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Abstract 

In a recent paper of the authors the question of for which values of 
m the quasigroups arising from strongly two 2-perfect m-cycle systems 
are the finite members of a variety was considered. In comparison with 
existing results on similar problems, it seems likely that for m prime, 
we shall fail to get varieties only for those values of m where strongly 2-
perfect closed m-trail systems which are not strongly 2-perfect m-cycle 
systems exist and we give a necessary and sufficient condition for their 
existence. We show that if there exist strongly 2-perfect closed m-trail 
systems satisfying an additional condition, then the quasigroups arising 
from strongly 2-perfect m-cycle systems are not the finite members of 
a variety. We give reasons why the existence of such systems seems 
plausible. We also show that, the quasigroups corresponding to strongly 
2-perfect 9-cycle systems are not the finite members of a variety. 

1. INTRODUCTION 

The idea of cycle systems and their associated groupoids seems to have first 
appeared in the work of Kotzig [5] and several authors have since worked with 
this concept ([7] gives an excellent survey). Additional structure may be required 
of cycle systems. One such property is that of being i-perfect. The case where 
i = 2 is of particular interest, because then, as was shown by Keedwell [3], [4], the 
associated groupoid is a quasigroup, which he called a P-quasigroup. The question 
as to when these are the finite members of a variety has been intensively studied 
(see [6]). When the quasigroups arising from a class of cycle systems are precisely 
the finite members of a variety, the class is said to be equationally defined. 

In their paper [1], Bryant and Lindner showed that 2-perfect m-cycle systems 
are equationally defined for m = 3, 5 and 7 only. In [2], we looked at the question 
as to when strongly 2-perfect cycle systems are equationally defined. \Ve noted that 
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m = 127 was the first prime for which our technique failed to prove that strongly 
2-perfect m-cycle systems are equationally defined. In this paper we show that this 
is no accident, as m = 127 is the first prime for which a strongly 2-perfect closed m­
trail system exists. We show that the existence of strongly 2-perfect closed m-trail 
systems is almost certainly enough to guarantee that strongly 2-perfect m-cycle 
systems are not equationally defined. We also prove that strongly 2-perfect 9-cycle 
systems are not equationally defined. 

Some definitions are in order. A closed m-trail is any connected simple graph 
(undirected and without loops) with m edges and all vertices of even degree. All 
trails considered in this paper will be closed and so from here on we may refer to 
them simply as trails with the understanding that they are closed. An m-cycle is 
an m-trail in which all vertices have degree 2. A trail which is not a cycle will be 
called a proper trail. 

A pair Vi and Vj of vertices of a cycle are said to occur at distance i if they are 
joined by a path of length i in the cycle. We take more care to define distance 
between pairs of vertices in a proper trail. Indeed, we need to first associate an 
Euler circuit with the trail. The vertices Vi and Vj are said to occur at distance i 
in the m- trail, with associated Euler circuit (VI, V2 , ... , vm ), if and only if Vi and v j 
are joined by a path of length i in the Euler circuit (VI, V2, ... , vm ). Throughout 
this paper, m- trails will have an associated Euler circuit (VI, V2, ... , v m ) and will 
be denoted by this m-tuple. 

The distance i graph of an m- trail (VI, V2, ... , v m ), is the graph, denoted by 
Ai (VI, V2, ... , v m ), with vertices VI, V2, ... ,Vm and having the edge {Vi, V j} if and 
only if Vi and V j occur at distance i in (VI, V2 , ... , V m ) . Note that the distance i 
graph of a proper trail is not necessarily a simple graph. 

An m-cycle (m-trail) system of order n is an ordered pair (V, S) where V is the 
vertex set of the complete graph Kn on n vertices and S is a set of edge disjoint 
cycles (trails) of length m whose edges partition the edge set of Kn. It is i-perfect 
if every pair of vertices occurs at distance i in a unique cycle (trail). A 2-perfect m­
cycle (m-trail) system (V, S) is said to be strongly 2-perfect if A2(Vl' V2, ... ,vm ) E S 
for each (VI, V2, ... ,Vm ) E S. (Note that this implies that m is odd, and from now 
on we shall assume this to be so.) 

