The spectrum of rotational directed triple systems and rotational Mendelsohn triple systems

Miwako MISHIMA
Department of Information Science, Gifu University
1-1 Yanagido, Gifu 501-1193, JAPAN
miwako@info.gifu-u.ac.jp

Abstract

Necessary and sufficient conditions for the existence of k-rotational directed triple systems and k-rotational Mendelsohn triple systems are derived.

1. Introduction

Let V be a set of v points and \mathcal{B} be a collection of 3 -subsets (called blocks or triples) of V. A pair (V, \mathcal{B}) is called a triple system, denoted by $\operatorname{TS}(v, \lambda)$, if every pair of distinct points of V is contained in precisely λ blocks of \mathcal{B}. Furthermore, when $\lambda=1$, it is called a Steiner triple system (STS) and when $\lambda=2$, it is called a twofold triple system (TTS). There is a vast amount of literature on such generalized triple systems. As is well-known, directed triple systems [9] and Mendelsohn triple systems [12] are also' included in such generalizations.

A directed triple system $\operatorname{DTS}(v, \lambda)$ is a pair (V, \mathcal{B}) such that \mathcal{B} is a collection of edge-disjoint transitive tournaments of order 3 with vertices from V, having the property that every ordered pair of elements of V appears in precisely λ transitive tournaments. To distinguish a block (triple) of a $\operatorname{DTS}(v, \lambda)$ from a block $\{a, b, c\}$ of an ordinal triple system, we denote it by $\langle a, b, c\rangle$. In this case, the set of its ordered pairs is $\{(a, b),(a, c),(b, c)\}$, which is represented also as a difference triple $(b-a, c-b, c-a)$.

A Mendelsohn triple system $\operatorname{MTS}(v, \lambda)$ differs only in that the above \mathcal{B} contains directed cycles of length 3. A triple of $\operatorname{MTS}(v, \lambda)$ is represented by $[a, b, c]$ and the set of its ordered pairs is given as $\{(a, b),(b, c),(c, a)\}$, which is represented also as a difference triple $(b-a, c-b, a-c)$. It is easy to see that $[a, b, c]=[b, c, a]=[c, a, b]$.

If one omits the directions in a $\operatorname{DTS}(v, \lambda)$ or a $\operatorname{MTS}(v, \lambda)$, then a $\operatorname{TS}(v, 2 \lambda)$ can be obtained. Many researchers have investigated the existence problem of these triple systems. Hanani [8] determined the necessary and sufficient condition for the existence of $\operatorname{TS}(v, \lambda)$ for every λ. Similarly the necessary and sufficient condition was shown for $\operatorname{DTS}(v, 1)$ by Hung and Mendelsohn [9] and for $\operatorname{MTS}(v, 1)$ by Mendelsohn [12]. See, for the relevant results, [6] and [7].

Let G be an automorphism group of a generalized triple system (V, \mathcal{B}), that is, a group of permutations on the set V of v points leaving the collection of blocks \mathcal{B} invariant. If there is an automorphism of order v, then the design is said to be cyclic. For a cyclic triple system (V, \mathcal{B}), the set V of v points can be identified with Z_{v}, i.e. the residue group of integers modulo v. In this case, the design has an automorphism $\sigma: i \mapsto i+1 \bmod v$ which is also represented by $\sigma=(0,1, \ldots, v-1)$. Let B be a block of a cyclic triple system (V, \mathcal{B}). A block orbit of B is defined by $\left\{B+y: y \in Z_{v}\right\}$. The length of a block orbit is its cardinality. A block orbit of length v is said to be full, otherwise short. A base block of a block orbit \mathcal{O} is a block $B \in \mathcal{O}$ which is chosen arbitrarily. For any cyclic triple system, the length of a short block orbit is $v / 3$ if it exists.

