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Abstract 

Necessary and sufficient conditions for the existence of k-rotational di
rected triple systems and k-rotational Mendelsohn triple systems are de
rived. 

1. Introduction 

Let V be a set of v points and 8 be a collection of 3-subsets (called blocks or 
triples) of V. A pair (V,8) is called a triple system, denoted by TS(v,>.), if every 
pair of distinct points of V is contained in precisely ). blocks of 8. Furthermore, 
when). = 1, it is called a Steiner triple system (STS) and when>. = 2, it is called a 
twofold triple system (TTS). There is a vast amount of literature on such generalized 
triple systems. As is well-known, directed triple systems [9] and Mendelsohn triple 
systems [12] are also' included in such generalizations. 

A directed triple system DTS( v, A) is a pair (V,8) such that B is a collection 
of edge-disjoint transitive tournaments of order 3 with vertices from V, having the 
property that every ordered pair of elements of V appears in precisely>. transitive 
tournaments. To distinguish a block (triple) of a DTS( v, ).) from a block {a, b, c} 
of an ordinal triple system, we denote it by (a, b, c). In this case, the set of its 
ordered pairs is {(a, b), (a, c), (b, e)}, which is represented also as a difference triple 
(b- a,c- b,c- a). 

A Mendelsohn triple system MTS ( v, ).) differs only in that the above B contains 
directed cycles of length 3. A triple of MTS( v, ).) is represented by [a, b, e] and the 
set of its ordered pairs is given as {(a, b), (b, c), (c, a)}, which is represented also as a 
difference triple (b - a, c - b, a - c). It is easy to see that [a, b, c] = [b, c, a] = [c, a, b]. 

If one omits the directions in a DTS(v,).) or a MTS(v, ).), then a TS(v, 2).) can 
be obtained. Many researchers have investigated the existence problem of these 
triple systems. Hanani [8] determined the necessary and sufficient condition for the 
existence of TS( v, >.) for every).. Similarly the necessary and sufficient condition was 
shown for DTS(v, 1) by Hung and Mendelsohn [9] and for MTS(v, 1) by Mendelsohn 
[12]. See, for the relevant results, [6] and [7]. 
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Let G be an automorphism group of a generalized system (1/, B), that 
a group of permutations on the set 1/ of v points the collection of blocks 
B invariant. If there is an automorphism of order v, then the design is said to, be 
cycb:c. For a cyclic triple system (1/, B), the set 1/ of v points can be identified with 
Zv, i.e. the residue group of integers modulo v. In this case, the design has an 
automorphism 0" : i I----t i + 1 mod v which is also represented by 0" = (0,1, ... ,v - 1). 
Let B be a block of a cyclic triple system (1/, B). A block orbit of B is defined by 
{B + y : y E Zv}. The length of a block orbit is its cardinality. A block orbit of 
length v is said to be full, otherwise short. A base block of a block orbit 0 is a block 
B E 0 which is chosen arbitrarily. For any cyclic triple system, the length of a short 
block orbit is v /3 if it exists. 

If there is an automorphism consisting of a single fixed point and precisely k cycles 
of length (v - 1) / k, then the design is said to be k-rotational. The automorphism 
can be represented by 

on the point-set 1/ = {oo} U (Zn x {I, 2, ... ,k}), where n (v -I)/k and Xi denotes 
the element (x, i) E Zn x {i}. A block orbit of a k-rotational triple system is defined 
similarly to that of a cyclic triple system, but under the automorphism IT. In this 
case, the length of a full block orbit is (v - 1) / k and the length of a short block orbit 
is (v 1)/(3k) or (v - 1)/(2k) if it exists. Any cyclic or k-robitional triple system 
should be generated from base blocks. Note that a directed triple system has no 
short block orbit due to the order structure on its blocks. 

The condition for the existence of a cyclic TS (v, A) was determined by Col bourn 
and Colbourn [5], and that of a cyclic DTS( v, A) was given by Cho, Han and Kang 
[4]. Quite recently, the spectrum of a cyclic MTS(v, A) has been settled by Shen [14]. 
For the existence of a I-rotational TS(v, A), Kuriki and Jimbo [11], and eho [2] gave 
the same result independently. 

