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Abstract 

In this paper, obtain necessary and sufficient condition for 3-connected 
cubic graph to have a containing any set of nine vertices and an Vve also 
prove that in every 3-connected cubic planar any set of fourteen vertices and 

is contained in a cycle. As there is 3-connected cubic planar that 
of fifteen vertices and an not on any cycle, the result is the best 

1 Introduction 

We consider 3-connected cubic The of a G denoted 
by and if S then ]{ (G denotes the components of G 
component containing a is called a cyclic component. A 
set with each of G The connectivity of a 
size of cut set of the The coboundary B( H, J) of 
Hand J of G of G with one end in II and the other in J. 

Let G be a graph and let R be a of G. Define a graph II with 
V(JI) K(R) in which distinct y E V(JI) are if there is an 
of G between the x and y of R. This graph JI is called a contraction 
of G and denoted H G / R. Roughly each component of R is contracted 
to a vertex in the contraction while the 
components. If R is a tree of G then 
then G / R G. These two contractions are called 
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The subgraph R defines an equivalence relation on V( G) where vertices of G are 
equivalent if they lie in the same component of R. This defines a function 

a . G ---l- H. 

This function is also called a contraction of G onto H. If such a contraction a maps 
a set A of dements of G to a set B of elements of H, then we write 

a : (G, A) ---l- (H, B) 

or G, = (H, B). 
Let e E E( 0). If e lies on every containing A then e is called an unavoidable 

edge A. If e is excluded every containing A then it is called a forbidden 
edge given A. In a hamiltonian an unavoidable given V( G) is called 
an a-edge and a forbidden V(G) is called a b-edge. 

Let A, B c V( G) U E( G) and A n B 0. If 0 B has a cycle containing A, 
then we say that A is cyclable in G - B and denote this fact by A E C(G - B). Let 
p = (m,n;m',n'). If for every A and B with IV(A)I m, IE(A)I = n, IV(B)I = m' 
and IE( I n' we have A E C(G then we say that G is a p-cyclable graph. 
Denote this fact by G E n; m', n'). The quadruple p of integers is called the 
type of the pair M = (A, B). The parameter 

~(G) = max{m : G C(m, 0; O,O)} 

has been called the cyclability of G and studied If G E C( m, 0; 0, 0) 
then we simply call G an m- cyclable graph. We may define parameters 

rJ( G) : G E C(m,O;O,l)} 

and 
((G) max{m : G E C(m, 1; 0, O)} 

These two parameters inform us about the unavoidable edges and forbidden edges 
of G. 

A contraction a : G ---+ H said to be p- prirnitivf: contraction.if (1) A tt 
C(G B) implies a(A) tt C(H -a(B)), (2) the pairs (A,B) and (a(A),a(B)) have 
the same type, and (3) IV(H)I is the smallest with resped to (1) and (2). In this 
case. H called ap-primitive graph and the pair (a(A),a(B)) is called ap-primitive 
pair of H. 

Let e E E( G) and denote by G + Xe the graph resulting from the subdivision 
of the edge e with a vertex Xe tt V(G). In Section 2 the integer rJ(e) = e(G - e) 
assigned to e will frequently be used. 

The following nine point theorem (see [15] and [16]) is well known. 

Theorem 1.1 Any 3-connected cubic graph is 9-cyclable. 
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Let P be the Petersen graph. If there is a contraction then 
A rt As IV(P)I 10, the above theorem is shown 

of ten [10]) and contraction determines 
eleven [3]) vertices. Holton and the author 
a 3-connected eu bic graph and A c V (G) with 

>'L3£"",n1-l" shown that if IS 

or 
there a contraction 0: . (G, A) -+ (P, V(P)). 

the following theorem [15]) have been frequently applied in 
of 

Theorem 1.2 Let G be a 3-connecicd cubic graph and A c V( 0) with IAI ,). 
Then anye E(G)) A E C(G e). 

