
[16] A. Kotzig, Decompositions of complete graphs into isomorphic cubes, J. Combin. Theory Ser. B 31 (1981), 292-296.
[17] E. R. Lamken, E. R. Mills and R. S. Rees, Resolvable minimum coverings with triples, J. Comb. Des. 6 (1998), 431-450.
[18] C. C. Lindner and A. Penfold Street, Simple minimum coverings of K_{n} with copies of $K_{4}-e$, Aequationes Mathematicae 52 (1996), 284-301.
[19] C. C. Lindner and A. Penfold Street, Multiple minimum coverings of K_{n} with copies of $K_{4}-e$, Utilitas Mathematica 52 (1997), 223-239.
[20] M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980), 39-46.
[21] W. H. Mills, On the covering of pairs by quadruples I, J. Combin. Theory 13 (1972), 55-78.
[22] W. H. Mills, On the covering of pairs by quadruples II, J. Combin. Theory 15 (1973), 138-166.
[23] Y. Roditty, Packings and coverings of the complete graph with a graph G of four vertices or less, J. Combin. Theory Ser. A 34 (1983), 231-248.
[24] Y. Roditty, Packing and covering of the complete graph. IV. The trees of order seven, Ars Comb. 35 (1993), 33-64.
[25] J. Schönheim, On maximal systems of k-tuples, Studia Sci. Math. Hung. 1 (1966), 363-368.
[26] J. Schönheim and A. Bialostocki, Packing and covering of the complete graph with 4-cycles, Canad. Math. Bull. 18 (1975), 703-708.
[27] J. Spencer, Maximal consistent families of triples, J. Combinat. Theory 5 (1968), 1-8.

4 Appendix

Within this Appendix, the graph C of the 3 -cube with vertices and edges as shown in Figure 1 will be denoted by ($v_{1}, v_{2}, \ldots, v_{8}$).

K_{8}

Let the vertex set of K_{8} be $\{0,1, \ldots, 7\}$. A maximum packing of K_{8} with 3 -cubes and leave as shown in Table 1 is given by:

$$
(0,1,2,3,4,5,6,7), \quad(0,6,3,5,7,1,4,2)
$$

A covering of K_{8} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3 -cube:

$$
(0,2,4,6,1,3,5,7) .
$$

K_{9}

Let the vertex set of K_{9} be $\{0,1, \ldots, 8\}$. A maximum packing of K_{9} with 3 -cubes and leave as shown in Table 1 is given by:

$$
(0,1,2,3,4,5,6,7), \quad(0,2,4,6,7,5,3,8) .
$$

A covering of K_{9} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(0,2,8,5,6,7,1,3), \quad(0,8,4,1,5,7,2,6) .
$$

K_{10}

Let the vertex set of K_{10} be $\{0,1, \ldots, 9\}$. A maximum packing of K_{10} with 3 -cubes and leave as shown in Table 1 is given by:

$$
(0,5,3,6,7,2,4,1), \quad(0,1,2,3,4,5,6,7) .
$$

A covering of K_{10} with 3 -cubes and padding as shown in Table 2 is given by:

$$
\begin{array}{|lll|}
\hline(0,1,2,3,4,5,6,7), & (0,1,3,2,5,7,8,9), & (0,2,1,3,6,8,4,9), \\
(0,7,5,8,9,4,3,6), & (1,6,4,8,9,7,2,5) . & \\
\hline
\end{array}
$$

K_{11}

Let the vertex set of K_{11} be $\{0,1, \ldots, 10\}$. A maximum packing of K_{11} with 3 -cubes and leave as shown in Table 1 is given by:

$$
(0,1,2,3,4,5,6,7), \quad(0,2,4,6,8,9,1,3), \quad(0,5,8,7,9,3,4,10), \quad(1,6,9,7,8,10,5,2)
$$

A covering of K_{11} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
\begin{array}{|c}
\hline(0,10,1,9,8,6,5,7), \\
(9,6,7,4,8,3,10,2) . \\
\hline
\end{array}
$$

K_{12}

Let the vertex set of K_{12} be $\{0,1, \ldots, 11\}$. A maximum packing of K_{12} with 3 -cubes and leave as shown in Table 1 is given by:

$$
(0,1,2,3,4,5,6,7), \quad(0,2,4,6,7,5,3,1), \quad(0,5,8,9,10,11,1,4), \quad(2,7,8,10,11,9,3,6) .
$$