Theorem 1.1 ([2], [11]) A I-rotational TS(v, A) exists if and only if 

(i) A 1 and v == 3,9 mod 24} 
(ii) A 1,5 mod 5} Ai-I and v == 1,3 mod 6} 
(iii) A 2, 4 mod 5 and v == 0, 1 mod 3} 
(iv) A 3 mod 6 and v == 1 mod 2} or 
(v) A a mod 6 and v :::::: 3. 

Remark. The terminology of 'k-rotational' was defined by Phelps and Rosa [13] 
who showed (i) of Theorem 1.1. 

Our aim is to determine completely necessary and sufficient conditions for the 
existence of a k-rotational DTS( v, A) and a k-rotational MTS( v, A) for all A. 

In fact, only when A = 1, we can find the necessary and sufficient conditions for 
the existence of a k-rotational directed triple system and a k-rotational Mendelsohn 
triple system in [3] and [10], respectively. 

182 



Theorem 1.2 (Cho, Chae and Hwang [3]) A k-rotational DTS(v,l) exists if 
and only if 

(i) k == 1, 2 mod 3} v == 0 mod 3 and v == 1 mod k} or 
(ii) k == 0 mod 3 and v == 1 mod k. 

Theorem 1.3 (Jiang and Colbourn [10]) A k-rotational MTS(v, 1) exists if and 
only if v == 0, 1 mod 3 and v == 1 mod k} except when k = 1 and v == 0 mod 6 or 
v = 10. 

If there exists a k-rotational DTS( v, A) or a k-rotational MTS( v, A), then there 
exists a k-rotational TS(v,2A) without directions in the design, but it should be 
remarked that the converse is not necessarily true. This means that the condition for 
the existence of a k-rotational TS( v, 2A) can be regarded as the necessary condition 
both for the existence of a k-rotational DTS (v, A) and for the existence of a k
rotational MTS(v, A). On the other hand, if a is a 1-rotational automorphism of 
a DTS(v, A) or a MTS(v, A), then a k is also an automorphism of the design for 
any integer k. Since a k is a k-rotational permutation provided v == 1 mod k, we 
should note that any 1-rotational DTS(v, A) or any 1-rotational MTS(v, A) is also 
k-rotational if v == 1 mod k. 

2. A k-rotational DTS(v, oX) 

First of all, we will show the following recursive construction, which will be useful 
for our further discussion. 

Lemma 2.1 If there exist a k-rotational DTS(v, Ad and a k-rotational DTS(v, A2)} 
then there exists a k-rotational DTS( v, nAl + mA2) for any positive integers nand 
m. 

It is easy to see that 181 = AV( v-1 )/3 for a DTS( v, A) (V, 8). Since any DTS( v, A) 
has no short block orbit, if a DTS(v, A) is k-rotational, then AV(V - 1)/3 is divisible 
by (v - 1) / k. Thus the basic necessary condition for the existence of a k-rotational 
DTS(v, A) is that 

kVA == 0 mod 3 and v == 1 mod k. (2.1 ) 

Now, let us consider the existence of a 1-rotational DTS( v, A). Remember that 
the underlying triple system of a 1-rotational DTS(v, A) is a 1-rotational TS(v, 2A). 
Noting this fact and Lemma 2.1, it suffices to take the cases when A = 1,2 and 3. 
However, we already know from (i) of Theorem 1.2 that there exists a 1-rotational 
DTS(v, 1) if and only if v == 0 mod 3. Thus we have only to consider two cases when 
A = 2 and 3. 

Lemma 2.2 There exists a 1-rotational DTS( v, 2) if and only if v == 0 mod 3. 
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Proof. Since any DTS(v,'\) has no short block orbit, a I-rotational DTS(v,'\) is 
generated by '\v /3 base blocks for full block orbits. So it is evident that v is divisible 
by 3 when ,\ = 2. Thus the necessity of the assertion follows from (iii) of Them:em 
1.1. The sufficiency follows from the existence of a I-rotational 1) for any 
v == 0 mod 3, shown by (i) of Theorem 1.2. 0 

Lemma 2.3 A I-rotational DTS( v, 3) exists for any v 2: 3. 

To prove Lemma 2.3, we need the following result by eho, Han and [4]. 