This theorem cannot be nnnr/"yu,c,d 

P can be taking two 
9, 6] and joining a vertex u of the first 

second if 'U v (mod 5). A Q can be, constructed 
4) with vertex 11 and the 10] with a vertex 12 and introduce 

[11, The Let {1,3,4,6,7,10} and 
epE{[1,6], 1O]'[3,4]}.ThenAp tJ.C(P Also if ApandeQ [1.6] 
then C( Q The twisted cube the graph 

TV [1,2,3,4,1] U 6,7,8,5] U {[I, 

61} and {2,5, [3,4] 10]}. Then 
and 

Theorem 1.2 has been extended to containing six vertices and 
an in [10], where through a set of four vertices and two were also 
studied. 

Theorem 1.3 Let G be a 3-connected cubic graph) A C V (G) with IAI 6 and 

e E Then A E C(G e) unless there a contraction 0: : G ----+ P such that 
o:(A) and = ep) or a contraction !3 : G Q such that !3(A) and 
f3( e) 

Theorenl 1.4 Let G be a 3-connected cubic graph and let A be a set of four vertices 
and two of G. Then A E C( G) unless there is a contraction 0: : G ----t l!V 
such that B w ) or a contraction f3: G ----+ P such that f3(A) = Bp. 

Theorem 1.3 has been extended to IAI 7 in [1]. We freely refer to [1) and do 
not discuss the details here. The theorem of [1] has ten families of primitive 
It is tedious to determine the unavoidable given a set of eight or more vertices. 
The following result in [6] motivates us to study the forbidden edges given a set of 
vertices. 

Proposition 1.5 Let G be a cubic graph and A C V( 0). If G has no forbidden 

edge given A then the unavoidable edges given A are independent. 
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As we are often concerned about the nature of of the unavoidable 
this enables us to it the information 011 forbidden 
In P. take uv E E( P). If there contraction a : G P such that 

o(e) uv E E(P) and a(A) V(P) - v} then clearly AU {e} tf- C(G). The 
converse of this assertion also holds [,5]. 

Theorem 1.6 Let 0 be a 3-connected cubic gmph, A E E(O) and 

8. The n either A U {e} E C (G) or there is a contraction 0: : G ---+ P such 

that HZ' E and o(A) = {u, 

Corollary 1.7 If G a 3-connected cubic then any sd of seven vertices and 

an edge of G lies on a cycle. 

Corollary 1.8 If G a 3-connected cubic gmph) then the 'unavoidable edges given 

any set of seven vertices of 0 are independent. 

Consider 3-connected graph O. Then G - f is 2-
connected. Let u, v E The e can be subdivided by a 
vertex without altering the of G - f. The situation where {u, v, E 

C( G J) characterised in [18]. From this result {u, v, e} J) can be 
characterised. That there is a contraction a : such that o( {u, v}) = 
{1,2}, 4] and aU) [1, Here the 1(4 given in the 

labelling the four vertices with n"~'CH"'CW0 

Proposition 1.9 Let G be a 3-connected gmph and A = {u, v} C V( G). If e, f E 
E( G) then {e, 'U, v} E - J) unless there is a contraction 0: : G ---+ 1(4 such 

that a(A) = {L o(e) = [3,4] and o:(f) [1,2J. 

Let 0 be a :3-connected cubic graph and 5 be any cyclic cut of size 3 in 
O. Suppose that 1((0-5) = {L,R} and L' = LUV(R), R' RUV(L). Then 
the H 0/ R' and J are called the 3- cut reductions of G using S. 
Note that G - 5 has precisely two components and the 3-cut rf'ductions Hand J 
are ::~-connected cubic graphs with order at least 2 less than that of O. For a cubic 
graph G and e = uv E E(O) with N(u) {UI,U2,V} and N(v) = {Zl,VhV2}, the 
graph 

Oe = (G {H,V}) U {HIH2,VIV2} 

is called the edge reduction of G using the edge f. The edges HI u2 and VI V2 are 
called the two new edges in the reduction. 