If there is an automorphism consisting of a single fixed point and precisely k cycles of length $(v-1) / k$, then the design is said to be k-rotational. The automorphism can be represented by

$$
\pi=(\infty)\left(0_{1}, 1_{1}, \ldots,(n-1)_{1}\right) \cdots\left(0_{k}, 1_{k}, \ldots,(n-1)_{k}\right)
$$

on the point-set $V=\{\infty\} \cup\left(Z_{n} \times\{1,2, \ldots, k\}\right)$, where $n=(v-1) / k$ and x_{i} denotes the element $(x, i) \in Z_{n} \times\{i\}$. A block orbit of a k-rotational triple system is defined similarly to that of a cyclic triple system, but under the automorphism π. In this case, the length of a full block orbit is $(v-1) / k$ and the length of a short block orbit is $(v-1) /(3 k)$ or $(v-1) /(2 k)$ if it exists. Any cyclic or k-rotational triple system should be generated from base blocks. Note that a directed triple system has no short block orbit due to the order structure on its blocks.

The condition for the existence of a cyclic $\operatorname{TS}(v, \lambda)$ was determined by Colbourn and Colbourn [5], and that of a cyclic $\operatorname{DTS}(v, \lambda)$ was given by Cho, Han and Kang [4]. Quite recently, the spectrum of a cyclic $\operatorname{MTS}(v, \lambda)$ has been settled by Shen [14]. For the existence of a 1-rotational $\operatorname{TS}(v, \lambda)$, Kuriki and Jimbo [11], and Cho [2] gave the same result independently.

Theorem 1.1 ([2], [11]) A 1-rotational $\operatorname{TS}(v, \lambda)$ exists if and only if
(i) $\lambda=1$ and $v \equiv 3,9 \bmod 24$,
(ii) $\lambda \equiv 1,5 \bmod 6, \lambda \neq 1$ and $v \equiv 1,3 \bmod 6$,
(iii) $\lambda \equiv 2,4 \bmod 6$ and $v \equiv 0,1 \bmod 3$,
(iv) $\lambda \equiv 3 \bmod 6$ and $v \equiv 1 \bmod 2$, or
(v) $\lambda \equiv 0 \bmod 6$ and $v \geq 3$.

Remark. The terminology of ' k-rotational' was defined by Phelps and Rosa [13] who showed (i) of Theorem 1.1.

Our aim is to determine completely necessary and sufficient conditions for the existence of a k-rotational $\operatorname{DTS}(v, \lambda)$ and a k-rotational $\operatorname{MTS}(v, \lambda)$ for all λ.

In fact, only when $\lambda=1$, we can find the necessary and sufficient conditions for the existence of a k-rotational directed triple system and a k-rotational Mendelsohn triple system in [3] and [10], respectively.

Theorem 1.2 (Cho, Chae and Hwang [3]) A k-rotational DTS $(v, 1)$ exists if and only if
(i) $k \equiv 1,2 \bmod 3, v \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$, or
(ii) $k \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$.

Theorem 1.3 (Jiang and Colbourn [10]) A k-rotational MTS $(v, 1)$ exists if and only if $v \equiv 0,1 \bmod 3$ and $v \equiv 1 \bmod k$, except when $k=1$ and $v \equiv 0 \bmod 6$ or $v=10$.

If there exists a k-rotational $\operatorname{DTS}(v, \lambda)$ or a k-rotational $\operatorname{MTS}(v, \lambda)$, then there exists a k-rotational $\operatorname{TS}(v, 2 \lambda)$ without directions in the design, but it should be remarked that the converse is not necessarily true. This means that the condition for the existence of a k-rotational $\operatorname{TS}(v, 2 \lambda)$ can be regarded as the necessary condition both for the existence of a k-rotational $\operatorname{DTS}(v, \lambda)$ and for the existence of a k rotational $\operatorname{MTS}(v, \lambda)$. On the other hand, if α is a 1 -rotational automorphism of a $\operatorname{DTS}(v, \lambda)$ or a $\operatorname{MTS}(v, \lambda)$, then α^{k} is also an automorphism of the design for any integer k. Since α^{k} is a k-rotational permutation provided $v \equiv 1 \bmod k$, we should note that any 1 -rotational $\operatorname{DTS}(v, \lambda)$ or any 1 -rotational $\operatorname{MTS}(v, \lambda)$ is also k-rotational if $v \equiv 1 \bmod k$.

