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ABSTRACT 

Let G be connected simple graph with vertex set V(G) and edge set E(G). The 

diameter d(G), of G is defined as the maximum distance in G. 0 is said to be vertex 

diameter critical graph if d(G - v) > d(G) for every v E V(G). Let 9(n, r, D) denote the 

class of r-regular, vertex critical graphs of diameter D on n vertices. Plesnik [16] 

conjectured that 9(n, r, D) * cP for every D ;::: 2 and r ;::: 2. In this paper we establish this 

conjecture. We also consider the problem of determining, for given rand D, the 

minimum n for which 9(n, r, D) * cP . 

1. Introduction: 

For our purposes a graph G is connected, undirected, loopless and finite. The vertex 

set and edge set of G are respectively denoted by V(G) and E(G). The distance da(x, y) 

between two vertices x and y in G is the length of any shortest (x, y)-path in G. The 

eccentricity e(v) of a vertex v in G is the distance of the furthest vertex from v, that is 

e(v) = max { dQ(v, w) : WE V(G) }. 

The diameter d(G) of G is defined as the maximum eccentricity in G, that is 

d(G) = max {e(v): v E V(G) } = max { dQ(x, y): x, y E V(O) }. 

G is said to be vertex diameter critical graph or simply critical if d(G - v) > d(G) for 

every vertex v E V(G). Let 9(n, r, D) denote the class of r-regular, vertex critical graphs 

Australasian Journal of Combinatorics 20(1999). pp.145-161 



of diameter D on n vertices. Observe that C5, the cycle of length 5 and the Petersen graph 

are critical graphs of diameter 2. Critical graphs have been extensively studied (see [2, 8-16]). 

Plesnik [16] made the following conjecture: 

Conjecture 1: For any integers D;:::: 2 and r ;:::: 2 there exists anr-regular critical graph 

of diameter D. 

Plesnik [16] observed that the conjecture is easily established for the cases r = 2 (the 

cycle C2D+1 on 2D+l vertices) and r = 3 (the cycle C4D on 4D vertices with the main 

diagonals). We establish the conjecture for all rand D in Section 2. 

An interesting and important class of symmetric graphs is the so called circulants 

graphs defined as follows. The circulant graph Cn(al, a2, '" ,ap), where al < a2 < ... < 

ap < t (n+ 1), has vertex set {O, 1, 2, ... , n - I} and vertex i, ° ~ i ~ n - 1, is joined to 

the vertices i ± a, , i ± a2 , i ± a3, ... , i ± ap (mod n). The sequence (aj) is called the 

jump sequence and the aj' s are called the jumps. Observe that for nr even, r ;:::: 2, the 

circulant Cn(l, 2, ... , L t rJ ), is just the well known r-regular, r-connected graph on n 

vertices. For appropriate choices of the a/ s the resulting circulant yields a critical regular 

graph of diameter D. We now describe such a graph. 

For r ;:::: 2 and D;:::: 2 we let n = (r - 1)(2D - 1) + 2. Let G(n, r, D) = Cn(l, 2D, 4D - 1, 

6D - 2, ... , L t (r - I)J (2D - 1) + 1). Observe that G(2D + 1,2, D) is just the cycle C2D+1 of 

length 2D + 1 and the graph G(4D, 3, D) is the cycle C4D of length 4D with the main 

diagonals added. Further, note that G(2D + 1,2, D) E ~(n, 2, D) and G(4D, 3, D) E 

~(n, 3, D). Figure 1.1 illustrates some other examples. That G(n, r, D) is critical of 

diameter D will be establish in Section 2. In Section 3 we will describe another construction 

based on certain building blocks. In Section 4 we will consider the important problem of 

finding critical r-regular graphs of minimum order. 
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G(14,5,2) = C!4(l ,4,7) 

G(27 ,6,3) = C27( 1 ,6, 11 ) 

Figure 1.1 

2. Main Result: 

Let G = G(n, r, D). Our objective in this section is to prove that G E ~(n, r, D). 

We achieve this through a sequence of lemmas establishing properties of G. 