We can define a groupoid (of order n and with underlying set V) from any m­
trail system (V, S) of order n in the following manner. Let v 2 = v for all V E V and 
let u * V = 'W if and only if ( ... , u, V, 'W, •.. ) or ( ... , 'W, V, u, ... ) is in S. From now 
on, we shall refer to this groupoid as the groupoid arising from the m-trail system. 

2. THE EXISTENCE OF STRONGLY 2-PERFECT PROPER TRAIL SYSTEMS 

The problem in constructing strongly 2-perfect proper trail systems lies in the 
fact that the repeated vertices may cause iterated cycles to have edges in common 
without being identical. Since the problem is obviously exacerbated by having 
many repeated vertices, from now on we shall assume that our trail systems have 
only two subloops, so that there is one of odd length and one of even length. Once 
we have a set of edge disjoint trails, their union forms a graph, and by Wilson's 
Theorem, there will be complete graphs decomposable into unions of such graphs. 
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Thus, to prove the existence of strongly 2-perfect proper trail systems, it is sufficient 
to prove that the iterated systems are edge disjoint 

In [2] we made use of the following mapping: 

Definition 2.1. Let Tn be odd and let 5 = {a E N I 0 < a :::; rn;-l, a odd }. Define 
the map O"rn : S -+ S as follows. If Tn - a = 2k b, where b is odd, then aam = b. 

We showed that am is a permutation of 5, and it played an important role in 
the proof of our main result. 

In this paper we use a similar map: 

Definition 2.2. Let Tn be odd and let T = {a E N I 0 < a ::::; m, a odd }. Define 
the map Trn : T -+ T as follows: aT m = b where b is the odd member of the pair 
{m;-a, }. 

It is easy to see that the inverse of T m is given by: 

1 {Tn aT rn = 2a 

so T m is a permutation. 

2a 

Tn 
if a < !!f 
if a > !!f ' 

It is not difficult to see that each orbit of am is a subset of an orbit of T rn' The 
importance of Trn is that if an m-trail has a sub cycle of length a then the lengths 
of the odd sub cycles in the 2-step iterations are precisely the elements of the orbit 
of T m containing a. 

Theorem 2.3. Let Tn and k be odd numbers. Then a 2-perfect trail system with 
a subcycle of size k is possible if and only if the orbit of T m containing k contains 
no number of the form ±(2T ± 1) (mod Tn). 

Example 2.4. The smallest prime for which the premises of the theorem hold is 
127 (since, as was shown in [2] for all smaller primes, even the orbits of am contain 
numbers of the above form). Here T has an orbit 11,69,29,49,39,83,105 and we 
have a trail 

1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
27,28,29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,41, 42, 43, 44, 45, 46, 47, 48, 
49,50, 51, 53,54,55, 56,57,58,59,60,61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 
93,94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 1 

whose 2-step iterates 

1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35, 37, 39, 41, 43, 45, 47, 
49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 
93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 
2, 4, 6, 8, 10, 1, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 
50 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 
94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 1; 
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1, 5, 9, 13, 17,21, 25, 29, 33, 37, 41,45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 
93, 97, 101, 105, 109, 113, 117, 121, 125, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 
50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 
3, 7, 11, 15, 19, 23, 27, 31, 35, 39,43, 47, 51, 55, 59, 63, 67, 71, 75, 79,83, 87, 91, 
95, 99, 103, 107, 111, 115, 119, 123, 127, 4, 8, 1, 16, 20, 24, 28, 32, 36,40, 44, 48, 
52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 1; 

1,9, 17,25,33,41,49,57,65,73,81,89,97, 105, 113, 121, 2, 10,18,26,34,42, 
50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 
99, 107, 115, 123, 4, 1, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 5, 
13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109, 117, 125, 6, 14, 22, 30, 38, 46, 
54, 62, 70, 78, 86, 94, 102, 110, 118, 126, 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 
95, 103, 111, 119, 127, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 1; 