Theorem 2.4 ([4]) A cyclic DTS(v,'\) exists if and only if 

(i) ,\ == 1,5 mod 6 and v == 1,4, 7 mod 12) 
(ii) ,\ == 2, 4 mod 6 and v == 1 mod 3) 
(iii) ,\ == 3 mod 6 and v == 0,1,3 mod 4) or 

(iv) ,\ == ° mod 6 and v 2: 3. 

Proof of Lemma 2.3. We can find in [ll] a I-rotational TS(v,3) for any v == 
1 mod 2 constructed by (v - 1) /2 full block orbits one of which is generated from 
a base block including (X) , say, {(X),O,x} (x -I- (v -1)/2) and a short block orbit 
generated from {oo,O,(v -1)/2}. Replace each base block {a,b,c} of a I-rotational 
TS(v,3) with two base blocks (a,b,c) and (c,b,a) for a,b,c -::J- (X) , the base bleak 
{oo, 0, x} with two base blocks (0,00, x) and (x, 00, 0), and the base block 0, 
(v -1)/2} for a short block orbit with a base block (O,oo,(v -.1)/2), respectively. 
Then the v base blocks obtained above generate a I-rotational DTS( v, 3). 

Now it remains for us to consider the case when v == ° mod 2. A DTS( v 1, 
3) can be modified to obtain a I-rotational DTS(v, 3). Note that a cyclic DTS(v-l, 3) 
consists of v - 2 full block orbits. Without loss of generality, let (0, a, b) be a base 
block of a full block orbit chosen arbitrarily from a cyclic DTS( v-I, 
the base block (0, a, b) with three base blocks (0,00, a), (0,00, b) and (0,00, b - a). 
Then these three base blocks and the rest v - 3 base blocks of a cyclic DTS( v-I, 3) 
generate a I-rotational DTS( v, 3). Thus (iii) of Theorem 2.4 implies the existence 
of a I-rotational DTS( v, 3) for v == 0,2,3 mod 4, which covers v == ° mod 2. The 
lemma is proved. 0 

With Lemma 2.1, the case (i) of Theorem 1.2, and Lemmas 2.2 and 2.3 can show 
the following theorem. 

Theorem 2.5 A I-rotational DTS ( v, ,\) exists if and only if 

(i) ,\ == 1,2 mod 3 and v == ° mod 3) or 
(ii) ,\ == ° mod 3 and v 2: 3. 

By remembering the fact that any I-rotational DTS( v,'\) is k-rotational if v == 
1 mod k, we can establish one of the main theorems of the present paper. 

Theorem 2.6 A k-rotational DTS( v, ,\) exists if and only if 

(i) ,\ == 1,2 mod 3) k == 1,2 mod 3) v == ° mod 3 and v == 1 mod k) 
(ii) ,\ == 1, 2 mod 3) k == ° mod 3 and v == 1 mod k) or 
(iii) ,\ == ° mod 3 and v == 1 mod k. 
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Proof. When A == 1,2 mod 3 and k = 1,2 mod 3, the basic necessary condition (2.1) 
for the existence of a k-rotational DTS(v, A) is that v == ° mod 3 and v == 1 mod k. 
From (i) of Theorem 1.2 and the fact that a I-rotational DTS( v, 1) has a k-rotational 
automorphism if v == 1 mod k, the sufficiency of (i) of Theorem 2.6 follows. 

If A = 1,2 mod 3 and k = ° mod 3, then (2.1) reduces to v == 1 mod k. Since 
(ii) of Theorem 1.2 describes the existence of a k-rotational DTS( v, 1) with the same 
condition, the sufficiency is also satisfied. 

For the case when A = ° mod 3, (2.1) is simplified as v = 1 mod k again. Since 
(ii) of Theorem 2.5 ensures the sufficiency of the last case, which completes the proof. 
o 

3. A k-rotational MTS(v,'x) 

In a manner similar to Section 2, we will provide a necessary and sufficient con
dition for the existence of a k-rotational MTS(v, A). 

Lemma 3.1 If there exist a k-rotational MTS(v, Ad and a k-rotational MTS(v, A2 ), 

then there exists a k-rotational MTS( v, nA 1 + mA2 ) for any positive integers nand 
m. 

Firstly, the existence of a I-rotational MTS( v, A) will be considered. The following 
can be obtained easily from Theorem 1.3, but originally it was proved by Cho [1]. 