Observe that C=O, 1,2, ... ,n-l,0 isahamiltoncycleinG.An edge (i,j)ofG 

with j ::f::. i ± 1 is called a chord of G. Very often we consider the two chords (i + 1, j + 1) 

and (i - 1, j - 1). For convenience we write these two chords as (i ± 1, j ± 1). Further, 

when writing paths we adopt the convention that the "+" and the "-" go together. We 

now make two simple observations and then establish a number of lemmas. We begin 

with the following two simple observations: 

Observation 2.1: If (i, j) is a chord of G, then (i ± 1, j ± 1) are two chords of G. 

Observation 2.2: If P is a shortest (a, b)-path of length t(P) containing the chord (i, j) 

and the edge (j, j ± 1), then (i, i ± 1) e: P. 

Proof: If (j,j ± 1) and (i, i ± 1) are in P. Then 

P' = P - (i ± 1, i) - (i,j) - (j,j ± 1) + (i ± l,j ± 1) 

is an (a, b)-path of length t(P) - 2, a contradiction. o 
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An important property of G is given in the following lemma. 

Lemma 2.1: Let (i, j) and (j, k) be two distinct chords of G. Then one of (k, i + 1) or 

(k, i - 1) is a chord of G. 

Proof: We have 

j=i ±(l+AI(2D-1)), o<AI:::;L-t(r-l)j 

and 

Hence 

k==i ±(l+AI(2D-l))±(l+A2(2D-l)) (modn). 

Observe that since i =t. k, Al + 1.2 < r - 1. 

We now consider two cases. 

Case 1: k == i ± (2 + (AI + A2)(2D - 1)) (mod n). 

If A = Al + 1.2 ~ L -t (r -1)j, then k = i ± (2 + A (2D - 1)) and hence (k, i - 1) 

or (k, i + 1) is a chord of G. So we may suppose that A > L -t (r -1)J. If k = i + 2 + A 

(2D - 1), then we can write 

k=-n+k 

= i + 1 - (1 + (r - 1 - A) (2D - 1) 

=i + 1-(1 +A'(2D-1), 0<1.' <L-t(r-1)j, 

and hence (k, i + 1) is a chord of G. If, on the other hand, k = i - 2 - A (2D - 1), then 

we can write 

k= n+k 

= i-I + (1 + (r - 1 - A)(2D - 1) 

= i-I + (1 + A' (2D - 1), 0 < A' < L ~ (r -1)j, 

and hence (k, i-I) is a chord of G. 

Case 2: k == i ± « Al - A2)(2D - 1)) (mod n). 

We have k = i ± A (2D - 1), 0 < A ~ L -t (r -1)J. If k = i + A (2D - 1), (k, i - 1) is a 

chord of G, whilst if k = i-A (2D - 1), then (k, i + 1) is a chord of G. 

This completes the proof of the lemma. o 
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Lemma 2.2: Suppose P is a shortest (a, b)-path in G = G(n, r, D) containing t ~ 2 

chords. Then there exists a shortest (a, b)-path in G containing t - 1 chords. 

Proof: If P has two consecutive chords (i, j) and G, k), then, by Lemma 2.1, one of 

(k, i-I) or (k, i + 1) is a chord of G. If (k, i ± 1) is a chord, then 

PI =P-(i,j)-(j,k)+ (i,i± l)+(i± l,k) 

is a shortest (a, b)-path with t - 1 chords. If, on the other hand, P does not have two 

consecutive chords, let (i, j) be the first chord of P encountered in moving from a to b. 

Then one of G, j ± 1) E P. If i = a, then (a ± I, j ± 1 ) E E(G) and 

p' = P - (a, j) - (j, j ± 1) + (a, a ± 1) + (a ± 1, j ± 1) 

is also shortest (a, b)-path in G. Consequently we can assume without loss of generality 

that i :;t:: a. Then one of (j, j ± 1) E P. If G, j + l)E P, then, by Observation 2.2, (i, i + 1) '" P. 

Hence (i, i-I) E P and, by Observation 2.1 , (i + 1, j + 1) E G. Therefore, 

P' = P - (i, j) - (j, j + 1) + (i, i + 1) + 0 + 1, j + 1) 

is a shortest (a, b)-path in G. Similarly if G, j - 1) E P, then, by Observation 2.2, (i, i - 1) '" P. 