1,17,33,49,65,81,97,113,2,18,34,50,66,82,98, 114,3, 19,35,51,67,83,99, 
115,4,20,36,52,68,84,100,116,5,21,37,53,69,85,101, 117,6,22,38,54,70, 
86, 102, 118, 7, 23, 39, 55, 71, 87, 103, 119, 8, 24, 40, 56, 72, 88, 104, 120, 9, 25, 
41, 57, 73, 89, 105, 121, 10, 26,42, 58, 74, 90, 106, 122, 11, 27, 43, 59, 75, 91, 107, 
123, 1, 28, 44, 60, 76, 92, 108, 124, 13, 29, 45, 61, 77, 93, 109, 125, 14, 30, 46, 62, 
78, 94, 110, 126, 15, 31, 47, 63, 79, 95, 111, 127, 16, 32, 48, 64, 80, 96, 112, 1; 

1, 33, 65, 97, 2, 34, 66, 98, 3, 35, 67, 99, 4, 36, 68, 100, 5, 37, 69, 101, 6, 38, 70, 
102, 7, 39, 71, 103, 8, 40, 72, 104, 9, 41, 73, 105, 10, 42, 74, 106, 11, 43, 75, 107, 
1, 44, 76, 108, 13, 45, 77, 109, 14, 46, 78, 110, 15, 47, 79, 111, 16, 48, 80, 112, 17, 
49, 81, 113, 18, 50, 82, 114, 19, 51, 83, 115, 20, 52, 84, 116, 21, 53, 85, 117, 22, 54, 
86, 118, 23, 55, 87, 119, 24, 56, 88, 120, 25, 57, 89, 121, 26, 58, 90, 122, 27, 59, 91, 
123, 28, 60, 92, 124, 29, 61,93, 125, 30, 62, 94, 126, 31, 63, 95, 127, 32, 64, 96, 1; 

1, 65, 2, 66, 3, 67,4,68,5,69,6, 70, 7, 71, 8, 72, 9, 73, 10, 74, 11, 75, 1, 76, 13, 
77,14,78,15,79,16,80,17,81,18,82,19,83,20,84,21, 85, 22, 86, 23, 87, 24, 
88, 25, 89, 26, 90, 27, 91, 28, 92, 29, 93, 30, 94, 31, 95, 32, 96, 33, 97, 34, 98, 35, 
99,36,100,37,101,38,102,39,103,40,104,41,105, 42, 106,43, 107,44, 108,45, 
109, 46, 110, 47, 111, 48, 112, 49, 113, 50, 114, 51, 115, 52, 116, 53, 117, 54, 118, 
55, 119, 56, 120, 57, 121, 58, 122, 59, 123, 60, 124, 61, 125, 62, 126, 63, 127, 64, 1; 

are edge-disjoint from it and from one another. 

Proof of Theorem 2.3. The lengths of the odd sub cycles in the iterated 2-step trails 
are precisely the elements of the orbit of Tm containing k. 

Now suppose this orbit contains a number £ of the form 2T ± 1 (mod m) Let us 
write the corresponding trail as 1,2,3, ... , f, 1, f + 2, ... ,m, 1. After r - 1 2-step 
iterations we shall obtain the trail starting 1, 2T + 1, .... But 2T + 1 is either f or 
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£ + 2, so this trail has an edge in common with the original trail. (Note that this 
cannot be the original trail, which is reached after a number of steps equal to s 
where 28 == ±1 (mod m).) Thus we cannot get an edge-disjoint decomposition in 
this case. 

Now suppose this orbit contains a number f of the form _(21' ± 1) (mod m). 
Let us write the corresponding trail as 1,2,3, ... ,f, 1, f + 2, ... ,m, 1. After r - 1 

iterations we shall obtain the trail ending 1 - 21', 1 .. " But 1 - 21' is either 
I! or I! + 2, so this trail also has an edge in common with the original trail. Thus 
we cannot get an edge-disjoint decomposition in this case. 

suppose two of the 2-step iterates of a trail of length m with a cycle 
of length k have an edge in common. Let us number the vertices of the first trail 
as 1,2, ... ,n, 1, n + 2, ... ,m, 1. Then the vertices of the second will be of the form 
1,27' 1, ... ,n + 1 - 27', 1, n + 1 + 27', ... , m + 1 - 27'. The only possibilities for 
coincidences are involving 1. Note first that if 27' == ±l m) then the 
two trails coincide, so we can eliminate any coincidences that would imply this. 
We are left with n + 1- 27' == 2 (mod m), n + 1 27' == m (mod m), n + 1 + 27' == 2 
(mod and n + 1 + 27' == m (mod m). Thus n is of the form ±(27' ± 1) (mod m), 
as stated. 