A covering of K_{12} with 3-cubes and padding as shown in Table 2 is obtained by using the additional 3 -cubes:

$$
(0,8,4,11,1,9,5,10), \quad(8,2,9,6,11,3,10,7)
$$

K_{13}

A maximum packing of K_{13} with 3-cubes and leave as shown in Table 1 can be found in [1]. A covering of K_{13} with 3 -cubes and padding as shown in Table 2 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,1,2,3,5,7,8,9)$,	$(0,2,4,6,7,9,1,10)$,	$(0,2,5,10,11,7,12,4)$,
$(0,8,6,9,12,3,1,11)$,	$(1,3,5,8,12,6,11,10)$,	$(2,10,3,11,12,9,4,8)$.	

K_{14}

Let the vertex set of K_{14} be $\{0,1, \ldots, 13\}$. A maximum packing of K_{14} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,2,4,6,7,5,3,1)$,	$(1,9,2,12,13,3,10,5)$,	$(0,5,8,9,10,11,1,4)$,	$(0,8,2,11,12,4,13,7)$,
$(0,1,2,3,4,5,6,7)$,	$(3,6,8,11,12,13,10,9)$,	$(6,9,7,10,11,13,8,12)$.	

A covering of K_{14} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(0,1,2,3,13,10,7,8), \quad(3,4,5,6,7,11,9,12)
$$

K_{15}

Let the vertex set of K_{15} be $\{0,1, \ldots, 14\}$. A maximum packing of K_{15} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,1,2,3,4,5,6,7)$,	$(1,9,5,12,13,7,10,8)$,	$(0,5,8,9,10,11,1,4)$,	$(0,8,2,11,12,3,9,6)$,
$(0,2,4,6,7,5,3,1)$,	$(2,7,14,12,13,11,3,10)$,	$(4,8,14,11,13,6,10,9)$.	

A covering of K_{15} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(0,13,5,14,11,12,7,8), \quad(3,6,14,13,9,12,4,1), \quad(0,5,9,8,10,2,14,1) .
$$

K_{16}

It is well-known that there exists a decomposition of K_{16} into 3 -cubes (see [5]).

K_{17}

Let the vertex set of K_{17} be $\{0,1, \ldots, 16\}$. A maximum packing of K_{17} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,1,2,3,4,5,7,11)$,	$(0,2,4,7,8,5,3,10)$,	$(0,5,9,11,12,10,1,8)$,
$(0,9,2,10,13,4,6,14)$,	$(0,14,1,15,16,2,11,13)$,	$(1,3,8,6,12,7,16,11)$,
$(1,4,8,13,16,14,15,12)$,	$(2,12,3,13,15,4,16,6)$,	$(3,6,9,14,15,10,13,5)$,
$(5,11,14,12,16,15,7,9)$.		

A covering of K_{17} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(11,10,4,2,6,9,15,8), \quad(5,6,0,3,8,7,1,9), \quad(6,7,8,10,12,13,14,16) .
$$

K_{18}

Let the vertex set of K_{18} be $\{0,1, \ldots, 17\}$. A maximum packing of K_{18} with 3 -cubes and leave as shown in Table 1 is given by:

$(10,15,13,16,17,14,12,11)$,	$(8,11,10,12,17,9,14,16)$,	$(6,12,17,13,16,7,15,8)$,
$(0,1,2,3,4,5,6,7)$,	$(0,2,4,6,7,5,3,1)$,	$(0,5,8,9,10,13,1,4)$,
$(0,8,2,11,12,4,16,3)$,	$(0,13,3,14,17,2,10,7)$,	$(1,9,6,14,17,3,15,5)$,
$(1,10,5,11,12,9,16,15)$,	$(2,7,11,14,15,9,13,4)$.	

