The spectrum of rotational directed triple systems and rotational Mendelsohn triple systems

Miwako MISHIMA

Department of Information Science, Gifu University 1-1 Yanagido, Gifu 501-1193, JAPAN miwako@info.gifu-u.ac.jp

Abstract

Necessary and sufficient conditions for the existence of k-rotational directed triple systems and k-rotational Mendelsohn triple systems are derived.

1. Introduction

Let V be a set of v points and \mathcal{B} be a collection of 3-subsets (called *blocks* or *triples*) of V. A pair (V, \mathcal{B}) is called a *triple system*, denoted by $TS(v, \lambda)$, if every pair of distinct points of V is contained in precisely λ blocks of \mathcal{B} . Furthermore, when $\lambda = 1$, it is called a *Steiner triple system* (STS) and when $\lambda = 2$, it is called a *twofold triple system* (TTS). There is a vast amount of literature on such generalized triple systems. As is well-known, directed triple systems [9] and Mendelsohn triple systems [12] are also included in such generalizations.

A directed triple system $DTS(v, \lambda)$ is a pair (V, \mathcal{B}) such that \mathcal{B} is a collection of edge-disjoint transitive tournaments of order 3 with vertices from V, having the property that every ordered pair of elements of V appears in precisely λ transitive tournaments. To distinguish a block (triple) of a $DTS(v, \lambda)$ from a block $\{a, b, c\}$ of an ordinal triple system, we denote it by $\langle a, b, c \rangle$. In this case, the set of its ordered pairs is $\{(a, b), (a, c), (b, c)\}$, which is represented also as a difference triple (b - a, c - b, c - a).

A Mendelsohn triple system $MTS(v, \lambda)$ differs only in that the above \mathcal{B} contains directed cycles of length 3. A triple of $MTS(v, \lambda)$ is represented by [a, b, c] and the set of its ordered pairs is given as $\{(a, b), (b, c), (c, a)\}$, which is represented also as a difference triple (b - a, c - b, a - c). It is easy to see that [a, b, c] = [b, c, a] = [c, a, b].

If one omits the directions in a $DTS(v, \lambda)$ or a $MTS(v, \lambda)$, then a $TS(v, 2\lambda)$ can be obtained. Many researchers have investigated the existence problem of these triple systems. Hanani [8] determined the necessary and sufficient condition for the existence of $TS(v, \lambda)$ for every λ . Similarly the necessary and sufficient condition was shown for DTS(v, 1) by Hung and Mendelsohn [9] and for MTS(v, 1) by Mendelsohn [12]. See, for the relevant results, [6] and [7].

Australasian Journal of Combinatorics <u>20(1999)</u>, pp.181–187

Let G be an automorphism group of a generalized triple system (V, \mathcal{B}) , that is, a group of permutations on the set V of v points leaving the collection of blocks \mathcal{B} invariant. If there is an automorphism of order v, then the design is said to be cyclic. For a cyclic triple system (V, \mathcal{B}) , the set V of v points can be identified with Z_v , i.e. the residue group of integers modulo v. In this case, the design has an automorphism $\sigma: i \mapsto i + 1 \mod v$ which is also represented by $\sigma = (0, 1, \ldots, v - 1)$. Let B be a block of a cyclic triple system (V, \mathcal{B}) . A block orbit of B is defined by $\{B + y : y \in Z_v\}$. The length of a block orbit is its cardinality. A block orbit of length v is said to be full, otherwise short. A base block of a block orbit \mathcal{O} is a block $B \in \mathcal{O}$ which is chosen arbitrarily. For any cyclic triple system, the length of a short block orbit is v/3 if it exists.

If there is an automorphism consisting of a single fixed point and precisely k cycles of length (v-1)/k, then the design is said to be k-rotational. The automorphism can be represented by

$$\pi = (\infty)(0_1, 1_1, \dots, (n-1)_1) \cdots (0_k, 1_k, \dots, (n-1)_k)$$

on the point-set $V = \{\infty\} \cup (Z_n \times \{1, 2, \dots, k\})$, where n = (v-1)/k and x_i denotes the element $(x, i) \in Z_n \times \{i\}$. A block orbit of a k-rotational triple system is defined similarly to that of a cyclic triple system, but under the automorphism π . In this case, the length of a full block orbit is (v-1)/k and the length of a short block orbit is (v-1)/(3k) or (v-1)/(2k) if it exists. Any cyclic or k-rotational triple system should be generated from base blocks. Note that a directed triple system has no short block orbit due to the order structure on its blocks.