2. A k-rotational $\operatorname{DTS}(v, \lambda)$

First of all, we will show the following recursive construction, which will be useful for our further discussion.

Lemma 2.1 If there exist a k-rotational $\operatorname{DTS}\left(v, \lambda_{1}\right)$ and a k-rotational $\operatorname{DTS}\left(v, \lambda_{2}\right)$, then there exists a k_{1}-rotational $\operatorname{DTS}\left(v, n \lambda_{1}+m \lambda_{2}\right)$ for any positive integers n and m.

It is easy to see that $|\mathcal{B}|=\lambda v(v-1) / 3$ for a $\operatorname{DTS}(v, \lambda)(V, \mathcal{B})$. Since any $\operatorname{DTS}(v, \lambda)$ has no short block orbit, if a $\operatorname{DTS}(v, \lambda)$ is k-rotational, then $\lambda v(v-1) / 3$ is divisible by $(v-1) / k$. Thus the basic necessary condition for the existence of a k-rotational $\operatorname{DTS}(v, \lambda)$ is that

$$
\begin{equation*}
k v \lambda \equiv 0 \bmod 3 \quad \text { and } \quad v \equiv 1 \bmod k . \tag{2.1}
\end{equation*}
$$

Now, let us consider the existence of a 1-rotational DTS (v, λ). Remember that the underlying triple system of a 1 -rotational $\mathrm{DTS}(v, \lambda)$ is a 1 -rotational $\mathrm{TS}(v, 2 \lambda)$. Noting this fact and Lemma 2.1, it suffices to take the cases when $\lambda=1,2$ and 3 . However, we already know from (i) of Theorem 1.2 that there exists a 1 -rotational $\operatorname{DTS}(v, 1)$ if and only if $v \equiv 0 \bmod 3$. Thus we have only to consider two cases when $\lambda=2$ and 3 .

Lemma 2.2 There exists a 1-rotational $\operatorname{DTS}(v, 2)$ if and only if $v \equiv 0 \bmod 3$.

Proof. Since any $\operatorname{DTS}(v, \lambda)$ has no short block orbit, a 1-rotational $\operatorname{DTS}(v, \lambda)$ is generated by $\lambda v / 3$ base blocks for full block orbits. So it is evident that v is divisible by 3 when $\lambda=2$. Thus the necessity of the assertion follows from (iii) of Theorem 1.1. The sufficiency follows from the existence of a 1 -rotational $\operatorname{DTS}(v, 1)$ for any $v \equiv 0 \bmod 3$, shown by (i) of Theorem 1.2.
Lemma 2.3 A 1-rotational $\operatorname{DTS}(v, 3)$ exists for any $v \geq 3$.
To prove Lemma 2.3, we need the following result by Cho, Han and Kang [4].
Theorem 2.4 ([4]) A cyclic $\operatorname{DTS}(v, \lambda)$ exists if and only if
(i) $\lambda \equiv 1,5 \bmod 6$ and $v \equiv 1,4,7 \bmod 12$,
(ii) $\lambda \equiv 2,4 \bmod 6$ and $v \equiv 1 \bmod 3$,
(iii) $\lambda \equiv 3 \bmod 6$ and $v \equiv 0,1,3 \bmod 4$, or
(iv) $\lambda \equiv 0 \bmod 6$ and $v \geq 3$.

Proof of Lemma 2.3. We can find in [11] a 1 -rotational $\operatorname{TS}(v, 3)$ for any $v \equiv$ 1 mod 2 constructed by $(v-1) / 2$ full block orbits one of which is generated from a base block including ∞, say, $\{\infty, 0, x\}(x \neq(v-1) / 2)$ and a short block orbit generated from $\{\infty, 0,(v-1) / 2\}$. Replace each base block $\{a, b, c\}$ of a 1 -rotational $\operatorname{TS}(v, 3)$ with two base blocks $\langle a, b, c\rangle$ and $\langle c, b, a\rangle$ for $a, b, c \neq \infty$, the base blcok $\{\infty, 0, x\}$ with two base blocks $\langle 0, \infty, x\rangle$ and $\langle x, \infty, 0\rangle$, and the base block $\{\infty, 0$, $(v-1) / 2\}$ for a short block orbit with a base block $\langle 0, \infty,(v-1) / 2\rangle$, respectively. Then the v base blocks obtained above generate a 1 -rotational $\operatorname{DTS}(v, 3)$.