Hence (i, i + 1) E P and, by Observation 2.1, (i + 1, j + 1) E G. Therefore, 

P" = P - (i, j) - (j, j - 1) + 0, i - 1) + (i - 1, j - 1) 

is a shortest Ca, b)-path in G. Thus we can replace P by P' or pH and repeat the same 

argument until we will get a shortest (a, b)-path in G with two consecutive chords. 

This completes the proof of the lemma. 

As a corollary we have: 

o 

Corollary 2.1: Let P be the set of shortest Ca, b)-paths in G = G(n, r, D) having chords. 

If P :;t:: <1>, then there exists a PE P having exactly one chord which is incident to b. 

Lemma 2.3: Let G = G(n, r, D) and let C = 0, 1, 2, ... , n - 1,0 be a hamilton cycle in 

G. If P is a shortest (0, D)-path, then P has no chords of G. 

Proof: Since 0, 1, 2, ... , D - 1, D is a (0, D)-path of length D, then t(P) ::; D. In view 

of Corollary 2.1 if P has chords, then we can assume that it has exactly one chord 

which is incident to D. But the only vertices along the segment S = - D , - D + 1, ... , n - 1, 

0, 1, ... , D - 1, D of C that are joined to Dare - D and D - 1, implying that e(p) > D, a 

contradiction. Hence P has no chords of G. 0 
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As a corollary we have: 

Corollary 2.2: The shortest (0, D)-path in G is the segment 0, 1,2, ... , D - 1, D of length D. 

We are now ready to prove our main result. 

Theorem 2.1: For r ~ 2 and D ~ 2 the graph G(n, r, D) E 1(n, r, D). 

Proof: Let G = G(n, r, D). Since G is circulant graph, it contains the hamilton cycle 

C = 0, 1, 2, ... , n -1, 0. Further it is vertex symmetric and transitive. Thus to show that G 

is an r-regular vertex critical graph of diameter D it suffices to consider one vertex, say 

vertex 0. Observe that 

NG(O) = {± 1,±(l + (2D-l»,±(1 +2(2D-l),±(1 +3(2D-l», ... ,±(1 +L~(r-l)J(2D-l»} 

and thus dGCO) = r, as required. 

For every vertex i there exists a A ~ ° such that 1 + (A - 1 )(2D -1) ~ i ~ 1+ A (2D -1). 

Hence the vertices i and ° are contained in the cycle 0, 1 + (A - 1 )(2D - 1), 2+ (A -1) 

(2D-l), ... , 1+ A (2D -1), ° of length 2D + 1. Consequently dG (0, i) ~ D and hence G 

has diameter ~ D. 

By Corollary 2.2, deCO, D) = D. Thus G has diameter D as required. 

Finally we show that vertex ° is critical. By Corollary 2.2, the shortest (n -1, 

D-l)-pathisthesegment n-l,0,1, ... ,D-2, D-l. Hencede_o(n-l,D-l»D. 

This completes the proof of the theorem. o 

We conclude this section by establishing two further properties of the graph 

G(n, r, D). These further properties make the graph useful in the context of network 

applications. 

Lemma 2.4: For r ~ 2 and D ~ 2 the graph G(n, r, D) is r-connected. 

Proof: Let G = G(n, r, D). Since G is vertex symmetric and transitive, to show that G is 

r-connected it suffices to construct r disjoint paths joining vertex ° and any other vertex 

j E V( G). Observe that C = 0,1,2, ... , n -1, ° is a hamilton cycle in G and 

NG(O) = {± 1,±(l +(2D-l),±(l +2(2D-l),±(1 +3(2D-l», ... ,±(1 +L~(r-l)J(2D-l»} 

= {n I, n2, n3, ... , nr}, with n I = 1 < n2 < n3 < ... < nr = (r -l)(2D -1) + 1. 

Also, note that if je' [ nj , ni+I-I] then it is adjacent to only one vertex along the segment 
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We construct the r disjoint paths as follows: Start with an edge Onj ,1 ~ i ~ r, 

and proceed as follows: if nj < j we move forward along C till the first vertex joining j; 

if nj = j we stop; if nj > j we move backward along C till the first vertex joining j. By 

repeating the previous procedure we get r disjoint paths joining the vertices ° and j. 

Hence the result. D 

Lemma 2.5: For r;:: 3 and D;:: 2, let the graph G = G(n, r, D). Then d(G - v) = D + 1 

for every v E V( G). 