The condition for the existence of a cyclic $TS(v, \lambda)$ was determined by Colbourn and Colbourn [5], and that of a cyclic $DTS(v, \lambda)$ was given by Cho, Han and Kang [4]. Quite recently, the spectrum of a cyclic $MTS(v, \lambda)$ has been settled by Shen [14]. For the existence of a 1-rotational $TS(v, \lambda)$, Kuriki and Jimbo [11], and Cho [2] gave the same result independently.

Theorem 1.1 ([2], [11]) A 1-rotational $TS(v, \lambda)$ exists if and only if

(i) $\lambda \equiv 1$ and $v \equiv 3,9 \mod 24$, (ii) $\lambda \equiv 1,5 \mod 6$, $\lambda \neq 1$ and $v \equiv 1,3 \mod 6$, (iii) $\lambda \equiv 2,4 \mod 6$ and $v \equiv 0,1 \mod 3$, (iv) $\lambda \equiv 3 \mod 6$ and $v \equiv 1 \mod 2$, or (v) $\lambda \equiv 0 \mod 6$ and $v \geq 3$.

Remark. The terminology of 'k-rotational' was defined by Phelps and Rosa [13] who showed (i) of Theorem 1.1.

Our aim is to determine completely necessary and sufficient conditions for the existence of a k-rotational $DTS(v, \lambda)$ and a k-rotational $MTS(v, \lambda)$ for all λ .

In fact, only when $\lambda = 1$, we can find the necessary and sufficient conditions for the existence of a k-rotational directed triple system and a k-rotational Mendelsohn triple system in [3] and [10], respectively. **Theorem 1.2 (Cho, Chae and Hwang [3])** A k-rotational DTS(v,1) exists if and only if

(i) $k \equiv 1, 2 \mod 3$, $v \equiv 0 \mod 3$ and $v \equiv 1 \mod k$, or

(ii) $k \equiv 0 \mod 3$ and $v \equiv 1 \mod k$.

Theorem 1.3 (Jiang and Colbourn [10]) A k-rotational MTS(v, 1) exists if and only if $v \equiv 0, 1 \mod 3$ and $v \equiv 1 \mod k$, except when k = 1 and $v \equiv 0 \mod 6$ or v = 10.

If there exists a k-rotational $DTS(v, \lambda)$ or a k-rotational $MTS(v, \lambda)$, then there exists a k-rotational $TS(v, 2\lambda)$ without directions in the design, but it should be remarked that the converse is not necessarily true. This means that the condition for the existence of a k-rotational $TS(v, 2\lambda)$ can be regarded as the necessary condition both for the existence of a k-rotational $DTS(v, \lambda)$ and for the existence of a krotational $MTS(v, \lambda)$. On the other hand, if α is a 1-rotational automorphism of a $DTS(v, \lambda)$ or a $MTS(v, \lambda)$, then α^k is also an automorphism of the design for any integer k. Since α^k is a k-rotational permutation provided $v \equiv 1 \mod k$, we should note that any 1-rotational $DTS(v, \lambda)$ or any 1-rotational $MTS(v, \lambda)$ is also k-rotational if $v \equiv 1 \mod k$.

2. A k-rotational $DTS(v, \lambda)$

First of all, we will show the following recursive construction, which will be useful for our further discussion.

Lemma 2.1 If there exist a k-rotational $DTS(v, \lambda_1)$ and a k-rotational $DTS(v, \lambda_2)$, then there exists a k-rotational $DTS(v, n\lambda_1 + m\lambda_2)$ for any positive integers n and m.

It is easy to see that $|\mathcal{B}| = \lambda v(v-1)/3$ for a DTS (v, λ) (V, \mathcal{B}) . Since any DTS (v, λ) has no short block orbit, if a DTS (v, λ) is k-rotational, then $\lambda v(v-1)/3$ is divisible by (v-1)/k. Thus the basic necessary condition for the existence of a k-rotational DTS (v, λ) is that

$$kv\lambda \equiv 0 \mod 3$$
 and $v \equiv 1 \mod k$. (2.1)

Now, let us consider the existence of a 1-rotational $DTS(v, \lambda)$. Remember that the underlying triple system of a 1-rotational $DTS(v, \lambda)$ is a 1-rotational $TS(v, 2\lambda)$. Noting this fact and Lemma 2.1, it suffices to take the cases when $\lambda = 1, 2$ and 3. However, we already know from (i) of Theorem 1.2 that there exists a 1-rotational DTS(v, 1) if and only if $v \equiv 0 \mod 3$. Thus we have only to consider two cases when $\lambda = 2$ and 3.