A covering of K_{18} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(8,7,13,14,6,11,4,17), \quad(3,6,10,8,2,9,5,12), \quad(16,1,15,0,2,9,5,12)
$$

K_{19}

Let the vertex set of K_{19} be $\{0,1, \ldots, 18\}$. A maximum packing of K_{19} with 3-cubes and leave as shown in Table 1 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,2,4,6,7,5,3,1)$,	$(0,5,8,9,10,11,1,4)$,
$(0,8,2,11,12,3,9,6)$,	$(0,13,1,14,15,2,10,3)$,	$(0,16,1,17,18,2,12,4)$,
$(1,9,5,15,18,7,10,6)$,	$(2,7,8,14,17,11,4,13)$,	$(3,6,8,11,13,16,10,9)$,
$(3,16,5,17,18,8,12,9)$,	$(4,14,11,15,16,7,13,12)$,	$(5,13,6,14,18,15,17,10)$,
$(7,12,10,15,17,18,13,8)$.		

A covering of K_{19} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(12,17,15,14,11,16,9,18), \quad(14,9,15,16,17,12,11,18) .
$$

K_{20}

Let the vertex set of K_{20} be $\{0,1, \ldots, 19\}$. A maximum packing of K_{20} with 3-cubes and leave as shown in Table 1 is given by:

$(0,2,1,3,4,6,5,7)$,	$(0,5,2,7,8,3,4,1)$,	$(0,6,1,9,10,3,11,2)$,
$(0,11,4,12,13,5,8,2)$,	$(0,14,1,15,16,2,17,3)$,	$(0,17,4,18,19,5,9,3)$,
$(1,10,4,13,16,5,14,6)$,	$(1,12,5,18,19,6,15,2)$,	$(3,12,7,13,14,8,10,9)$,
$(4,15,7,16,19,8,11,9)$,	$(6,8,7,9,10,13,14,12)$,	$(6,11,12,17,18,13,15,9)$,
$(7,17,8,18,19,10,16,12)$,	$(10,14,11,15,18,16,19,17)$,	$(11,16,13,17,18,15,19,14)$.

A covering of K_{20} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(0,2,4,6,1,3,5,7), \quad(8,10,12,14,9,11,13,15), \quad(16,18,8,12,17,19,7,15) .
$$

Let the vertex set of K_{21} be $\{0,1, \ldots, 20\}$. A maximum packing of K_{21} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,2,4,6,7,5,3,1)$,	$(0,5,8,9,10,11,1,4)$,
$(0,8,2,11,12,3,9,6)$,	$(0,13,1,14,15,2,10,3)$,	$(0,16,1,17,18,2,12,4)$,
$(1,9,5,15,18,7,10,6)$,	$(2,7,8,14,17,11,4,13)$,	$(3,6,8,11,13,16,10,9)$,
$(3,16,4,19,20,5,14,6)$,	$(5,12,7,13,17,8,15,10)$,	$(7,14,9,16,17,15,12,20)$,
$(8,13,12,16,20,15,18,19)$,	$(9,15,19,17,18,16,11,14)$,	$(10,12,19,14,18,11,13,20)$.

A covering of K_{21} with 3-cubes and padding as shown in Table 2 is obtained by using the additional 3 -cubes:

$(5,15,8,19,4,20,11,15)$,
$(0,19,1,20,17,3,18,13)$.

K_{22}
Let the vertex set of K_{22} be $\{0,1, \ldots, 21\}$. A maximum packing of K_{22} with 3-cubes and leave as shown in Table 1 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,2,4,6,7,5,3,1)$,	$(0,5,8,9,10,11,1,4)$,
$(0,8,2,11,12,3,9,6)$,	$(0,13,1,14,15,2,10,3)$,	$(0,16,1,17,18,2,12,4)$,
$(0,19,1,20,21,3,18,5)$,	$(1,9,5,15,21,7,10,6)$,	$(2,7,8,14,17,11,4,13)$,
$(2,19,4,20,21,8,15,10)$,	$(3,6,8,11,13,16,10,9)$,	$(3,16,5,17,20,7,12,8)$,
$(4,14,19,16,21,11,13,12)$,	$(5,13,6,14,19,18,17,10)$,	$(6,18,12,19,20,21,15,11)$,
$(7,13,8,18,19,21,16,20)$,	$(7,14,20,15,17,21,9,19)$,	$(9,12,20,17,18,10,13,15)$.