Proof: Since G is critical and vertex symmetric and transitive, it suffices to show that 

there are two disjoint paths of length ~ D + 1 joining vertex ° and any other vertex 1 E 

V( G). We now consider a number of cases according to the value of r. 

Case 1: r = 3. 

We have the two cycles 0,1,2, .,. , 2D, ° and 0, 2D, 2D + 1, '" ,4D - 1, ° of 

length 2D + 1. If i = 2D, then we have the two (0, 2D)-paths 0, 2D and 0, I, 2D + 1, 

2D of length ~ D + 1. If, on the other hand, i 7: 2D, then i is contained in one of these 

cycles and is adjacent to one vertex only of the other. Consequently, there exist two 

disjoint (0, i)-paths length ~ D + 1. 

Case 2: r = 4. 

We have the two cycles 0,1,2, ... ,2D, ° and 0, 4D - 1, 4D, ... ,6D - 2, ° of 

length 2D + 1. If 1 :s; i :s; 2D or 4D - 1 ~ i ~ 6D - 2, then i is contained in one of these 

cycles and adjacent to one vertex only of the other. If, on the other hand, 2D < i < 4D -1, 

then i is adjacent to one vertex only of each of the two cycles. In either case there exist 

two disjoint (0, i)-paths length ~ D + 1. 

Case 3: r;:: 4. 

For every vertex i there exists a A ;:: ° such that 1+ (A - 1 )(2D -1) ~ i ~ 1+ A (2D -1). 

Hence the vertex i is contained in the cycle 0, 1+ (A - 1)(20 -1), 2+ (A - 1)(20 -1), ... , 

1 + A (2D -1), ° of length 2D + 1. Furthennore, i is adjacent to one vertex only of the cycle 

O,1+(A+1)(2D-l), 2+(A+l)(2D-l), ... ,1+(A+2)(2D-l),00flength 2D+ 1. Therefore, 

there exist two disjoint (0, i)-paths length ~ D + 1. 

This completes the proof of the lemma. 
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3. Another Construction: 

We have observed that Cs and the Petersen graphs are critical graphs of diameter 

2. The Petersen graph can be obtained by adding an appropriate matching between two 

Cs's (see Figure 3.1). In this section we describe a construction, based on building 

blocks, that generates a member of ~(n, r, D) for r ~ 3. We begin with D = 2 where our 

building block is the 5-cycle Cs. 

V4j 

Figure 3.1 

For r = 2 or 3, we have already described members of ~(n, r, 2). For r ~ 4, we 

construct a graph G(n, r, 2) E ~(n, r, 2) as follows. Let G(n, r, 2) = G(V, E) have r - 1 

copies BI , B2, ••• , Br - I of the 5-cycle Bj = VOj vlj v2j V3j v4j VOj and we define E(G) as 

follows: 

E(G) = U E(B j ) U { v OJ V Ok' V Ij V 2k' V 2j V 4k' V 3j V Ik' V 4j V 3k } • 

J:5:j:5: r-J l:5:j < k :5: r-J 

We consider Bj to be in level j. Figure 3.2 displays G(5(r - 1), r, 2). 

Lemma 3.1: G(5(r - 1), r, 2)E ~(n, r, 2). 

Proof: Observe that G is r-regular since each vertex Vij ,0 :::; i :::; 4, 1 :::; j :::; r - 1 has 

two neighbours in Bj and one neighbour in Bk, 1 :::; k :::; r - 1, k ;j:. j. Observe also that 

every vertex Vij in Bj is adjacent to only one vertex Vt k in Bk and the subgraph induced by 

the vertices in any two levels is the Petersen graph P. Therefore ddvij,vt k) :::; 2, d (G) = 2 

and dG- V ij(Vi-l,j,Vi+l,j)=3, for every Vij, where the subscripts are read modulo 5. 

Hence G(5(r - 1), r, 2)E ~(n, r, 2), as required. o 
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Figure 3.2: 0(5(r - 1), r, 2) 

Now for D ~ 3, our building block (level j) is the graph Hj (VHj ,EHj)' where 

VHi ::: {aij: 1 ~ i ~ 2D - 2}U{b1j, b2dU {cij: 1 ~ i ~ 2D 2}, 

EHj::: E(Cj) U { b1j b2j , a2D-2,j Cl,j} U { aij Ci+l,j : 1 ~ i ~ 2D - 3} and 

Cj::: b 1j alj a2j ... a2D-3,j a2D-2,j b2j C2D-2,j C2D-3,j ... C2j clj b 1j 

Figure 3.3 displays Hj . 