In fact, we have found no example where it is not sufficient to check the orbit of 
U m, rather than that of T m for this property. It would be nice to be able to replace 
T by o' in the theorem. Certainly, the non-existence of a number of the form 2r ± 1 
in an orbit of u is a necessary condition for the existence of a strong trail system. 
As the example shows, for Mersenne and Fermat primes, the lengths of 
the orbits of u containing numbers of this form are very short. Thus for reasonable 
size m of this form there will be orbits not containing numbers of this form. 

~}lCaJrnl)le~s 2.5. 

(1) Let m = 27' -1 and k = 28-1, where s < r. Then the orbit of (Tm containing 
k is (k,2 r - 8 -1). 
Let m = 27' - 1 and k = 28 + 1, where s < r - 1. Then the orbit of (Tm 

containing k is (k,27'-1 - 28- 1 - 1,27'-8 + 1,27'-1 - 27'-8-1 - 1). 
Let m 27' +1 and k = 28 -1, where s < r. Then the orbit of (Tm containing 
k is (k,27'-1 - 28

-
1 + 1, 2r - 8 + 1). 

(4) Let m = 2r + 1 and k = 28 + 1, where s < r - 1. Then the orbit of (Tm 

containing k is (k,2 r - 8 _1,2 r - 1 - 2r - 8
-

1 + 1). 

3. STRONGLY 2-PERFECT p-CYCLE SYSTEMS 

WHICH ARE NOT EQUATIONALLY DEFINED 

In this section we give some general conditions under which the quasigroups 
arising from strongly 2-perfect p-cycle systems do not form the finite members of 
a 

Definition 3.1. A graph G with vertex set V and edge set E is said to have a 
derangement if there exists a permutation n of V such that 

(l) n has no fixed points, 
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(2) (n(a) b)-+({a,b}EE). 

Definition 3.2. A strongly 2-perfect p-trail (or cycle) (5, C) system is t-derange­
able if the graph G formed by the edges in 

has a derangement. 

To see that it is reasonable to expect derangeable systems to exist, take a 127-
trail with a repeat at distance 11 and then form a graph G with e = 7 x 127 
edges by including the distance 2,4,8,16,32,64 graphs of the 127-trail. (Example 
2.4 shows that this is a simple graph). Now, for some x it is "possible" that 
there exists a cyclic decomposition of K v , with v 2ex + 1, into edge disjoint 
copies of G. Notice that the number of copies of G in a decomposition of Kv is 
v(v - 1)/(2e) x(2ex + 1) = xv. Hence we have x starters mod v. It seems 
plausible that for sufficently large v a cyclic decomposition of this type exists for 
any graph G. 

Suppose such a cyclic decomposition does exist for some v. This decomposition 
gives us a strongly 2-perfect 127-cycle system of Kv and we claim that it is 11-
derangeable. 

There are e = 7 x 127 pairs of vertices occurring at distance 1 in G and so there 
are xe differences covered in the starter trail( s) (this is all (v - 1) /2 differences 
mod v). However, there are at most x (e - 1) pairs of vertices at distance 11 in 
the starter cycles because there is a repeated pair at distance 11 in each starter. 
Hence there are at most x( e - 1) differences covered at distance 11 and so there 
are differences which do not occur at distance 11 in the starter cycles. Let d be 
a difference which is not covered at distance 11 in the starter cycle(s). Then the 
edges {O, d}, {I, 1 + d}, {2, 2 + d}, ... ,{v - 1, v-I + d} do not appear at distance 
11 in any trail of our strongly 2-perfect 127-trail system. Clearly, these edges form 
a graph which has a derangement-the permutation is (0, d, 2d, ... , -d). 

