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Abstract 

Two new elementary proofs are given of Landau's Theorem on necessary and 
sufficient conditions for a sequence of integers to be the score sequence for some 
tournament. The first is related to existing proofs by majorization, but it avoids 
depending on any facts about majorization. The second is natural and direct. Both 
proofs are constructive, so they each provide an algorithm for obtaining a tournament 
realizing a sequence satisfying Landau's conditions. 

I. Introduction. 

In 1953 H. G. Landau [3] proved that some rather obvious necessary conditions 
for a non-decreasing sequence of n integers to be the score sequence for some n­
tournament are, in fact, also sufficient. Namely, the sequence is a score sequence if and 

only if, for each k, 1 ';k ';n, the sum of the lirst k tenns is at least (~), with equality 

when k = n. Th~re are now several proofs of this fundamental result in tournament 
theory, ranging from clever arguments involving gymnastics with subscripts, arguments 
involving arc reorientations of properly chosen arcs, arguments by contradiction, 
arguments involving the idea of majorization, to a constructive argument utilizing 
network flows and another one involving systems of distinct representatives. Two of the 
more well-known proofs are discussed briefly below. Many of these existing proofs are 
discussed in a 1996 survey by Reid [6]. The notation and terminology here will be as in 
that survey, except that for vertices x and y, x~y will be used to denote both an arc from 
x to y and the fact that x dominates y, where the context makes clear which use is 
intended. 
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In this paper we give an elementary, self-contained proof that is related to known 
proofs by majorization (Aigner [1] in 1984 and Li [4] in 1986), but it does not depend on 
any appeals to chains and covers in lattices. And, we give a new, direct proof that 
employs a simple operation on sequences that is as basic as any in the literature, and 
perhaps more natural. Neither proof is in [6]. Both proofs are constructive, so they each 
provide an algorithm for obtaining a tournament realizing a sequence satisfying Landau's 
conditions. 

First we give the statement of Landau's Theorem. 

Theorem (Landau [3]). A sequence of integers s = (Sl ::;; S2 ::;; ... ::;; sn), n ~ 1, is a score 
sequence if and only if 

± Si ~ (k), I::;; k ::;; n, with equality for k = n. (1) 
i=1 2 

All of the published proofs concern the sufficiency of conditions (1) since the 
necessity of those conditions follows easily from the observation that if s is a score 
sequence of some n-tournament T, then any k vertices of T form a subtournament Wand, 
hence, the sum of the scores in T of these k vertices must be at least the sum of their 

scores in W which is just the total number of arcs in W, (~). 
We sketch Bang and Sharp's [2] elegant proof of the sufficiency of conditions (1). 

Let s be a sequence of integers satisfying conditions (1). Let XI' X2, ... ,Xn be n 

pairwise disjoint sets, where IXil ~ Si' I ,; i'; n. Fonn the family of (~)ctiStinct sets 

F = {Xi U Xj I 1 ::;; i < j ::;; n }. Utilize conditions (1) and P. Hall's Theorem on systems of 
distinct representatives to verify that the family F of sets has a system of distinct 
representatives {aij I 1 ::;; i < j ::;; n}, where ~j E Xi U Xj , for all i and j, 1 ::;; i < j ::;; n. 
Check that the n-tournament with vertex set {XI' X2, ••• ,Xn} in which Xi dominates Xj if 
and only if ~j E Xi has score sequence s, as desired. Note that this construction rests on 
the construction of a certain matching in a certain bipartite graph; there are efficient 
algorithms for that. 

We also sketch a self contained, clever proof due to Thomassen [7]. It proceeds 
by contradiction. Let n be the smallest integer for which there is a non-decreasing 
sequence s of non-negative integers satisfying Landau's conditions (1), but for which 
there is no n-tournament with score sequence s. Among all such s, pick one for which Sl 

is as small as possible. If i~ Si ~ (~ ), for some k, I ,; k ,; n-I, then check that sequences 