Now it remains for us to consider the case when $v \equiv 0 \bmod 2$. A cyclic DTS $(v-1$, 3) can be modified to obtain a 1 -rotational $\operatorname{DTS}(v, 3)$. Note that a $\operatorname{cyclic} \operatorname{DTS}(v-1,3)$ consists of $v-2$ full block orbits. Without loss of generality, let $\langle 0, a, b\rangle$ be a base block of a full block orbit chosen arbitrarily from a cyclic DTS $(v-1,3)$. Next, replace the base block $\langle 0, a, b\rangle$ with three base blocks $\langle 0, \infty, a\rangle,\langle 0, \infty, b\rangle$ and $\langle 0, \infty, b-a\rangle$. Then these three base blocks and the rest $v-3$ base blocks of a cyclic DTS $(v-1,3)$ generate a 1 -rotational $\operatorname{DTS}(v, 3)$. Thus (iii) of Theorem 2.4 implies the existence of a 1 -rotational $\operatorname{DTS}(v, 3)$ for $v \equiv 0,2,3 \bmod 4$, which covers $v \equiv 0 \bmod 2$. The lemma is proved.

With Lemma 2.1, the case (i) of Theorem 1.2, and Lemmas 2.2 and 2.3 can show the following theorem.
Theorem 2.5 A 1-rotational $\operatorname{DTS}(v, \lambda)$ exists if and only if
(i) $\lambda \equiv 1,2 \bmod 3$ and $v \equiv 0 \bmod 3$, or
(ii) $\lambda \equiv 0 \bmod 3$ and $v \geq 3$.

By remembering the fact that any 1 -rotational $\operatorname{DTS}(v, \lambda)$ is k-rotational if $v \equiv$ 1 mod k, we can establish one of the main theorems of the present paper.
Theorem 2.6 A-rotational $\operatorname{DTS}(v, \lambda)$ exists if and only if
(i) $\lambda \equiv 1,2 \bmod 3, k \equiv 1,2 \bmod 3, v \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$,
(ii) $\lambda \equiv 1,2 \bmod 3, k \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$, or
(iii) $\lambda \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$.

Proof. When $\lambda \equiv 1,2 \bmod 3$ and $k \equiv 1,2 \bmod 3$, the basic necessary condition (2.1) for the existence of a k-rotational $\operatorname{DTS}(v, \lambda)$ is that $v \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$. From (i) of Theorem 1.2 and the fact that a 1 -rotational DTS $(v, 1)$ has a k-rotational automorphism if $v \equiv 1 \bmod k$, the sufficiency of (i) of Theorem 2.6 follows.

If $\lambda \equiv 1,2 \bmod 3$ and $k \equiv 0 \bmod 3$, then (2.1) reduces to $v \equiv 1 \bmod k$. Since (ii) of Theorem 1.2 describes the existence of a k-rotational $\operatorname{DTS}(v, 1)$ with the same condition, the sufficiency is also satisfied.

For the case when $\lambda \equiv 0 \bmod 3$, (2.1) is simplified as $v \equiv 1 \bmod k$ again. Since (ii) of Theorem 2.5 ensures the sufficiency of the last case, which completes the proof.

3. A k-rotational $\operatorname{MTS}(v, \lambda)$

In a manner similar to Section 2, we will provide a necessary and sufficient condition for the existence of a k-rotational $\operatorname{MTS}(v, \lambda)$.