Lemma 3.2 ([1]) A I-rotational MTS( v, 1) exists if and only if v == 1,3,4 mod 6 
and v =1= 10. 

A I-rotational MTS(v, A) can be obtained from a I-rotational TS(v, -\) by re
placing every block {a, b, c} with two blocks [a, b, c] and [a, c, b]. On the other hand, 
the underlying tripl~ system of a I-rotational MTS(v,A) is a I-rotational TS(v,2A). 
Hence the condition (ii) of Theorem 1.1 implies the following. 

Lemma 3.3 There exists a I-rotational MTS( v, 2) if and only if v == 0,1 mod 3. 

Next, the existence of a I-rotational MTS( v, 3) will be examined. For that pur
pose, the following theorem is needed. 

Theorem 3.4 (Shen [14]) A cyclic MTS( v, A) exists if and only if 

(i) A == 1,5 mod 6 and v == 1,3 mod 6, 
(ii) A = 2,4 mod 6 and v == 0,1 mod 3, 
(iii) A = 3 mod 6 and v = 1 mod 2, or 
(i v) A == ° mod 6 and v ~ 3 

with only three exceptions: (v,A) = (9,1),(6,2) and (9,2). 

Lemma 3.5 A I-rotational MTS( v, 3) exists for any v 2:: 3. 
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Proof. It is easy to see that (iv) of Theorem 1.1 ensures the existence of a 1-
rotational MTS(v, 3) whenever v == 1 mod 2. To complete the proof, we still need to 
take into account the case when v == 0 mod 2. Choose a base block for a full b~ock 
orbit of a cyclic MTS(v -1, 3) arbitrarily, say, [0, a, b]. Replace the block [0, a, b] with 
three base blocks [00,0, a], [00,0, b a} and [00, b, 0]. Note that any of them cannot 
be for a short block orbit since (v 1) /2 is not an integer. Then it is readily checked 
that these three base blocks and the rest of base blocks of a cyclic MTS (v - 1, 3) 
generate a I-rotational MTS(v,3). Thus (iii) of Theorem 3.4 shows the existence of 
a I-rotational MTS( v, 3) for v == 0 mod 2, which completes the proof. 0 

Applying Lemma 3.1 to Lemmas 3.2, 3.3 and 3.5, a necessary and sufficient 
condition for the existence of a I-rotational MTS(v, A) is obtained. 

Theorem 3.6 A I-rotational MTS(v, A) exists if and only if 

(i) A I, v == 1,3,4 mod 6 and v i-l0, 
(ii) A ::f I, A == 1,2 mod 3 and v == 0,1 mod 3, or 
(iii) A 0 mod 3 and v ::::: 3. 

Since any I-rotational MTS(v,A) is also k-rotational if v == 1 mod k, we can state 
the sufficiency for the existence of a k-rotational MTS(v, A). 

Lemma 3.7 A k-rotational MTS(v, A) exists whenever 

(i) A I, v == 1,3,4 mod 6, v == 1 mod k and v i- 10, 
(ii) A i- I, A == 1,2 mod 3, v == 0,1 mod 3 and v 1 mod k, or 
(iii) A == 0 mod 3 and v == 1 mod k. 

The necessity of (i) of Lemma 3.7 is shown in Theorem 1.3. Since v == 1 mod k 
should hold for a MTS(v, A) to have a k-rotational automorphism, (iii) of Lemma 3.7 
is also necessary. Hence the only case we need to concern is that Ai-I, A == 1,2 mod 
3, v == 2 mod 3 and v == 1 mod k. However, if A 1,2 mod 3 and v == 2 mod 3, 
AV( v-I) /3 is not an integer, which contradicts the existence of a MTS( v, A). Thus 
there is no MTS(v, A) when v == 2 mod 3 and A t 0 mod 3. Therefore the necessity 
of (ii) of Lemma 3.7 follows. Finally the other main theorem can be established. 

Theorem 3.8 A k-rotational MTS(v,A) exists if and only if 

(i) A I, v == 1,3,4 mod 6, v == 1 mod k and vi- 10, 
(ii) Ai-I, A == 1,2 mod 3, v == 0,1 mod 3 and v 1 mod k, or 
(iii) A 0 mod 3 and v == 1 mod k. 
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