A covering of K_{22} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(12,17,15,14,11,16,9,18), \quad(14,9,15,16,17,12,11,18)
$$

K_{23}

Let the vertex set of K_{23} be $\{0,1, \ldots, 22\}$. A maximum packing of K_{23} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,2,4,6,7,5,3,1)$,	$(0,5,8,9,10,11,1,4)$,
$(0,8,2,11,12,3,9,6)$,	$(0,13,1,14,15,2,10,3)$,	$(0,16,1,17,18,2,12,4)$,
$(0,19,1,20,21,2,22,3)$,	$(1,9,5,15,18,7,10,6)$,	$(2,7,8,14,17,11,4,13)$,
$(3,6,8,11,13,16,10,9)$,	$(3,16,5,17,18,8,12,9)$,	$(4,14,5,19,20,6,13,7)$,
$(4,15,7,16,21,8,17,12)$,	$(5,18,10,20,21,11,12,13)$,	$(6,17,10,19,21,14,15,9)$,
$(7,12,15,21,22,14,18,17)$,	$(8,13,18,20,22,15,19,12)$,	$(9,14,19,16,22,20,21,18)$,
$(10,13,11,14,22,19,20,16)$.	\cdot	

A covering of K_{23} with 3 -cubes and padding as shown in Table 2 may be obtained by rotating the 3 -cube ($0,10,1,12,5,3,7,4$) modulo 23 .

Let the vertex set of K_{24} be $\{0,1, \ldots, 23\}$. A maximum packing of K_{24} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,2,4,6,7,5,1,3)$,	$(0,4,3,5,8,10,12,14)$,	$(0,9,1,10,11,2,6,13)$,
$(0,12,1,13,14,2,7,9)$,	$(0,15,1,16,17,2,8,3)$,	$(0,18,1,19,20,2,21,3)$,
$(0,21,4,22,23,5,8,6)$,	$(1,11,3,14,17,4,9,6)$,	$(1,20,5,22,23,4,12,7)$,
$(2,10,3,13,16,5,15,4)$,	$(2,19,8,22,23,9,12,11)$,	$(3,18,9,22,23,8,15,10)$,
$(4,14,7,18,19,10,16,6)$,	$(5,9,11,17,18,16,14,20)$,	$(5,11,7,13,19,15,17,22)$,
$(6,10,21,11,15,7,8,20)$,	$(6,12,16,20,21,18,11,19)$,	$(7,19,12,20,21,14,17,9)$,
$(8,13,15,16,17,19,23,21)$,	$(10,17,23,18,20,13,16,22)$,	$(12,21,15,22,23,13,18,14)$.

A covering of K_{24} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
(0,1,2,3,4,5,6,7), \quad(8,9,10,11,12,13,14,15), \quad(16,17,18,19,20,21,22,23) .
$$

K_{25}

It is well-known that there exists a decomposition of K_{25} into 3 -cubes (see [5]).

K_{26}

Let the vertex set of K_{26} be $\{0,1, \ldots, 25\}$. A maximum packing of K_{26} with 3-cubes and leave as shown in Table 1 may be obtained by rotating the 3 -cube ($0,10,1,12,5,3,7,4$) modulo 26 .
A covering of K_{26} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
\begin{aligned}
& \begin{array}{l}
(0,1,2,3,13,14,15,16), \\
(11,12,7,3,24,25,20,16) .
\end{array} \\
& \hline
\end{aligned}
$$

K_{27}

Let the vertex set of K_{27} be $\{0,1, \ldots, 26\}$. A maximum packing of K_{27} with 3-cubes and leave as shown in Table 1 is given by:

$(0,2,4,6,7,5,1,3)$,	$(0,4,3,5,8,10,12,14)$,	$(0,9,1,10,11,2,6,13)$,
$(0,12,1,13,14,2,7,9)$,	$(0,15,1,16,17,2,8,3)$,	$(0,18,1,19,20,2,21,3)$,
$(0,21,4,22,23,5,8,6)$,	$(0,24,1,25,26,2,22,3)$,	$(1,11,3,14,17,4,9,6)$,
$(1,20,4,23,26,5,12,7)$,	$(2,10,3,13,16,5,15,4)$,	$(2,19,8,23,25,4,18,9)$,
$(3,18,10,23,24,5,17,11)$,	$(4,14,7,24,26,10,15,6)$,	$(5,9,11,19,22,12,6,10)$,
$(5,11,7,13,25,12,8,15)$,	$(6,16,7,18,19,9,17,12)$,	$(6,20,7,21,25,8,22,11)$,
$(7,10,20,19,25,16,11,14)$,	$(8,13,16,21,24,17,14,18)$,	$(8,16,15,17,26,12,20,22)$,
$(9,15,26,20,22,18,16,24)$,	$(9,21,10,24,26,17,25,23)$,	$(11,15,23,18,26,19,21,13)$,
$(12,21,14,23,24,15,22,19)$,	$(13,19,25,22,23,17,20,16)$,	$(13,20,14,24,25,18,26,21)$.