Let 0 be a cubic graph and 8 = {HiVi : i = I, 2, 3, 4} be a cyclic cut set of four 
independent edges. Suppose that K(O 8) = {L, R} and p, q tf- V(G). Then the 
graph 

L( UI, H2) = L U {pq, PHI, PU2, qU3, qU4} 

is called the 4-cut reduction of 0 corresponding to the vertices Uh H2 using 5. We 
call p and q the two new vertices in the reduction. 
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2 Forbidden Edges in Small Graphs 

We consider cyclically 4-connected cubic graphs of order not exceeding 18. All 
in this section can be found in the appendix. 

If IV(G)I :s; 14 then G is contained in the catalogue produced in The graph 
R G( 14.5) in the appendix is the only 4-conneded cubic graph of order 
not 14 which has In R, let B {k: 0 k 9}. Then 

} t/. set of nine vertices and an is contained in a 

9). 

Proposition 2.1 Let G be a hamiltonian cyclically 4-connecled cubic graph of order 

at most 14. Then 9 and for G I- I. 

All hamiltonian cyclically 4-connected cubic graphs on 16 and 18 vertices with 
b-edges were given in [17]. The b-edges were also listed. These graphs are labelled 

G(16.i), iI, 2. 3 and 1 i::S 17. We computed the parameter ( for 
each of these This computation the following result. 

Proposition 2.2 Let G be a hamiltonian cyclically 4-connected cubic graph. Then 

(aj If IV(G)I 16 thcn ((G) ~ 9. A10re specifically; 

((G(16.3)) = 9,((G(16.1)) 14 

and for all other (( G) 16. 
(bj If IV(G)I 18 then (( G) ~ 9 More specifically; 

((G(18.i)) 9 for i E {I, 6,7,8,9,10,11}, 

(( G( 18.2)) 11, (( G(18.13)) (( G(18.17)) 

((G(18.12)) ((G(18.16)) 13, 

((G(18.i)) 15 for E {3,4, 14, 15} 

and for all other 18. 

The Petersen graph P is the only nonhamiltonian cyclica.lly 4-connected cubic 
graph on 10 vertices. There are precisely two nonhamiltonian cyclically 4-connected 
cubic graphs on 18 vertices. These three graphs are included in the appendix. The 
three graphs are the only nonhamiltonian cyclically 4-connected cubic graphs of 
order not exceeding 18. The parameter ( for these three gra.phs can be computed 

Proposition 2.3 ((P) = 7, ((Bl) 11 and ((B2) = 13. The set 

,) {I, 2, 3, 4, 5.6,7,9,11,13,16,18, [14, 15]} 

is a smallest noncyclable set of B 1 . IIIIl 

We now summarise this section. 

Proposition 2.4 Let G be a cyclically 4-connecied cubic graph with JV( G) I :s; 18. 
Then ((P) = 7 and for every G I- P; ((G) ~ 9. IIIIl 
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3 Primitive Graphs 

Let G be a 3-connected cubic graph and let A C V( G), f~ E E( G) and IAI = 8. 
Theorem 1.6 asserts that AU {e} tf. C( G) if and only if there is a contraction 

such that a( e) uv E E(P) and a( A) = V( P) {u, v}. Let IAI = 9. If there is a 
contraction a : G ---+ P such that aCe) = uv E E(P) and a(A) ~ Yep) - {u, v} then 
certainly AU {e} tf. C(G). In this case, we call AU {e} der'ived in G. The graph 
pair (G, A U {e}) is a derived pair. 

Let M AU {e} and suppose that (G, At) is not derived. Vve construct primitive 
graph pairs for AI tf. C(G). 

Let a(A) V(P)-u and aCe) u. Then clearly AU{e} tf. C(G). This primitive 
pair is denoted by 

(H1l1vl1) = (P, Yep)). 