s' = (Sl' S2' ... ,Sk) and sIt = (Sk+l-k, Sk+2-k, .,. ,sn-k) satisfy conditions (1) and are shorter 
than s. So, there is a k-tournament V with score sequence s' and an 
(n-k)-tournament U with score sequence sIt . The n-tournament consisting of disjoint 
copies of U and V such that every vertex of U dominates every vertex in V has score 
sequence s. On the other hand, if the inequalities in (1) are strict for all k 
, 1 ::;; k::;; n-1, then Slll= (sl-l, S2' ... ,sn+l) satisfies Landau's conditions (1). So, by 
choice of Sl' there is an n-tournament W with score sequence Sill. Check that W contains 
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a path P of length 2 from the vertex of score sn + 1 to the vertex of score sl-l. Reversal of 
the 2 arcs in P results in an n-tournament with score sequence s, a contradiction. This 
proof also is the basis for an algorithm. We remark that a slightly earlier proof due to 
Mahmoodian [5] proceeds exactly as in Thomassen's proof up to the appearance of s'" . 

It uses the fact that if m=min{ t si _(kJ 11:::;;k:::;;n-l}, then (SI-m, S2' .,. ,sn+m) is a 
. 1 2 
1= 

score sequence. Reversal of m 2-paths from the vertex of score Sl-m to the vertex of 
score sn+m yields an n-tournament with score sequence s, a contradiction. 

n. A Majorization Proof. 

Let s be an integer sequence satisfying conditions (1). Starting with the transitive 
n-tournament, denoted TIn' we successively reverse the orientation of the two arcs in 
selected 2-paths until we construct a tournament with score sequence s. 

Suppose that at some stage we have obtained n-tournament U with score sequence 
k k 

U == (u), u2 , ••• ,Un-I, un), such that, for 1 :::;; k :::;; n, LSi ~ LUi (with equality for 
1=1 1=1 

k == n). This holds initially, when U == TTn, by our hypothesis concerning s, since TTn has 
score sequence tn == (0, 1, 2, ... ,n-I). If u == s, we are done (s is the score sequence of U), 
so suppose that u =1= s. Let a denote the smallest index such that Ua < sa. Let f3 denote the 

largest index such that u~ = u., Since ~s, = ~ li, (= C)), by (1) there exists a 

smallest index r > ~ such that uy > Sy' By maximality of ~, Uj)+1 > u~, and by minimality 
of y, lly> lit_I' We have (u), .. ua-J = (Sl' ... ,Sa-I)' Ua == ..• == uf3 < so.:::;; ... :::;; sf3:::;; sf3+1 , 
Sf3+1 ~ Uf3+1' ... , SY-l 2=: uy_l, Sy < lly, and, of course, uy :::;; ... :::;; Un and Sy :::;; ... :::;; Sn' Then 
uy > Sy 2=: sl3 > uf3' or uy 2=: uf3+2. So, if vertex Vi in U has score ui, 1 :::;; i :::;; n, there must be a 
vertex vA' A =1= ~, y, such that Vy-7VA-7 vf3 in U. Reversing this 2-path yields an n­
tournament U' with score sequence u' = (ul', u2', ••• ,un'), where 

{

U
Y 

- 1, if i == y; 

u/ == u
13 

+ 1, if i = ~; 
ui. otherwise. 

By choice of indices, u1':::;; u2' :::;; ••• :::;; un'. It is easy to check that for 1 :::;; k :::;; n, 
k k, 

LSi2=: LUi. 
i=l i=) 

For n-tuples of real numbers a and b recall the "Manhattan" metric d(a,b) == 

±Iai - bJ Then, for the sequences s, n, u' above, d(n', s) == d(n,s) - 2. Now, modulo 2, 
i=1 

d(n,s) == I,(Ui - Si) == f Ui - fSi == O. So, eventually, after (l/2)d(tn ,s) such steps, we 
i=) i=1 i= 

arrive at u == sand U realizes s. I 
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III. A New Basic Proof. 

The specific sequence tn = (0, 1, 2, ... ,n-l) satisfies conditions (1) as it is the 
score sequence of the transitive n-toumament. If sequence S:j:: tn satisfies (1), then SI ~ ° 
andsn ::;; n-l, so s must contain a repeated term. The object of this proof is to produce a 
new sequence s' from S which also satisfies (1), is "closer" to tn than is s, and is a score 
sequence if and only if s is a score sequence. We find the first repeated term of s, reduce 
its first occurrence in S by I and increase its last occurrence in s by I in order to form s' . 
The process is repeated until the sequence tn is obtained. We now prove the validity of 
this procedure. 