Lemma 3.1 If there exist a k-rotational $\operatorname{MTS}\left(v, \lambda_{1}\right)$ and a k-rotational $\operatorname{MTS}\left(v, \lambda_{2}\right)$, then there exists a k-rotational $\operatorname{MTS}\left(v, n \lambda_{1}+m \lambda_{2}\right)$ for any positive integers n and m.

Firstly, the existence of a 1 -rotational $\operatorname{MTS}(v, \lambda)$ will be considered. The following can be obtained easily from Theorem 1.3, but originally it was proved by Cho [1].

Lemma 3.2 ([1]) A 1-rotational $\operatorname{MTS}(v, 1)$ exists if and only if $v \equiv 1,3,4 \bmod 6$ and $v \neq 10$.

A 1-rotational $\operatorname{MTS}(v, \lambda)$ can be obtained from a 1 -rotational $\operatorname{TS}(v, \lambda)$ by replacing every block $\{a, b, c\}$ with two blocks $[a, b, c]$ and $[a, c, b]$. On the other hand, the underlying triple system of a 1 -rotational $\operatorname{MTS}(v, \lambda)$ is a 1 -rotational $\operatorname{TS}(v, 2 \lambda)$. Hence the condition (ii) of Theorem 1.1 implies the following.

Lemma 3.3 There exists a 1 -rotational $\operatorname{MTS}(v, 2)$ if and only if $v \equiv 0,1 \bmod 3$.
Next, the existence of a 1 -rotational $\operatorname{MTS}(v, 3)$ will be examined. For that purpose, the following theorem is needed.

Theorem 3.4 (Shen [14]) A cyclic $\operatorname{MTS}(v, \lambda)$ exists if and only if
(i) $\lambda \equiv 1,5 \bmod 6$ and $v \equiv 1,3 \bmod 6$,
(ii) $\lambda \equiv 2,4 \bmod 6$ and $v \equiv 0,1 \bmod 3$,
(iii) $\lambda \equiv 3 \bmod 6$ and $v \equiv 1 \bmod 2$, or
(iv) $\lambda \equiv 0 \bmod 6$ and $v \geq 3$
with only three exceptions: $(v, \lambda)=(9,1),(6,2)$ and $(9,2)$.
Lemma 3.5 A 1-rotational $\operatorname{MTS}(v, 3)$ exists for any $v \geq 3$.

Proof. It is easy to see that (iv) of Theorem 1.1 ensures the existence of a 1 rotational $\operatorname{MTS}(v, 3)$ whenever $v \equiv 1 \bmod 2$. To complete the proof, we still need to take into account the case when $v \equiv 0 \bmod 2$. Choose a base block for a full block orbit of a cyclic $\operatorname{MTS}(v-1,3)$ arbitrarily, say, $[0, a, b]$. Replace the block $[0, a, b]$ with three base blocks $[\infty, 0, a],[\infty, 0, b-a]$ and $[\infty, b, 0]$. Note that any of them cannot be for a short block orbit since $(v-1) / 2$ is not an integer. Then it is readily checked that these three base blocks and the rest of base blocks of a $\operatorname{cyclic} \operatorname{MTS}(v-1,3)$ generate a 1 -rotational MTS $(v, 3)$. Thus (iii) of Theorem 3.4 shows the existence of a 1 -rotational $\operatorname{MTS}(v, 3)$ for $v \equiv 0 \bmod 2$, which completes the proof.

Applying Lemma 3.1 to Lemmas 3.2, 3.3 and 3.5, a necessary and sufficient condition for the existence of a 1 -rotational $\operatorname{MTS}(v, \lambda)$ is obtained.

Theorem 3.6 A 1-rotational $\operatorname{MTS}(v, \lambda)$ exists if and only if
(i) $\lambda=1, v \equiv 1,3,4 \bmod 6$ and $v \neq 10$,
(ii) $\lambda \neq 1, \lambda \equiv 1,2 \bmod 3$ and $v \equiv 0,1 \bmod 3$, or
(iii) $\lambda \equiv 0 \bmod 3$ and $v \geq 3$.