The above argument can be applied in the case of any rn-trail T for which 
r > 1 is the smallest integer such that Ar(T) = T and the union of the distance 
1,2,4, ... ,2 r

- 1 graphs of T form a simple graph. 

Theorem 3.3. If p is a prime for which a strongly 2-perfect derangeable p-trail 
system exists, then the quasigroups arising from strongly 2-perfect p-cycle systems 
do not form the finite members of a variety. 

Theorem 3.3 is an immediate consequence of Theorem 3.4 and Lemma 3.5. 

Theorem 3.4. Suppose there exists an n 2 X p array, based on the set {I, 2,. " ,n}, 
with the following properties: 

(1) columns i and i + 1 (including p and 1) are orthogonal. (That is, they 
include all n 2 ordered pairs in corresponding rows.) 

(2) if Xl, X2, ... , xp is a row then so also is A2(Xl' X2, .. . , x p ). 
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(3) Let s E {l, 2, ... , p} be such that its orbit 0 under Tp contains no element 
of the form ±2T ± 1 (mod p). Then for i = 1,2, ... , n 2 and for each tEO) 
the entries in row i of column 1 and column t + 1 are distinct. 

(4) There exists a strongly 2-perfect p-trail system (V, T) of order v in which 
there exists a p-trail of the form 

(Xl, X2,···, Xt, Xl, Xt+2, ... , Xp) 
~ 

distance t 

where xI,X2, ... ,Xt,XH2, ... ,Xp are distinct) tEO (as in (3)) and every 
proper trail is of this form (that is) there exists a repeat at distance t) and 
any repeat is at distance t). 

(5) Ther'e exists a strongly 2-perfect p-trail system (5, C) of order n. 

Then there exists a strongly 2-perfect p-cycle system of order nv such that the quasi­
group corresponding to this cycle system has a homomorphism onto a quasigroup 
which does not correspond to a strongly 2-perfect p-cycle system. 

Proof. For each trail (Xl, X2, . .. , xp), where Xi is the repeated vertex, and for each 
row Yl , Y2 , ... , YP of the array, let 

Also, for each X E V and each p-cycle (Zl' Z2 , ... , zp) E C, let 

Then (V x 5, R) is the required strongly 2-perfect p-cycle system. Its quasi group 
has a homomorphism, ¢>, onto the quasigroup of (V, T), namely ¢>(x, y) = X for all 
(x, Y) E V x 5. 

Lemma 3.5. If there exists a strongly 2-perfect p-trail system of order n which is 
t-derangeable, where t E orbit(s) and orbit(s) contains no ±(2T ±1) (modp)) then 
there exists an array satisfying the conditions of Theorem 5.1. 

Proof. First we note that 

{{a,b} I (V(XI,X2,""X p ) E C){a,b} tt A ti (Xl,X2, ... ,Xp )} 

= {{a,b} I (V(XI,X2, ... ,Xp ) E C){a,b} tt A tj (Xl,X2,""X p )} 

for any tj E orbit(td. 

Form an n 2 X P array, A *, as follows: 
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For each (Xl, X2, . .. , Xp) E C, let the 2p rows 

be in the array A*. Also let (x, x, ... ,x)be a row for each xES. Now apply the 
derangement 0 to the first column of A * to obtain the required array A. 

We now check in turn the five conditions of the Theorem. 

(1) Since each unordered pair {a, b} with a =J. b is adjacent in a unique trail 
(x I , X2, ... , X p) E C, it is clear that for every ordered pair (a, b) and every 
i E 1, 2, ... , p, there is a unique row of A * with a in column i and b in 
column i + 1. Since 0 is a permutation acting on a column, A also has this 
property. 

(2) Suppose Xl,X2, ... ,Xp is a row of A*. Then (Xl,X2, ... ,Xp) E C or Xl = 
X2 ... = xp. If Xl = X2 = ... = x p, then A2(Xl,X2, ... ,Xp) = 
(Xl,X2, ... ,Xp) is also a row. If (Xl,X2, ... ,Xp) E C, then, since(S,C) 
is strongly 2-perfect, A2(Xl,X2, ... ,Xp) E C and so A2(Xl,X2, ... ,Xp) is 
also a row of A*. Hence A* has property (2). Now, if (Xl, X2, ... , xp) is a 
row of A, then (0- 1 (Xl)' X2, ... , xp) is a row of A *, so 
A2(0-1 (Xl)' X2, ... , xp) is a row of A *. It follows that A2(Xl' X2, ... , xp) is 
a row of A, and so A has property (2). 

