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Abstract 
Necessary and sufficient conditions are obtained for the existence of the 
structures from the title of this article. 

1. INTRODUCTION 

It is well known that the complete bipartite graph Km,n can be decomposed 
into 4-cycles precisely when both m and n are positive even integers. While the 
necessity of this condition is obvious, it is almost equally easy to see how to obtain 
such a decomposition (and is a straightforward consequence of Sotteau's Theorem 
[S] anyway): arbitrarily partition the vertices of both partite classes into 2-subsets, 
and then form a 4-cycle (i.e., a K 2,2) for every pair of cells one from each partite 
set - of such a partition in an obvious way. 

The situation changes, however, if one considers decompositions of complete 
bipartite graphs into 4-cycles satisfying an additional "uniqueness" condition: 

(U) If (a, x, b, y) and (a, u, b, v) are 4-cycles of the decomposition then {x, y} = 
{u, v}. 

We call decompositions satisfying condition (U) monogamous. In Section 2, we 
discuss conditions for the existence of monogamous decompositions of K m,n into 
4-cycles. 

In Section 3, we define and discuss the existence of symmetric analogues of 
Howell designs, and provide various constructions for them. vVe also define, for 
a regular graph G, so-called self-orthogonal I-factorizations of the graph 2G, i.e. 
of the graph obtained by "doubling" each edge of G, and discuss the existence of 
decomposable and indecomposable self-orthogonal I-factorizations. 
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In Section 4, a theorem concerning the relationship of the structures defined in 
previous sections is given. We also discuss some additional structures and further 
relationshi ps. 

2. MONOGAMOUS DECOMPOSITIONS OF Krn,n INTO 4-CYCLES 

Definition A decomposition of Krn,n into 4-cycles is said to be monogam07Ls 
if it satisfies the following condition: 

(U) If (a, x, b, y) and (a, u, b, v) are 4-cycles in the decomposition then {x, y} = 
{u, v}. 

In other words, there is at most one 4-cycle containing any pair of nonadjacent 
vertices. 

Condition (U) forces an additional necessary condition for the existence of a 
decomposition of Krn,n into 4-cycles. 

Lemma 2.1. If there exists a monogamous decomposition of Km,n (rn :s; n) into 
4-cycles then n :::; 2m 2. 

Proof. The total number of 4-cycles in any decomposition of Krn,n into 4-cycles 
is mn/4, thus we must have (r;) ;::: mn/4. 0 

To avoid from now on the trivial case m = n 2, we assume both rn, n ;::: 4. 

Lemma 2.2. There exists no monogamous decomposition of K 4 ,4 or of K 4 ,6 into 
4-cycles. ' 

Proof The claim for K 4 ,4 is trivial. Let the bipartition of K'i,6 be VI = 
{a,b,c,d}, V2 {1,2,3,4,5,6}. A monogamous decomposition of K 4 ,6 into 
4-cycles must contain (w.l.o.g.) three 4-cycles (a, 1, b, 2), (rL, 3, C, 4), (a, 5, d, 6) which 
forces the two vertices b, c to occur in a 4-cycle (b, 5, c, 6) violating condition (U). 
o 

On the other hand, as the following example shows, there exists a monogamous 
decomposition (unique up to an isomorphism) of K 6 ,6 into 4-cycles. [In what 
follows we use nonnegative integers, and nonnegative integers primed, respectively, 
to denote the vertices of the two partite sets. We also omit, for the sake of brevity, 
round brackets and commas separating the vertices of the 4-cycle.] 

Example 2.3. A monogamous decomposition of K 6 ,6 into 4-cycles. 
1 I' 2 2', 1 5' 4 6', 1 3' 64',2 4' 3 5', 2 3' 5 6', 3 2' 4 3', 3 I' 6 6', 4 I' 5 4', 
5 2' 65'. 

Example 2.4. A monogamous decomposition of K 6 ,lO into 4-cycles. 
1 I' 2 2', 1 3' 3 4', 1 5' 4 6', 1 7' 5 8', 1 g' 6 10', 2 5' 3 g', 2 3' 4 7', 2 4' 5 10', 
2 6' 68',38' 4 10',3 I' 5 6', 3 2' 6 7',4 2' 5 g', 4 I' 6 4', 53' 65'. 

One can adapt the starter method (see,e.g., [DS)) to generate monogamous 
decompositions of Krn,m into 4-cycles. Indeed, let Zrn X i, i = 1,2 be the partite 
sets of K rn, m, and let B be a set of 4-cycles such that every mixed difference occurs 
on the edges of the 4-cycles of B exactly once and every (pure) difference between 
nonadjacent vertices in each of the 4-cycles of B occurs at most once. Then B is 
a set of starter 4-cycles for a monogamous decomposition of Km,m into 4-cycles 
(modulo m). 
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Examples of some starter sets for monogamous 4-cycle decompositions of Km,m 
are given below. 