A covering of K_{27} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$$
\begin{array}{|lll}
\hline(0,1,2,3,4,5,6,7), & (8,9,10,11,12,13,14,15), & (16,17,18,19,20,21,22,23), \\
(16,17,18,19,24,25,26,0), & (20,21,22,23,24,26,1,2) . & \\
\hline
\end{array}
$$

Let the vertex set of K_{28} be $\{0,1, \ldots, 27\}$. A 3-cube decomposition of $K_{28} \backslash K_{4}$ is given in [1]. This gives a maximum packing of K_{28} with 3 -cubes and leave as shown in Table 1.
A covering of K_{28} with 3-cubes and leave as shown in Table 2 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,1,2,3,5,7,8,9)$,	$(0,2,4,6,7,9,1,10)$,
$(0,2,5,8,9,10,3,4)$,	$(0,10,4,11,12,5,13,1)$,	$(0,13,2,14,15,3,11,5)$,
$(0,16,1,17,18,2,15,4)$,	$(0,19,1,20,21,2,22,3)$,	$(0,22,4,23,24,5,16,3)$,
$(0,25,1,26,27,2,23,5)$,	$(1,3,6,8,14,12,9,11)$,	$(1,3,8,18,21,14,10,11)$,
$(1,6,11,24,27,12,7,13)$,	$(2,7,14,17,20,15,6,13)$,	$(2,12,4,24,26,8,14,9)$,
$(3,17,5,18,19,6,20,7)$,	$(3,25,4,26,27,6,21,7)$,	$(4,19,8,20,27,9,13,10)$,
$(5,19,10,21,25,11,12,13)$,	$(6,16,7,22,23,8,17,9)$,	$(6,18,10,24,26,12,15,14)$,
$(7,23,12,24,25,10,16,15)$,	$(8,15,9,21,22,11,16,17)$,	$(8,24,16,25,27,17,18,14)$,
$(9,18,19,20,25,21,12,17)$,	$(10,17,15,22,26,11,13,16)$,	$(11,20,14,23,27,16,19,24)$,
$(12,20,23,22,25,18,26,24)$,	$(13,14,22,18,23,16,21,15)$,	$(13,19,25,22,26,17,23,27)$,
$(15,19,22,26,27,21,20,25)$,	$(18,23,21,24,27,19,26,20)$.	

K_{29}

Let the vertex set of K_{29} be $\{0,1, \ldots, 28\}$. A maximum packing of K_{29} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,5,1,6,7,2,8,3)$,	$(0,8,4,9,10,5,7,1)$,	$(0,11,1,12,13,2,14,3)$,
$(0,14,4,15,16,5,11,3)$,	$(0,17,1,18,19,2,15,5)$,	$(0,20,1,21,22,2,16,4)$,
$(0,23,1,24,25,2,26,3)$,	$(0,26,4,27,28,5,12,2)$,	$(1,13,4,19,22,5,17,3)$,
$(1,25,5,27,28,4,20,3)$,	$(2,6,4,10,18,7,23,3)$,	$(2,9,6,21,24,7,10,8)$,
$(3,5,23,9,21,24,6,11)$,	$(4,5,21,18,24,9,12,10)$,	$(6,8,9,13,14,11,15,7)$,
$(6,12,7,16,17,8,19,9)$,	$(6,15,8,18,19,10,13,11)$,	$(6,20,7,22,25,8,26,9)$,
$(6,26,10,27,28,11,16,8)$,	$(7,11,10,17,21,20,14,15)$,	$(7,25,11,27,28,10,22,12)$,
$(8,14,16,22,23,12,13,15)$,	$(9,14,17,20,21,19,12,16)$,	$(9,18,13,27,28,14,21,17)$,
$(10,20,25,21,23,13,17,26)$,	$(11,17,16,23,24,19,18,20)$,	$(12,15,18,24,25,19,26,27)$,
$(12,18,22,20,26,28,24,15)$,	$(13,19,27,22,25,28,23,14)$,	$(13,24,14,26,28,16,27,20)$,
$(15,25,18,27,28,22,23,21)$,	$(16,19,23,25,26,22,17,24)$.	