For ](4 with V(I{4) = {I', 2', 3', 4'}, we know that 

{1',2', [3',4']} tf. C(](4 [1',2']) 

by Proposition 1.9. We also know that for P, {k E Yep) : 3 :S k :S 10} U {[1,2]} tf. 
C(P). Let H = (I{4 - I') U (P - 1) U {[2, 2'], [5,4'], [6, 3']}. Take a connected graph 
L with Ui E VeL), i = 1,2,3,4 such that the graph 

is a 3-connected cubic graph. Then 

1112 = {k : 3 :S k :S 10} U {2', [3',4']} tf. C(H2)' 

We have thus found another primitive graph pair. 
We display four other primitive graphs in Figure 1. They are labelled by (Ih,Ah), 

k = 3,4,5,6. That Mk tf. C(Hk) for k = 3,4,5,6 can be seen by Theorem 1.3 and 
Theorem 1.4. 

The family of the six primitive graphs constructed above is denoted by P. If 
(G, M) is derived or contractible to a graph pair in the primitive family P, then 
clearly AI tJ. C( G). One of the main objectives of this paper is to prove the converse. 

4 Application of a Conlputer 

We perform the inverse of an edge reduction on a primitive graph. Is it possible 
that in this way, we produce a primitive graph? In this section, we describe a way 
of deciding this on a computer. We call a possible inverse of an edge reduction an 
extension. For A C V(G) and e = xy E E(G), if x,y tf. A then we say that e is 
A-free. 
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with the [16, 

(H4)[18,19]' 

Figure 1: Primitive 

Assume now that G is a 4-connected cubic 
IAI 9. that G has an A-free f xy and 
G f. Let 

be the 

a:(Gf,AU 

contraction. Denote by 

10 

Let A C V( G) with 
is the edge reduction of 

E V(G f ): a(w) = v} 

the of the vertices of H k under the contraction a and T (v) = (S (v)) 
be the connected subgraph induced Since G 4-connected, f 
must be incident with a vertex in each such subgraph. Let t be the number of such 
nontrivial induced subgraphs. Three cases occur. (1) t 0, (2) t = 1 and (3) t 2. 
Now the computation is performed as follows. 

Let J be candidate of and let g, h E E(J). Subdivide the edges 9 and h 
with vertices Xg and Xh respectively. the graph 

G*=Ext(J;g,h) (J+Xg+ U 

is called an extension of type l. 
Let U E V(J),g E E(J) and NJ(u) = {Ui : i 1,2,3}. Subdivide the edge 9 

with a vertex Xg and the UUi with a vertex Vi. Then an extension of type 2 is 
the graph 

G* Ext(J; u,g) (J + Xg + VI + V2 + V3) U {UXg, V1V2, VIV3, V2V3}. 

Let u, v E V(J) and Wi, Zi ¢ V(J), i = 1,2,3. Assume that NJ(u) = {Ui : i = 1,2, 3} 
and NJ(v) {Vi: i = 1,2,3}. Subdivide UUi with Wi and subdividevvi with Zi, 

i = 1,2, 3. Then an extension of type 3 is the graph 

3 

G* = Ext( J; u, v) = (J + L Wi + L Zi) U {UV, WIW2, WIW3, W2 W 3, ZlZ2, ZIZ3, Z2Z3}. 

i=l i=l 
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(a) Extension of type 1 

u 
1 

(b) Extension of type 2 

( c) Extension of type 

Figure 2: Extensions 

This is illustrated in Figure 2. 

x 
g 

vVe omit J in Ext(J; a, b) when the graph J is clear from the context. On a 
computer 1 these extensions have been constructed and properties have 
been verified. 

If (G f' lvI) is derived then by Theorem 1.6, there is contraction a : -t P 
such that a(e) = uv E E(P) and a(A) V(P) - {u,v}. Return the edge f to the 
graph. Then the proof that 1'vI E· C (G) is exactly the same the corresponding 
part of the proof of Theorem 1.6 [5]). 

Assume that there is a contraction a : J -t H E P. Then G = G*. 
(1) Extensions of type 1. Then G f = J. Take each H E P, perform all noniso­

morphic extensions of H. The edge e will then be subdivided in each of the resulting 
. graphs. We then check whether the graph liamiltonian. If the graph hamil-

tonian then 1\11 E C (G) and if the resulting graph is nonhamiltonian we determine 
((G). 