Example 2.5. 
K 8 ,8 : 0 0' 1 2', 0 5' 2 6' (mod 8) 
K lO ,10 : 0 2' 1 4', 0 8' 2 9', 0 5' 5 0' (mod 10) 
K . 0 2' 1 6' 0 10' 2 11' 0 4' 4 7' (mod 12) 12,12 . , , 

K . 0 I' 5 4' 0 2' 8 3' 0 6' 1 12' 0 7' 7 0' (mod 14) 14,14 . , , , 

Similarly, a further adaptation of the starter method using two infinite points 
can be used to generate directly monogam~us 4-cycle decompositions of K m,m+2. 

Example 2.6. Starters for monogamous decompositions into 4-cycles (A, B 
are the two infinite points): 

K . 0 2' 1 5' 0 3' 4 7' (mod 8) 8,10 . , 

o 0' 2 A, 1 I' 3 A, 4 4' 6 A, 5 5' 7 A, 
2 2' 4 B, 3 3' 5 B, 6 6' 0 B, 7 7' 1 B 

K lO ,12 : 0 3' 2 4', 0 6' 1 9' (mod 10) 
2i (2i)' 2i + 3 A, 2i + 1 (2i + 1)' 2i + 4 B (mod 10), 0 SiS 9. 

To give a general construction of monogamous 4-cycle decompositions, even for 
Km,m, by means of a formula for starters appears elusive a situation not unlike 
that for Room squares, for example. Nevertheless, it turns out that the existence 
of a pair of orthogonal latin squares of order m guarantees the existence of a 
monogamous decomposition of K 2m ,2m into 4-cycles. Rather than provide a proof 
at this point, we postpone it until Section 3 when this implication will become 
apparent. In fact, in Section 3 a definitive existence theorem for monogamous 
decompositions of Km,n into 4-cycles will be proved: 

Theorem 2.7. A monogamous decomposition of the complete bipartite graph Km,n 
(m S n) into 4-cycles exists if and only if n S 2m - 2, m, n 2: 6. 

3. SYMMETRIC ANALOGUE OF HOWELL DESIGNS 

Consulting the surveys [R], [DS] seems to suggest that the following symmetric 
analogue of Room squares, or rather, more generally, Howell designs has not been 
considered in the 'literature. [For a definition of a Howell design H(s,2n), where 
n S s S 2n - 1, see [DS]; in particular, a Howell design H(2n - 1, 2n) is a Room 
square RS(2n).] 

Definition. An SH-square SH(m, n) is an m X m square array such that 

(i) every cell is either empty or contains a 2-subset of an n-element set N; 
(ii) every diagonal cell is empty; 

(iii) every element of N is contained in exactly one cell of every row (every 
column); and 

(iv) if the 2-subset {x,y} of N is contained in an (off-diagonal) cell (a,b) then 
it is also contained in the cell (b, a) 

(v) every 2-subset of N is contained in 0 or 2 cells. 

["SH" stands for "symmetric Howell".] 
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The dual of an SH(m, n) is obtained as follows: if the cell (a, b) (and also (b, a), 
of course) contains the 2-subset {x, y} then place the 2-subset {a, b} in the cell 
(x,y) (and in the cell (y,x)). Clearly, the dual is an SH(n,rn). 

It folllows easily that for an SH(m, n) to exist, both rn and n must be even, 
and 

(*) :s: m :s: 2n - 2. 

Some examples of SH-squares follow. 

Example 3.I. 
12 56 34 

12 45 36 
45 23 16 

56 23 14 
36 14 25 

34 16 25 
SH(6,6) 

Example 3.2 
12 34 56 78 90 

12 59 37 40 68 
34 59 80 16 27 
56 37 80 29 14 
78 40 16 29 35 
90 68 27 14 35 

SH(6,10) 

Example 3.3 
78 26 45 13 

18 37 56 24 
12 48 67 35 

78 23 15 46 
26 18 34 57 
45 37 12 68 

56 48 23 17 
67 15 34 28 

13 24 57 68 
35 46 17 28 

SH(10,8) 

Howell designs are instrumental in settling the existence question for 
SH-squares. 

Theorem 3.4. An SH-square SH(m, n) exists if and only if boch nt, 'Ii ::> 6 are 
even, and the necessary condition (*) is satisfied. 

Proof. It is an easy exercise to see that neither SH( 4,4) nor SH( 4,6) exist. 
Assume now m, n are as above, and m ~ n. If there exists a Howell design H( T' n), 
say A, then 
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(ir ~) 
is an SH(m,n) (here AT is the transpose of A, and E is an empty!fJ x!f} array). 
It is well known (see, e.g., [DS]) that a Howell design H(s,n) exists if and only 
if ~::; s::; 2n-l except when (s,n) E {(2,4),(3,4),(5,6),(5,8)} in which case 
H( s, n) does not exist. This settles the existence of SH-squares in all cases when 
m ~ n except for an SH(10,6) and an SH(10,8). The dual of the former is given 
in Example 3.2, and the latter is given in E?Cample 3.3. Considering now the dual 
handles the cases when m S n, and the proof is complete. 0 

Theorem 3.5. A monogamous- decomposition of Km,n into 4-cycles exists if and 
only if there exists an SH-square SH(m, n). 