CD-2j CD-l,j CD,j CD+1j CD+2j 

Figure 3.3: Hj 
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Lemma 3.2: Hj E ~(4D -2,3, D). 

Proof: It is clear from the definition of Hj that Hj is 3-regular and I V( Hj) I = 4D -2. 

Observe that d(a ,j, aD+I,j) = D and every pair of vertices vij ,Vlj E V( Hj) are contained in 

a cycle of length ~ 2D. Hence d (Hj ) = D. Further, observe that 

dHj - alj (b Ij, aO-Ij) = D + 1 

dHj - aij (ai-I,j, ai+O-2,j) = D + 1 for 1 < i ~ D 

dHj - aij (ai-I,j, Ci-O,j) = D +1 for D + 1 ~ i ~ 2D-2. 

Hence d(Hj - aij) > D. Similarly, d (Hj - Cij) > D. Finally for D> 3, dH - b (alj, CD+2j) = 
] I] 

d(Hj -vij) > D for every vij E V( Hj). Hence Hj E ~(4D -2,3, D), as required 0 

Now we will construct a H(n, r, D) E 9(n, r, D) for D ~ 3 and r ~ 3 which 

contains r - 2 levels, each level j has the block Hj as an induced subgraph. More 

specifically, let H(n, r, D) = H(V, E), where 

V(H) = UV(Hj) n= IV(H)I=(4D-2)(r-2) 
IS j S r-2 

E(H) UE(H) U{b 'j b 2k ' b 2j b 1k } 
ISjSr-2 ISj<kS r-2 

U{a2i-l,j a 2i-l,k,C2i-l,j C2i-l,k, a2i,j C2i,k, C2i,ja2i,k l~i~D-1}. 
ISj<k Sr-2 

Figure 3.4 displays H( 4(2D -1), 4, D). 

Lemma 3.3: H(n, r, D) E ~(n, r, D). 

Proof: Clearly, H is r-regular since each vertex in H is adjacent to three vertices in its 

level j and to one vertex in the other r - 3 levels. Observe that d(al j, aD+I,j) = D and 

every pair of vertices Vij,Vtk E V( H) are contained in a cycle of length ~ 2D. Hence d(H) 

= D. Further, observe that 

dH- a . (blj, aD-I) = D+ 1 
11 
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d ll - a . (ai-l,j, Ci-D,j) =D+l for D+l::; i::; 2D -2. 
'1 

Hence d(H - aij) > D. Similarly, d (H - cij) > D. Finally observe that d H_ b. (alj, CO+l,k) 
II 

= D+l and d H -b? (b1j, CO+l,k) = D+l. Therefore d (H - vij) > D for every Vi j E V(H). 
-.I 

. Hence H(n, r, D) E ~(n, r, D), as required. o 

a2D-4,j a2D-3,j a2D-2,j 

CD-2,k CD-I,k C D.k CD+l.k C D+2,k C2D-4,k C2D-3.k C 2D-2,k 

Figure 3.4: H(4(2D -1),4, D). 
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4. Minimum Order Critical Graphs. 

For r:2: 2 and D :2: 2, let 

fer, D) = min {n: ~(n, r, D):j:. <I>} 

Observe that f(2, 2) = 5 and f(2, D) = 2D for D :2: 3. 

Caccetta [6J posed the problem of determining fer, D). In this section we consider this 

problem. 

The circulant graphs constructed in the introduction established that fer, D) ~ 

(r -1 )(2D-J) + 2. This upper bound is far from best possible. Our consideration of 

many constructions suggests that the following is true: 

Conjecture 4.1: 

{ 

4D-2 

f(r, D) = rD+~, 
(r + l)D, 

for r = 3 and D :2: 3 

for even r > 3 

otherwise. 

We will start by establishing the conjecture for D = 2. After that we will consider 

some special cases for rand D. Then we conclude this section by presenting some 

constructions to show that this bound is achievable. 