H = HI. Recall the labelling of P and ~ssume that the vertex 1 is replaced by a 
component K. Denote the neighbours of 2, 5 and 6 in f( by 2', 5', and 6'. vVithout 
loss of generality the graph G is obtained by the edge extension involving an edge 
g in f( and either the"edge [2, 3] or the edge [3, 4]. (i) G = Ext(g, [2,3]). Then let 
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x E 9 and y E 3]. The 4-cut reduction is a 3-connected cubic graph since 
5' =f 6' and 2' =f x. Then x) q) 2 2, and there D in J«2, x) - q 
that contains e and p. Then the 

(D p) U [2',2,7, 10,.5,4,9,6,S,3,y,x] 

contains AU {e}. Hence M E C(G). (ii) G = Ext(g, 
nr~'r,c",I" the same that of (i). This time y lies on the 

(D - p) U [2', 2, 7, 10, 5, 4, 9, 6, S, 3, y, x] 

shows that M E C(G). 

4}). The argument is 
[3, 4] and the cycle 

H Hz. In the extension the edge f xy must join an 
and an edge incident with {k : 2 :; k :; 10} but different frorn the forming any 
cyclic cut set of size 3. Now precisely the same argument as in the case of H Hl 
shows that M is cyclable in G. 

H H 3 . Any cyclically 4-connected extension of H is a cubic graph on lS 
vertices and we have already discussed these in Section 1. 

H = H4 . If (g, h) is not any of (ej, [9, 15]), (ej, [14, 1.5]) and (ej, [14, 16]) then for 
each G = Ext(g, h), e is not a b-edge of G. ((e) 1.5 in [9,15]), (( e) 2 14 
in Ext(ej, (14, L5]) and ((e) 2 12 in Ext(ej, [14, 16]). Here ej denotes the 
corresponding to e in the extension. 

H = Hs and G Ext(g, h). Then ej is not a b-edg~ of G unless 9 [7, S] or 
[7,9] and h [11,17] or [12, IS}. The automorphism 

CT (1,4 )(2,3)(5, 6)(S, 9)(10,13)( 11,12)(14, 15)( 17, IS) 

interchanges [7, S] and [7, 9] and fixes the edge = [5,6]. Hence we consider only 
9 = [7,S]. In both Ext([7,S], [11, 17]) and Ext([7,S], [12, lS)), ((ef) 211. 

H = H6 and G = Ext(g, h). Then e is not a b-edge of G unless 9 [7, S] or [7,9] 
and h E {[11, 17], [12, lS], [14, IS], [15, 17], [16,17], [16, lS]}. The automorphism 

CT (1,4)(2,3)(5, 6)(S, 9)(10,13)(11,12)(14,15 )(17, IS) 

interchanges [7, S] and [7, 9] and fixes the edge e j = [5, 6]. Hence we consider 
9 = [7, S]. In each case, ((e) 2 13 in G. Hence any edge extension of each of the 
graphs in Phas a cycle containing M. . 

(2) Extensions of type 2. vVe may assume that x E T, the nontrivial subgraph 
and y is the midpoint of an edge 9 of H. VVe replace the subgraph T with a copy 
of I<4, perform the extension of type 2, subdivide the edge e and store the resulting 
graph G*. Since 0:' is a primitive contraction, 0:'(1\1[) CHand !O:'(A)! = 9. 

Therefore IA n TI :; 1. We now show that any hamiltonian'cyc1e of G* corre­
sponds to a cycle containing M = Au {e} in G. 

Proposition 4.1 If G* = Ext( u, g) ,is hamiltonian then I'vl E C( G). 
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Proof. Let B(T, G = {U(Vi : i 1,2,3,4} be the coboundary of T and G - T 
with Ui E T. Let C be any hamiltonian cycle of G'*. Then en E(]{4)) is the 
union of paths nonempty even intersection with the set {Ui : i 1,2,3,4}. 
By permuting the labels when necessary we may consider the following two cases. 

(1) C n (G* is a single (Ul l u2)-path 7r. Consider the 3-conneded cubic 
4-cut reduction T( UI, 112) with two new vertices p, q tJ. Since IA n TI s 1, 
T(1111 has a cycle D which contains AnT U {p} and avoids q. Now 71" U (D p) 
is a in G containing AI. 