A covering of K_{29} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$(0,1,2,3,4,5,6,13)$,	$(0,4,1,3,8,7,9,10)$,	$(0,2,4,1,11,9,10,12)$,
$(13,15,17,19,14,16,18,20)$,	$(21,23,25,27,22,24,26,28)$.	

K_{30}
Let the vertex set of K_{30} be $\{0,1, \ldots, 29\}$. A maximum packing of K_{30} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,2,4,8,9,10,1,3)$,	$(0,4,3,10,11,6,12,5)$,	$(0,12,1,13,14,2,8,5)$,
$(0,15,1,16,17,2,9,4)$,	$(0,18,1,19,20,2,11,3)$,	$(0,21,1,22,23,2,24,3)$,
$(0,24,4,25,26,5,15,3)$,	$(0,27,1,28,29,2,25,5)$,	$(1,14,3,17,20,4,13,6)$,
$(1,23,4,26,29,6,10,7)$,	$(2,13,7,16,19,8,9,5)$,	$(2,22,6,26,28,4,18,8)$,
$(3,5,7,18,21,17,8,10)$,	$(3,6,8,16,27,9,14,10)$,	$(3,7,11,28,29,12,4,19)$,
$(4,21,5,27,29,8,20,11)$,	$(5,18,9,22,23,11,12,13)$,	$(6,14,7,15,16,11,17,9)$,
$(6,19,7,21,24,9,20,12)$,	$(6,25,7,27,28,9,23,12)$,	$(7,22,8,24,28,10,15,13)$,
$(8,23,10,25,27,14,19,13)$,	$(9,21,11,26,29,14,13,16)$,	$(10,11,15,17,20,22,12,18)$,
$(10,24,14,26,29,15,18,13)$,	$(11,19,16,24,25,12,14,20)$,	$(12,16,20,17,26,18,23,19)$,
$(13,17,26,20,21,22,24,27)$,	$(14,22,16,25,28,26,23,17)$,	$(15,19,21,26,27,22,28,25)$,
$(15,20,28,23,25,29,24,21)$,	$(15,21,29,22,28,16,27,18)$,	$(17,24,19,27,29,18,25,23)$.

A covering of K_{30} with 3 -cubes and padding as shown in Table 2 is obtained by using the additional 3-cubes:

$(0,1,2,3,7,6,5,4)$,	$(1,4,2,7,5,0,6,3)$,	$(4,8,11,9,10,12,3,13)$,
$(14,15,16,17,18,19,20,21)$,	$(22,23,24,25,26,27,28,29)$.	

K_{31}

Let the vertex set of K_{31} be $\{0,1, \ldots, 30\}$. A maximum packing of K_{31} with 3 -cubes and leave as shown in Tahle 1 is given by:

$(0,1,2,6,7,8,9,3)$,	$(0,2,7,9,10,8,4,5)$,	$(0,8,3,11,12,5,13,1)$,
$(0,13,2,14,15,4,10,1)$,	$(0,16,1,17,18,2,19,3)$,	$(0,19,4,20,21,5,3,10)$,
$(0,22,1,23,24,2,20,3)$,	$(0,25,1,26,27,2,21,3)$,	$(0,28,1,29,30,4,6,5)$,
$(1,7,5,18,24,6,11,4)$,	$(1,9,4,27,30,6,12,7)$,	$(2,11,7,15,17,8,13,6)$,
$(2,12,3,28,29,8,14,6)$,	$(2,23,4,26,30,8,16,9)$,	$(3,15,5,16,22,8,20,6)$,
$(3,25,4,29,30,10,14,11)$,	$(4,17,7,21,22,5,14,9)$,	$(5,23,6,25,26,7,10,11)$,
$(5,24,8,27,28,7,18,9)$,	$(6,8,19,18,21,25,7,16)$,	$(6,19,10,26,27,11,9,12)$,
$(7,20,11,22,29,9,13,10)$,	$(8,21,13,26,28,11,12,14)$,	$(9,15,10,17,19,12,16,13)$,
$(9,23,10,24,25,12,18,13)$,	$(10,12,17,27,28,20,14,13)$,	$(11,15,13,23,24,14,22,16)$,
$(11,16,15,17,18,14,19,20)$,	$(12,21,14,29,30,15,23,17)$,	$(12,22,15,24,28,17,18,21)$,
$(13,20,15,29,30,16,25,18)$,	$(14,25,19,27,30,20,21,22)$,	$(15,26,16,27,28,19,17,24)$,
$(16,19,22,28,29,23,20,26)$,	$(17,21,30,25,26,23,24,22)$,	$(18,22,29,24,28,23,27,25)$,
$(18,23,25,26,27,30,29,21)$,	$(19,24,20,29,30,26,27,28)$.	

A covering of K_{31} with 3 -cubes and non-simple padding as shown in Table 2 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,1,3,5,6,4,8,9)$,	$(0,1,6,8,9,7,10,2)$,
$(0,1,8,7,10,9,11,5)$,	$(0,2,4,11,12,5,13,1)$,	$(0,13,2,14,15,3,11,6)$,
$(0,16,1,17,18,2,15,4)$,	$(0,19,1,20,21,2,22,3)$,	$(0,22,4,23,24,5,14,1)$,
$(0,25,1,26,27,2,28,3)$,	$(0,28,4,29,30,5,16,3)$,	$(1,10,3,18,21,4,9,12)$,
$(1,27,5,29,30,4,19,6)$,	$(2,7,11,12,17,13,10,8)$,	$(2,20,4,24,26,5,25,6)$,
$(2,23,7,29,30,8,14,9)$,	$(3,4,12,6,14,26,7,16)$,	$(3,12,10,17,19,13,14,11)$,
$(3,23,9,24,25,10,15,7)$,	$(5,8,13,15,17,16,9,18)$,	$(5,18,6,21,23,11,13,16)$,
$(6,17,7,20,22,9,19,8)$,	$(6,23,12,27,28,13,20,9)$,	$(7,18,8,21,22,10,24,11)$,
$(7,27,8,28,30,10,26,11)$,	$(8,15,11,25,29,12,16,18)$,	$(9,21,13,25,26,15,22,12)$,
$(10,16,15,19,20,22,14,17)$,	$(10,21,14,28,29,17,12,19)$,	$(11,20,14,27,29,15,23,21)$,
$(12,24,15,28,30,13,27,16)$,	$(13,18,19,26,29,14,24,16)$,	$(14,19,16,25,30,21,20,23)$,
$(15,17,22,25,30,24,18,20)$,	$(17,23,18,26,27,22,21,25)$,	$(17,25,29,28,30,19,27,18)$,
$(19,20,28,22,23,24,26,29)$,	$(20,26,23,27,29,30,28,24)$,	$(21,24,22,26,28,25,30,27)$.