In studying the diameter of a graph it is convenient to consider the level structure 

of the graph. More specifically, let G(n, r, D) = G(V, E) be a graph of diameter D. Then 

for a vertex VE V(G), VCG) can be partitioned into non empty subsets La(v) = {v}, L1(v), 

L2(v), ... , Lt(v), t = e(v), such that ~(v), 1 ~ i ~ t, consists of those vertices of G - v that 

are at distance i from v. 

Now for D = 2 we begin with the following lemma which establishes a lower 

bound on fer, 2). 

Lemma 4.1: For r:2: 2 

{
2 r + 1, 

fCr, 2):2: 2 r + 2, 
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Proof: Let G(V, E) E 1(n, r, 2) be a graph with vertex decomposition {v} U Ll (v) U L2(V). 

Boals et al. [2] show that if G E 1(n, r, 2) then d(G -v) = 3 for every v E V(G). Then 

there exists a pair of vertices x and y such that do-vex, y) = 3. Hence V(G)\{ v}can be 

partitioned into non empty subsets Lo(x) = {x}, Ll (x), L2(x) and L3(X). Furthermore, 

I Lo(x) 1= 1, I L 1(x) I = r - 1 and I L2(x) I + I L3(X) I ~ r. Hence I V(G -v) I ~ 2r and thus 

fer, 2) ;;::: 2r + 1. The result follows since r fer, 2) i.s even. 0 

We now describe some constructions which show that the bounds in Lemma 4.1 

are in fact sharp. We consider four cases according to the value of r (mod 4). In all cases 

the vertex set is V(Gt) = {O, 1,2, ... , n -I}, 0 ~ t ~ 3. 

(a) For r 0 (mod 4), define the graph Go as 

Go = Cn (1,4,5,8,9,12,13,16,17, ... , r - 8, r -7, r - 4, r - 3, r), n = 2r + 1. 

(b) For r 1 (mod 4), let n = 2r + 2 and define the graph G1 in which the vertex i, 

o ~ i ~ n -1, is joined to the vertices i + 1, i + 4, i + 5, i + 8, i + 9, i + 12, i + 13, 

... ,i+2r 6,i+2r-5,i+2r-2 (mod n) fori even and i+l,i+4,i+7,i+8, 

i + 11, i + 12, ... , i + 2r - 6, i + 2r - 3, i + 2r - 2 (mod n) for i odd. 

(c) For r == 2 (mod 4), define the graph G2 as 

G2 =Cn (1,4,5,8,9, 12, 13, ... ,r-6,r-5,r-2,r-1), n=2r+ 1. 

(d) For r 3 (mod '4), define the graph G3 as 

G3 =Cn (1,4,5,8,9,12, 13, ... ,r-7,r-6,r-3,r 2,r+l),n=2r+2. 

Figure 4.1 shows some examples of these constructions. 

Lemma 4.2: The graphs in (a) - (d) Gt E 1(n, r, 2), 0 ~ t ~ 3. 

Proof: For any pair of vertices i, j E V(Gt), 0 ~ t ~ 3, if (i, j)~ E(G t) then from the 

definition of Gt the vertex i is joined to one of the vertices j -lor j + 1 (mod n). If vertex i 

is joined to j -1 then we have the cycle i, j - 1, j, j + 1, j + 2, i. On the other hand, if vertex 

i is joined to j + 1 then we have the cycle i, j -2, j - 1, j, j + 1, i. Hence dOt (i, j) ~ 2 for 

any i, j E V(G t). It is easy to see from the definition that the graph Gt is r-regular and 

N{i}nN{i+2} = {i + l}for every vertex i E V(Gt). Therefore dot(i, i+2) = 2 and 

dOt-(i+l) (i, i+2) = 3. Hence the result. 
o 
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o 

9 8 
Go, r = 8 

o 

7 6 

Figure 4.1 

Lemmas 4.1 and 4.2 together yield: 

Theorem 4.1: For r ~ 2 

{
2 r+ 1, 

fer, 2) = 2 r+2, 

11 10 

G 1 , r=9 

o 

for even r 

otherwise. 

A useful property for D ~ 3 is given in the following lemma. 