Lemma 2.2 There exists a 1-rotational DTS(v, 2) if and only if $v \equiv 0 \mod 3$.

Proof. Since any $DTS(v, \lambda)$ has no short block orbit, a 1-rotational $DTS(v, \lambda)$ is generated by $\lambda v/3$ base blocks for full block orbits. So it is evident that v is divisible by 3 when $\lambda = 2$. Thus the necessity of the assertion follows from (iii) of Theorem 1.1. The sufficiency follows from the existence of a 1-rotational DTS(v, 1) for any $v \equiv 0 \mod 3$, shown by (i) of Theorem 1.2.

Lemma 2.3 A 1-rotational DTS(v,3) exists for any $v \ge 3$.

To prove Lemma 2.3, we need the following result by Cho, Han and Kang [4].

Theorem 2.4 ([4]) A cyclic $DTS(v, \lambda)$ exists if and only if

(i) $\lambda \equiv 1,5 \mod 6$ and $v \equiv 1,4,7 \mod 12$,

- (ii) $\lambda \equiv 2, 4 \mod 6$ and $v \equiv 1 \mod 3$,
- (iii) $\lambda \equiv 3 \mod 6$ and $v \equiv 0, 1, 3 \mod 4$, or
- (iv) $\lambda \equiv 0 \mod 6$ and $v \geq 3$.

Proof of Lemma 2.3. We can find in [11] a 1-rotational TS(v,3) for any $v \equiv 1 \mod 2$ constructed by (v-1)/2 full block orbits one of which is generated from a base block including ∞ , say, $\{\infty, 0, x\}$ $(x \neq (v-1)/2)$ and a short block orbit generated from $\{\infty, 0, (v-1)/2\}$. Replace each base block $\{a, b, c\}$ of a 1-rotational TS(v,3) with two base blocks $\langle a, b, c \rangle$ and $\langle c, b, a \rangle$ for $a, b, c \neq \infty$, the base block $\{\infty, 0, x\}$ with two base blocks $\langle 0, \infty, x \rangle$ and $\langle x, \infty, 0 \rangle$, and the base block $\{\infty, 0, (v-1)/2\}$ for a short block orbit with a base block $\langle 0, \infty, (v-1)/2 \rangle$, respectively. Then the v base blocks obtained above generate a 1-rotational DTS(v, 3).

Now it remains for us to consider the case when $v \equiv 0 \mod 2$. A cyclic DTS(v-1, 3) can be modified to obtain a 1-rotational DTS(v, 3). Note that a cyclic DTS(v-1, 3) consists of v-2 full block orbits. Without loss of generality, let $\langle 0, a, b \rangle$ be a base block of a full block orbit chosen arbitrarily from a cyclic DTS(v-1, 3). Next, replace the base block $\langle 0, a, b \rangle$ with three base blocks $\langle 0, \infty, a \rangle$, $\langle 0, \infty, b \rangle$ and $\langle 0, \infty, b - a \rangle$. Then these three base blocks and the rest v-3 base blocks of a cyclic DTS(v-1, 3) generate a 1-rotational DTS(v, 3). Thus (iii) of Theorem 2.4 implies the existence of a 1-rotational DTS(v, 3) for $v \equiv 0, 2, 3 \mod 4$, which covers $v \equiv 0 \mod 2$. The lemma is proved.

With Lemma 2.1, the case (i) of Theorem 1.2, and Lemmas 2.2 and 2.3 can show the following theorem.

Theorem 2.5 A 1-rotational $DTS(v, \lambda)$ exists if and only if

(i) $\lambda \equiv 1, 2 \mod 3$ and $v \equiv 0 \mod 3$, or (ii) $\lambda \equiv 0 \mod 3$ and v > 3.

By remembering the fact that any 1-rotational $DTS(v, \lambda)$ is k-rotational if $v \equiv 1 \mod k$, we can establish one of the main theorems of the present paper.