Let the vertex set of K_{34} be $\{0,1, \ldots, 33\}$. A maximum packing of K_{34} with 3 -cubes and leave as shown in Table 1 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,1,3,5,6,4,8,9)$,	$(0,1,6,8,9,7,10,2)$,
$(0,1,8,7,10,9,11,5)$,	$(0,2,4,11,12,5,13,1)$,	$(0,13,2,14,15,3,11,6)$,
$(0,16,1,17,18,2,15,4)$,	$(0,19,1,20,21,2,22,3)$,	$(0,22,4,23,24,5,14,1)$,
$(0,25,1,26,27,2,28,3)$,	$(0,28,4,29,30,5,16,3)$,	$(0,31,1,32,33,2,29,5)$,
$(1,10,3,18,21,4,9,12)$,	$(1,27,4,30,33,6,3,12)$,	$(2,7,11,12,17,13,10,8)$,
$(2,20,4,24,26,5,19,6)$,	$(2,23,6,30,32,3,17,7)$,	$(3,14,7,19,24,8,15,9)$,
$(3,25,4,31,33,7,12,10)$,	$(4,26,8,32,33,9,13,11)$,	$(5,8,16,15,17,18,6,12)$,
$(5,18,7,21,23,9,16,10)$,	$(5,25,8,27,31,6,20,7)$,	$(6,13,12,22,28,14,16,11)$,
$(6,21,8,29,32,9,22,10)$,	$(7,22,13,23,24,14,15,11)$,	$(7,26,10,28,29,11,14,9)$,
$(8,19,10,30,31,11,17,9)$,	$(8,23,12,28,33,14,19,13)$,	$(9,20,10,25,27,11,18,13)$,
$(10,15,17,24,27,18,14,12)$,	$(11,21,14,25,30,13,20,15)$,	$(12,20,16,25,26,17,19,18)$,
$(12,29,13,31,32,14,26,15)$,	$(13,16,18,24,32,17,21,19)$,	$(14,27,16,30,31,17,22,18)$,
$(15,19,20,21,22,23,18,28)$,	$(15,23,16,24,27,20,26,21)$,	$(15,28,16,29,33,19,31,20)$,
$(16,21,22,32,33,23,24,25)$,	$(17,23,25,28,29,26,19,27)$,	$(17,25,20,30,33,21,32,24)$,
$(18,29,30,32,33,31,27,26)$,	$(19,22,25,29,30,26,31,21)$,	$(20,22,27,24,28,30,25,26)$,
$(22,29,28,31,33,32,23,30)$,	$(23,27,33,29,31,32,28,24)$.	

A covering of K_{34} with 3 -cubes and non-simple padding as shown in Table 2 is given by:

$(0,1,2,3,4,5,6,7)$,	$(0,1,3,5,6,4,8,9)$,	$(0,1,6,8,9,7,10,2)$,
$(0,1,8,7,10,9,11,5)$,	$(0,2,4,11,12,5,13,1)$,	$(0,13,2,14,15,3,11,6)$,
$(0,16,1,17,18,2,15,4)$,	$(0,19,1,20,21,2,22,3)$,	$(0,22,4,23,24,5,14,1)$,
$(0,25,1,26,27,2,28,3)$,	$(0,28,4,29,30,5,16,3)$,	$(0,31,1,32,33,2,29,5)$,
$(1,10,3,18,21,4,9,12)$,	$(1,27,4,30,33,6,3,12)$,	$(2,7,11,12,17,13,10,8)$,
$(2,20,4,24,26,5,19,6)$,	$(2,23,6,30,32,3,17,7)$,	$(3,14,7,19,24,8,15,9)$,
$(3,25,4,31,33,7,12,10)$,	$(4,26,8,32,33,9,13,11)$,	$(5,8,16,15,17,18,6,12)$,
$(5,18,7,21,23,9,16,10)$,	$(5,25,8,27,31,6,20,7)$,	$(6,13,12,22,28,14,16,11)$,
$(6,21,8,29,32,9,22,10)$,	$(7,22,13,23,24,14,15,11)$,	$(7,26,10,28,29,11,14,9)$,
$(8,19,10,30,31,11,17,9)$,	$(8,23,12,28,33,14,19,13)$,	$(9,20,10,25,27,11,18,13)$,
$(10,15,17,24,27,18,14,12)$,	$(11,21,14,25,30,13,20,15)$,	$(12,20,16,25,26,17,19,18)$,
$(12,29,13,31,32,14,26,15)$,	$(13,16,18,24,32,17,21,19)$,	$(14,27,16,30,31,17,22,18)$,
$(15,19,20,21,22,23,18,28)$,	$(15,23,16,24,27,20,26,21)$,	$(15,28,16,29,33,19,31,20)$,
$(16,21,22,32,33,23,24,25)$,	$(17,23,25,28,29,26,19,27)$,	$(17,25,20,30,33,21,32,24)$,
$(18,29,30,32,33,31,27,26)$,	$(19,22,25,29,30,26,31,21)$,	$(20,22,27,24,28,30,25,26)$,
$(22,29,28,31,33,32,23,30)$,	$(23,27,33,29,31,32,28,24)$.	

(Received 3/2/99)

[^0]: * Research supported by Australian Research Council grant A69701550