Let S:j:: tn be a sequence satisfying (1). Define k to be the smallest index for which 
Sk = Sk+l' and define m to be the number of occurrences of the term Sk in s. Note that k ~ 
1 and m ~ 2, and that either k + m - 1 = n or Sk = Sk+l= ... = Sk+m-l < sk+m' Define s' as 
follows: for 1 ::;; i ::;; n, 

Si' = s;: 1: if i = k + m -1; 
{

s 1 if i = k; 

Si' otherwise. 

Then SI' ::;; S2' ::;; ... ::;; sn'· 
If s' is the score sequence of some n-toumament T in which vertex Vi has score Si', 

1 ::;; i::;; n, then, since Sk+m-l' > sk'+l, there is a vertex in T, say vP' for which Vk+m-1 ~ vp and 
vp ~ vk. Reversal of those two arcs in T yields an n-tournament with score sequence s. 
On the other hand, if s is the score sequence of some n-tournament W in which vertex Vi 
has score Si' 1::;; i::;; n, then we may suppose that Vk-7 Vk+m-l in W, for otherwise, 
interchanging the labels on vk and Vk+m-1 does not change s. Reversal of the arc 
Vk ~ Vk+m-1 in W yields an n-toumament with score sequence s'. That is, s' is a score 
sequence if and only if s is a score sequence. 

j (j) Next, we show that LSi> , k ~ j ::;; k+m-2. Suppose, on the contrary, that for 
i=1 2 

some j, k::;;j < k+m-2, ±Si::;; (j). Conditions (1) imply that±si ~ (j), so equality 
i=1 2 i=1 2 

holds. Then, again by (1), Sj+l +(j) = Sj+l + ,±Si = J:ESi ~ (j+ 1) = (j)+ j. So, Sj+l ~j. 
2 1=1 1=1 2 2 

As Sj=Sj+l' Sj~j. Thus, ±Sj=LSj+Sj~(j-1)+SjZ (j-I)+j=(j)+1 >(j), 
1=1 1=1 2 2 2 2 

a contradiction to our supposition. So, ±Si > (j), k ::;; j ::;; k+m-2. 
j=1 2 
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Now we can show that s satisfies (1) if and only if s' satisfies (1). If s satisfies 
(1), then 

j , 

LSi = 
i=1 

j 

LSi, 
i=1 

k-I j 

LSi + (Sk -1) + LSi, 
i=1 i=k+1 

k-I k+m-2 J 

if j::; k -1; 

if k ::; j ~ k + m - 2; 

LSi + (Sk -1) + LSi + (Sk+m-l + 1) + LSi. if j ~ k + m-1. 
i=1 i=k+l l=k+m' 

In cases j $ k-l and j ~ k+m-l, we see that t.Si' = ~Si ~ (~} In cases k $j $ k+m -2, 

the strict inequality established above implies that ~s: = (~Si) - 1 > (;) -1. So,.' 

satisfies (1). On the other hand, if s' satisfies (1), then it is clear that s satisfies (1). 
Let us define a total order on integer sequences that satisfy (1) as follows: 

a = (ai' a2 , ••. ,~) ~ b = (bl , b2, ••• ,bn) if either a = b, or ~ < bn , or for some i, 1 ~ i < n, 
~ = bn, ~-l = bn- l , ••• '~+l = bi+ l , ~ < bi · Clearly, ~ is reflexive, antisymmetric, transitive, 
and satisfies comparability. Write a < b if a ~ b, but a:t= b. Note that, for any sequence 
s:t= tn satisfying (1), s < tn' where tn is the fixed sequence (0,1,2, ... ,n-l), the score 
sequence for the transitive n-toumament. We have shown above that for every sequence 
s:t= tn satisfying (1) we can produce another sequence s' satisfying (1) such that s < s'. 
Moreover, s is a score sequence if and only if s' is a score sequence. So, by repeated 
application of this transformation starting from the original sequence satisfying (l) we 
must eventually reach tn. Thus, S is a score sequence, as required .• 
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