Theorem 2.6 A k-rotational $DTS(v, \lambda)$ exists if and only if

(i) $\lambda \equiv 1, 2 \mod 3$, $k \equiv 1, 2 \mod 3$, $v \equiv 0 \mod 3$ and $v \equiv 1 \mod k$, (ii) $\lambda \equiv 1, 2 \mod 3$, $k \equiv 0 \mod 3$ and $v \equiv 1 \mod k$, or (iii) $\lambda \equiv 0 \mod 3$ and $v \equiv 1 \mod k$. **Proof.** When $\lambda \equiv 1, 2 \mod 3$ and $k \equiv 1, 2 \mod 3$, the basic necessary condition (2.1) for the existence of a k-rotational $DTS(v, \lambda)$ is that $v \equiv 0 \mod 3$ and $v \equiv 1 \mod k$. From (i) of Theorem 1.2 and the fact that a 1-rotational DTS(v, 1) has a k-rotational automorphism if $v \equiv 1 \mod k$, the sufficiency of (i) of Theorem 2.6 follows.

If $\lambda \equiv 1, 2 \mod 3$ and $k \equiv 0 \mod 3$, then (2.1) reduces to $v \equiv 1 \mod k$. Since (ii) of Theorem 1.2 describes the existence of a k-rotational DTS(v, 1) with the same condition, the sufficiency is also satisfied.

For the case when $\lambda \equiv 0 \mod 3$, (2.1) is simplified as $v \equiv 1 \mod k$ again. Since (ii) of Theorem 2.5 ensures the sufficiency of the last case, which completes the proof. \Box

3. A k-rotational $MTS(v, \lambda)$

In a manner similar to Section 2, we will provide a necessary and sufficient condition for the existence of a k-rotational $MTS(v, \lambda)$.

Lemma 3.1 If there exist a k-rotational $MTS(v, \lambda_1)$ and a k-rotational $MTS(v, \lambda_2)$, then there exists a k-rotational $MTS(v, n\lambda_1 + m\lambda_2)$ for any positive integers n and m.

Firstly, the existence of a 1-rotational $MTS(v, \lambda)$ will be considered. The following can be obtained easily from Theorem 1.3, but originally it was proved by Cho [1].

Lemma 3.2 ([1]) A 1-rotational MTS(v, 1) exists if and only if $v \equiv 1, 3, 4 \mod 6$ and $v \neq 10$.

A 1-rotational $MTS(v, \lambda)$ can be obtained from a 1-rotational $TS(v, \lambda)$ by replacing every block $\{a, b, c\}$ with two blocks [a, b, c] and [a, c, b]. On the other hand, the underlying triple system of a 1-rotational $MTS(v, \lambda)$ is a 1-rotational $TS(v, 2\lambda)$. Hence the condition (ii) of Theorem 1.1 implies the following.

Lemma 3.3 There exists a 1-rotational MTS(v, 2) if and only if $v \equiv 0, 1 \mod 3$.

Next, the existence of a 1-rotational MTS(v, 3) will be examined. For that purpose, the following theorem is needed.

Theorem 3.4 (Shen [14]) A cyclic $MTS(v, \lambda)$ exists if and only if

(i) $\lambda \equiv 1,5 \mod 6$ and $v \equiv 1,3 \mod 6$, (ii) $\lambda \equiv 2,4 \mod 6$ and $v \equiv 0,1 \mod 3$,

(iii) $\lambda \equiv 3 \mod 6$ and $v \equiv 1 \mod 2$, or

(iv) $\lambda \equiv 0 \mod 6$ and $v \geq 3$

with only three exceptions: $(v, \lambda) = (9, 1), (6, 2)$ and (9, 2).

Lemma 3.5 A 1-rotational MTS(v, 3) exists for any $v \ge 3$.

Proof. It is easy to see that (iv) of Theorem 1.1 ensures the existence of a 1-rotational MTS(v, 3) whenever $v \equiv 1 \mod 2$. To complete the proof, we still need to take into account the case when $v \equiv 0 \mod 2$. Choose a base block for a full block orbit of a cyclic MTS(v-1,3) arbitrarily, say, [0, a, b]. Replace the block [0, a, b] with three base blocks $[\infty, 0, a]$, $[\infty, 0, b-a]$ and $[\infty, b, 0]$. Note that any of them cannot be for a short block orbit since (v-1)/2 is not an integer. Then it is readily checked that these three base blocks and the rest of base blocks of a cyclic MTS(v-1, 3) generate a 1-rotational MTS(v, 3). Thus (iii) of Theorem 3.4 shows the existence of a 1-rotational MTS(v, 3) for $v \equiv 0 \mod 2$, which completes the proof.

Applying Lemma 3.1 to Lemmas 3.2, 3.3 and 3.5, a necessary and sufficient condition for the existence of a 1-rotational $MTS(v, \lambda)$ is obtained.