Proof. If (a, x, b, y) is a 4-cycle in a monogamous decomposition of Km,n into 
4-cycles where a,b E Vl, x,y E V2 , IVll = m, IV2 1 n, then place {x,y} in the 
cells (a, b) and (b, a) of an m x m array A. Condition (U) guarantees that at most 
one 2-subset occupies anyone off-diagonal cell while the fact that the vertex a is 
adjacent to every vertex of V2 in exactly one 4-cycle guarantees that the a-th row of 
A is latin. Clearly, A is symmetric and its diagonal is empty, so A is an SH(m,n). 
The converse is equally transparent. 0 

Theorem 2.7 now follows readily from Theorem 3.4 and Theorem 3.5. 
Thus, returning to our remark in Section 2 before Theorem 2.7, we note that 

a pair of orthogonal latin squares of order m yields a Howell design H(m,2m) 
which, as indicated in the proof of Theorem 3.4 yields an SH(2m, 2m), from which 
a monogamous decomposition of K 2m ,2m arises as decribed in Theorem 3.5. 

For instance, the SH(6,10) of Example 3.2 gives rise to the following monoga­
mous decompositio:q. of K 6 ,lO into 4-cycles: 
1 I' 2 2', 1 3' 3 4', 1 5' 4 6', 1 7' 5 8', 1 9' 6 0' 
2 5' 3 9', 2 3' 4 7', 2 4' 5 0', 2 6' 6 8', 3 8' 4 0' 
3 l' 5 6', 3 2' 6 7', 4 2' 5 9', 4 I' 6 4', 5 3' 6 5'. 

4. SELF-ORTHOGONAL I-FACTORIZATIONS 

A I-factorization of a (regular) graph G is a partition of the edge-set of G into 
I-factors (=perfect matchings). Two I-factorizations F, H of G are orthogonal if 
any two edges of G belong to distinct I-factors of H whenever they belong to the 
same I-factor of F. It is well known that a Howell design H( s, n) is equivalent to a 
pair of orthogonal I-factorizations of some regular graph of degree s with n vertices 
[DS], [RS]. 

Given a regular graph G, call a I-factorization F of the graph 2G (every edge of 
G is "doubled") self-orthogonal if any two distinct I-factors of F have at most one 
edge in common. Clearly, a union of two orthogonal I-factorizations of G yields 
a self-orthogonal I-factorization of 2G but the converse is not true in general. A 
self-orthogonal I-factorization F of 2G which can be partitioned into two orthog­
onal I-factorizations of G is decomposable, otherwise, it is indecomposable. The 
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above equivalence can therefore be restated as follows: a Howell design H(.s, n) is 
equivalent to a decomposable self-orthogonal I-factorization of 2G, for some regular 
graph G of degree .s with n vertices. 

It is now clear that an SH-square SH( m, n) is equivalent to a (decomposable or 
indecomposable) self-orthogonal I-factorization of 2G, for some regular graph G of 
degree T with n vertices. 

The above remarks together with Theorem 3.5 prove: 

Theorem 4.1. The following are equivalent: 

(i) a monogamous decomposition of Km,n into 4-cycles; 
(ii) an SH-square SH(m, n}; 

(iii) a self-orthogonal i-factorization of 2GJ for some regular gmph G of degree 
T with n vertices. 

Let us call the graph G in (iii) above the underlying graph of the corresponding 
SH-square SH(m, n). So, for example, the underlying graph of the SH(6,6) (eas­
ily seen to be) unique up to an isomorphism is K 3 ,3 while the underlying graph 
of the SH(6,10) from Example 3.2 is the Petersen graph P. The corresponding 
self-orthogonal I-factorization of 2P is, of course, indecomposable, as are those 
of the graphs 2G corresponding to the starter generated monogamous decomposi­
tions into 4-cycles given in Examples 2.5 and. 2.6. It remains an open problem to 
determine the spectrum of SH-squares SH(m, n) corresponding to indecomposable 
self-orthogonal I-factorizations of 2G where G is its underlying graph. 

ACKNOWLEDGEMENTS 

Research of the second author is supported by the NSERC of Canada Grant 
No.OGP007268. Part of this research was done while the second author was visiting 
the Department of Discrete and Statistical Sciences at Auburn University. He 
thanks the Department for its hospitality. 

REFERENCES 

[DS] J .H. Dinitz, D.R. Stinson, Room squares and related designs, Contemporary 
Design Theory. A Collection of Surveys, J.Wiley & Sons, 1992, pp. 137-204. 

[R] A. Rosa, Room squares generalized, Ann. Discrete Math. 8 (1980), 43--57. 
[RS] A. Rosa, D.R. Stinson, One-factorizations of r'egular gmphs and Howell de­

signs of small order, Utilitas Math. 29 (1986), 99-124.· 
[S] D. Sotteau, Decomposition of Km,n(Km,n *) into cycles (circuits) of length 

2k, J. Combinat. Theory (B) 30 (1981), 75-81. 

(Received 15/2/99) 

256 