Since any 1 -rotational $\operatorname{MTS}(v, \lambda)$ is also k-rotational if $v \equiv 1 \bmod k$, we can state the sufficiency for the existence of a k-rotational $\operatorname{MTS}(v, \lambda)$.

Lemma 3.7 $A k$-rotational $\operatorname{MTS}(v, \lambda)$ exists whenever
(i) $\lambda=1, v \equiv 1,3,4 \bmod 6, v \equiv 1 \bmod k$ and $v \neq 10$,
(ii) $\lambda \neq 1, \lambda \equiv 1,2 \bmod 3, v \equiv 0,1 \bmod 3$ and $v \equiv 1 \bmod k$, or
(iii) $\lambda \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$.

The necessity of (i) of Lemma 3.7 is shown in Theorem 1.3. Since $v \equiv 1 \bmod k$ should hold for a $\operatorname{MTS}(v, \lambda)$ to have a k-rotational automorphism, (iii) of Lemma 3.7 is also necessary. Hence the only case we need to concern is that $\lambda \neq 1, \lambda \equiv 1,2 \mathrm{mod}$ $3, v \equiv 2 \bmod 3$ and $v \equiv 1 \bmod k$. However, if $\lambda \equiv 1,2 \bmod 3$ and $v \equiv 2 \bmod 3$, $\lambda v(v-1) / 3$ is not an integer, which contradicts the existence of a $\operatorname{MTS}(v, \lambda)$. Thus there is no $\operatorname{MTS}(v, \lambda)$ when $v \equiv 2 \bmod 3$ and $\lambda \not \equiv 0 \bmod 3$. Therefore the necessity of (ii) of Lemma 3.7 follows. Finally the other main theorem can be established.

Theorem 3.8 A k-rotational $\operatorname{MTS}(v, \lambda)$ exists if and only if
(i) $\lambda=1, v \equiv 1,3,4 \bmod 6, v \equiv 1 \bmod k$ and $v \neq 10$,
(ii) $\lambda \neq 1, \lambda \equiv 1,2 \bmod 3, v \equiv 0,1 \bmod 3$ and $v \equiv 1 \bmod k$, or
(iii) $\lambda \equiv 0 \bmod 3$ and $v \equiv 1 \bmod k$.

Acknowledgements

The author would like to thank Professor S. Kageyama and Professor M. Jimbo for their helpful suggestions. The research was supported by the Inamori Fundation.

References

[1] C. J. Cho, Rotational Mendelsohn triple systems, Kyungpook Math. J. 26 (1986), 5-9.
[2] C. J. Cho, Rotational triple systems, Ars Combin. 13 (1982), 203-209.
[3] C. J. Cho, Y. Chae and S. G. Hwang, Rotational directed triple systems, J. Korean Math. Soc. 24 (1987), 133-142.
[4] C. J. Cho, Y.-H. Han and S.-H. Kang, Cyclic directed triple systems, J. Korean Math. Soc. 23 (1986), 117-125.
[5] M. J. Colbourn and C. J. Colbourn, Cyclic block designs with block size 3, Europ. J. Combin. 2 (1981), 21-26.
[6] C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996.
[7] J. H. Dinitz and D. R. Stinson, Contemporary Design Theory: A collection of surveys, John Wiley \& Sons, New York, 1992.
[8] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386.
[9] S. H. Y. Hung and N. S. Mendelsohn, Directed triple systems, J. Combin. Theory A 14 (1973), 310-318.
[10] Z. Jiang and C. J. Colbourn, Completeing the spectrum of rotational Mendelsohn triple systems, Discrete Math. 183 (1998), 153-160.
[11] S. Kuriki and M. Jimbo, On 1-rotational $S_{\lambda}(2,3, v)$ designs, Discrete Math. 46 (1983), 33-40.
[12] N. S. Mendelsohn, A natural generalization of Steiner triple systems, in: A. Atkin and B. Birch eds., Computers in Number Theory, Academic Press, London, 1971, 323-338.
[13] K. T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57-66.
[14] H. Shen, Existence of cyclic Mendelsohn triple systems, to appear in J. Comb., Information \& System Sciences.