Theorem 3.6 A 1-rotational $MTS(v, \lambda)$ exists if and only if

(i) $\lambda \equiv 1$, $v \equiv 1, 3, 4 \mod 6$ and $v \neq 10$, (ii) $\lambda \neq 1$, $\lambda \equiv 1, 2 \mod 3$ and $v \equiv 0, 1 \mod 3$, or (iii) $\lambda \equiv 0 \mod 3$ and $v \geq 3$.

Since any 1-rotational $MTS(v, \lambda)$ is also k-rotational if $v \equiv 1 \mod k$, we can state the sufficiency for the existence of a k-rotational $MTS(v, \lambda)$.

Lemma 3.7 A k-rotational $MTS(v, \lambda)$ exists whenever

(i) $\lambda \equiv 1$, $v \equiv 1, 3, 4 \mod 6$, $v \equiv 1 \mod k$ and $v \neq 10$, (ii) $\lambda \neq 1$, $\lambda \equiv 1, 2 \mod 3$, $v \equiv 0, 1 \mod 3$ and $v \equiv 1 \mod k$, or (iii) $\lambda \equiv 0 \mod 3$ and $v \equiv 1 \mod k$.

The necessity of (i) of Lemma 3.7 is shown in Theorem 1.3. Since $v \equiv 1 \mod k$ should hold for a MTS (v, λ) to have a k-rotational automorphism, (iii) of Lemma 3.7 is also necessary. Hence the only case we need to concern is that $\lambda \neq 1$, $\lambda \equiv 1, 2 \mod 3$, $v \equiv 2 \mod 3$ and $v \equiv 1 \mod k$. However, if $\lambda \equiv 1, 2 \mod 3$ and $v \equiv 2 \mod 3$, $\lambda v(v-1)/3$ is not an integer, which contradicts the existence of a MTS (v, λ) . Thus there is no MTS (v, λ) when $v \equiv 2 \mod 3$ and $\lambda \neq 0 \mod 3$. Therefore the necessity of (ii) of Lemma 3.7 follows. Finally the other main theorem can be established.

Theorem 3.8 A k-rotational $MTS(v, \lambda)$ exists if and only if

(i) $\lambda \equiv 1$, $v \equiv 1, 3, 4 \mod 6$, $v \equiv 1 \mod k$ and $v \neq 10$, (ii) $\lambda \neq 1$, $\lambda \equiv 1, 2 \mod 3$, $v \equiv 0, 1 \mod 3$ and $v \equiv 1 \mod k$, or (iii) $\lambda \equiv 0 \mod 3$ and $v \equiv 1 \mod k$.

Acknowledgements

The author would like to thank Professor S. Kageyama and Professor M. Jimbo for their helpful suggestions. The research was supported by the Inamori Fundation.

References

- C. J. Cho, Rotational Mendelsohn triple systems, Kyungpook Math. J. 26 (1986), 5-9.
- [2] C. J. Cho, Rotational triple systems, Ars Combin. 13 (1982), 203-209.
- [3] C. J. Cho, Y. Chae and S. G. Hwang, Rotational directed triple systems, J. Korean Math. Soc. 24 (1987), 133-142.
- [4] C. J. Cho, Y.-H. Han and S.-H. Kang, Cyclic directed triple systems, J. Korean Math. Soc. 23 (1986), 117-125.
- [5] M. J. Colbourn and C. J. Colbourn, Cyclic block designs with block size 3, Europ. J. Combin. 2 (1981), 21-26.
- [6] C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996.
- [7] J. H. Dinitz and D. R. Stinson, Contemporary Design Theory: A collection of surveys, John Wiley & Sons, New York, 1992.
- [8] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386.
- [9] S. H. Y. Hung and N. S. Mendelsohn, *Directed triple systems*, J. Combin. Theory A 14 (1973), 310-318.
- [10] Z. Jiang and C. J. Colbourn, Completeing the spectrum of rotational Mendelsohn triple systems, Discrete Math. 183 (1998), 153-160.
- [11] S. Kuriki and M. Jimbo, On 1-rotational $S_{\lambda}(2,3,v)$ designs, Discrete Math. 46 (1983), 33-40.
- [12] N. S. Mendelsohn, A natural generalization of Steiner triple systems, in: A. Atkin and B. Birch eds., Computers in Number Theory, Academic Press, London, 1971, 323-338.
- [13] K. T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57-66.
- [14] H. Shen, Existence of cyclic Mendelsohn triple systems, to appear in J. Comb., Information & System Sciences.

(Received 1/12/98)