(3) Suppose that in row i of A, the entry in column 1 is identical to the entry in 
column t + 1 (say it is x). Then this row cannot correspond to a row in A * of 
the form (x, X, ... ,x), since 0 has no fixed points. Thus O-l(x) and X occur 
at distance t in a trail of C. That is, {O-l (x), x} E At(Xl, X2, ... , xp) for 
some (XI,X2, ... ,xp) E C. Hence {O-I(X),x} ~ E(G) (where G is defined 
as in Definition 2.6). But O(O-l(x)) = X implies that {O-l(x),x} E E(G), 
a contradiction. 

(4) Since t E orbit(s), and orbit(s) contains no ±(2T ± 1) (mod p), we have (4) 
for sufficiently large v. 

(5) This follows from the conditions of the lemma. 

4. STRONGLY 2-PERFECT 9-CYCLE SYSTEMS 

In this section we prove the following theorem: 
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Theorem 4.1. The quasigroups arising from finite strongly 2-perfect 9-cycle sys­
tems do not form the finite members of a variety. 

Proof. First note that if G is a 9-cycle, then G U A2(G) U A4(G) ~ K 3 ,3,3 (the 
complete tripartite graph with three vertices in each part) and As (G) = G. Now 
consider the infinite graph Koo,oo,oo with vertex set 

and edge set 

{{Ui,Vj} Ii = 0,1,2 ... ,j = 0,1,2, ... }U{{Ui,Wj} Ii = 0,1,2 ... ,j = 0,1,2, ... } 

U {{Vi,Wj} Ii = 0,1,2 ... ,j = 0,1,2, ... }. 

For all x == ° (mod 3) and all y == ° (mod 3), let Gx,y ~ K 3 ,3,3 be the complete 
tripartite graph with vertex set 

where ({O, 3, 6, ... }, *) is any infinite quasigroup, and the obvious edge set. Then 
the set {Gx,y I x, y E {O, 3, 6, ... }} forms a decomposition of Koo,oo,oo in edge 
disjoint copies of K 3 ,3,3 and hence yields a strongly 2-perfect 9-cycle system of 
Koo,oo,oo' The union of the 9-cycles in this strongly 2-perfect 9-cycle system with 
those in the three infinite strongly 2-perfect 9-cycle systems having underlying sets 
{UO,Ul,U2""'}' {VO,Vl,V2, ... } and {Wa,WI,W2, ... } form an infinite strongly 
2-perfect 9-cycle system with underlying set {ua, Ul , U2, ... , } U {va, VI , V2, ... } U 
{wa, WI, W2,· .. }. Furthermore, the mapping Ui M u, Vi I-t V, Wi M W for i = 
0,1,2, ... is a homomorphism from the quasigroup Q corresponding to this system 
onto a Steiner quasigrou p of order 3 (with underlying set {u, V, W } ). 

It remains to show that Q is in the variety V generated by the class of quasi­
groups corresponding to finite strongly 2-perfect 9-cycle systems. If Q ~ V, then 
there exists an identity I which holds in V but not in Q. Since I does not hold 
in Q, there is a finite collection of 9-cycles, in the 9-cycle system corresponding 
to Q, which define a finite partial quasigroup in which I fails. This collection of 
9-cycles can be embedded in a finite strongly 2-perfect 9-cycle system. To see this, 
note that the collection of 9-cycles is contained in a collection of copies of K 3 ,3,3 

and that by Wilson's theorem, for sufficiently large n, there is a decomposition of 
Kn into copies of the graph formed by the union of these copies of K 3 ,3,3. Hence, 
I fails in the finite quasigroup corresponding to the constructed strongly 2-perfect 
9-cycle system. This is a contradiction and so Q E V. 
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