9 

Lemma 4.3: Let G(n, r, D) = G(V,E) E 9(n, r, D), D ~ 3, such that for a vertex v E V 

do - v (x, y) > D and x, y E L1(v). Then I L2(v) I ~ r + 1. 
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Proof: Let Xi = Ndx) n Li(v), Yi = No(Y) n ~(v), A = L)(v) \ ({x, y}U X)UY), 

I Xi I = mh I Yi I = ni and I A I = a. Then m) + m2 = r -1, n) + n2 = r -1 and m) + n) + a = r - 2. 

Now we have m2 + n2 = 2(r -1) - (m) + n) = 2r - 2 - r + 2 + a = r + a. Thus 

I ~(v) I ~ r + a. Therefore, we need only to consider the case a = O. Observe that there is 

no edge joining a vertex of Xi to Yi.1f WE X), then Ndw) k {x, y} U (X)\{W})UX2 = S 

~nd I s I ....: 2 + fi! -1 + m2 = r, and so NoCw) = S for do(w) = r. But then x and w have 

the same closed neighbour set, a contradiction. Hence the result. o 

Theorem 4.2: f(3, 3) = 10. 

Proof: Let G(n, 3, 3) = G(V,E) E ~(n, 3, 3), Then there exist vertices v, x and y E V 

such that e(v) = 3 and do _ v (x, y) > 3. Let x E ~(v) and y E Lj(v). Clearly i + j ~ 3. 

Therefore we can assume without loss of generality that x E L)(v). Suppose that y E L)(v). 

Then by Lemma 4.2 I L2(v) I ~ 4. Hence I V I = I Lo(v) I + I L1(v) I + I L2(v) I + I L3(V) I ~ 
1 + 3 + 4 + 1 = 9. 

Now we consider the case y E Lz(v). Here V(G) \ {v} can be partitioned into non 

empty subsets Lo(x) = {x}, L)(x), L2(x), ... , Lt(x), where t> 3 and y E Lt(x) such that 

~(x), 1 ~ i ~ t, consists of those vertices of G - v that are at distance i from x. 

Furthermore, I Lo(x) I = 1, I L)(x) I = 2, I Lz(x) I ~ 1 and I Lt-l(X) I + I Lt(x) I ~ 4. Hence 

I V(G-v) I ~ 8 and thus I V I ~ 9. Now since r = 3, f(3, 3) ~ 10. The graph G(lO, 3, 3 ) = 

CIO(l, 5) depicted in Figure 4.2 shows that f(3, 3) = 10, as required. 0 

o 

8 2 

7 3 

5 
G(lO, 3, 3) = CIO(l, 5) 

Figure 4.2 
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Remark: Using a lengthy case analysis we have established that f(3,4) 14 and f(4, 3) = 13. 

Lemma 4.4: For r ~ 3, r:f::. 1 (mod 4), D ~ 3 

{ 

4D-2 

f(r,D):S; rD+;, 

(r + 1 )D, 

for r = 3 and D :2: 3 

for even r > 3 

otherwise. 

Proof: We establish our upper bounds by construction. For r = 3 and D :2: 3 the graph Hj 

depicted in Figure 3.3 has the required property. For r :2: 4 we consider three cases 

according to the value of r (mod 4). In all cases the vertex set is V(Gt) = {O, 1,2, ... , n-1 }, 

t = 0, 2, 3 and the constructed graph G t E 9'(n, r, D). 

(a) For r == 0 (mod 4), define the graph Go as 

Go = Cn (1, 2D, 2D+, 4D, 4D+ 1, ... , (~r-2)D, (~r-2)D+ 1, ~ rD), n = rD + l. 

(b) For r == 2 (mod 4), define the graph G2 as 

G2 = Cn (1, 2D, 2D+l, 4D, 4D+l, ... , (~r-1)D, (~r-l)D+]), n = rD + 1. 

(c) For r == 3 (mod 4), define the graph G3 as 

G3 = Cn (1, 2D, 2D+l, 4D, 4D+l, ... , (~(r+l)-2)D, (~(r +1)-2)D+l, ~ (r +1) D), 

n=(r+l)D 

This completes the proof of the lemma. o 

Remark: For r == I (mod 4) we believe the upper bound for fCr, D) is (r + 1) D. However, 

we have not been able to construct graphs having this bound except for some special cases 

(r=5,D=3and4). 
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