(2) C U is the disjoint union of an (1l1' 112)-path 71" and a (U:~l U4)-
path 71"'. By Theorem 1.2, T( 1£1, U2) has a containing AnT U {p, q} avoiding 
the edge pq. Then 71" U 71"' U (D - {p, q}) is a in G through lv!. I 

By this result, AI E C( G) can be by the hamiltonicity of G*. If G* is 
hamiltonian then lv! is cyclable in G. If G* is not hamiltonian then we compute 
(( f) in G* If it! is in G* then it is certainly in G. The result 
of computing is follows. For H Hi (i 1,2,3), each G* is hamiltonian. 
For JJ H 4 , each extension G* is hamiltonian except G* Ext( u, [2,6]) for U E 
{14, 16}. In G* Ext(lL!, [2,6]), ((f) 10, in G* Ext(1.5, 6]), ((e) ~ 13 
and in G* Ext(l6, 6]), ((e) ~ 13. For H = Hs, each G* = Ext(u,g) has a 
hamiltonian through e. For H H B , each G'" Ext( 1)" g) has a hamiltonian 
cycle through e Ext(16, [7,8]) = Ext(16, [7,9]) for which (( e) ~ 14. Hence 
in <:>ach case AI E C( G). 

(3) Extensions of type 3. Let the two nontrivial components be T1 and T2 • In 
this case the edge e is also subdivided and both T1 and T2 are replaced by a copy of 
[(4' The resulting graph is denoted by G*. The proof of the following statement is 
similar to that of Proposition 4.1. 

Proposition 4.2 If G* = Ext( u, v) is hamiltonian then M E C( G). 

The number of cases is comparably small. The cases can be analysed both on a 
piece of paper and using a computer. In each case, we show that 1\1 = AU {e} is 
cyclable in G. We now summarise this section. 

Proposition 4.3 Let G be any cyclically 4-connected cubic graph) A C V( G)) IAI = 
9 and e E E(G). If 

(a) (G, A U { e }) is not derived) and 
(b) G has an A-free edge f f- e such that the f -reduction G f of G is contractible 

to a primitive graph pair (Hk' lvh) E p) 
then M E C(G). I 

5 Cubic Graphs 

In this section, we prove that any set of nine vertices and an edge in a 3-connected 
cubic graph, that is not derived, is contained in a cycle if and only if the graph pair 
is not mapped onto a primitive graph pair given in Section 3 under a contraction. 
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Theorem 5.1 Lei G be a 3-connected cubic graph and let 1\11 be any set of nine 

vertices and an ofG. Then eitheTl\!1 E C(G), or (G. AI) or there 

is a contraction 

Proof. The proof is by induction on the order of the graph. For IV( 0)1 ::; 1 the 
truth of this statement is established by considering the catalogued in [8] . 
...... 11nn.(\"" that G is 3-connected cubic with IV(G)I ~ 14 and the statement 
holds for all 3-connected cubic with fewer vertices. Consider the 
two 

(1) G has a cut 8 = {UiVi: i 1,2,:3}. Let Hand J be the 
reductions defined in Section 1, with in H. Denote the new in H UAAIIU,~"'l~H~ 

to U1 U2 and U3 by U and the new vertex in J to VI V2 and V3 v. Let 
a IAnV(H)I. 

(1.1) a O. first that e (j 8. the main theorem of [10], either (A n 
V(J)) U {v} C(J) or then~ is a contraction a: (J, (An V(J)) U {v}) ~ V(P)). 
If (A n V(J)) U {v} E C(J) then let D be the cycle containing (A n V(J)) U {v}. 

that D the VV3. Since 2, H UU3 has a C 
that contains {u, e}. Hut 

IS a containing AU {e} in O. If there a contraction 

a : (.7, (A n V (J)) U {v} ) (P, V(P)), 

then let ex' be defined for each :r E J - V and ex' (x) a( v) for 
E II - u. Then (x' is a primitive contraction of (G,AJ) onto (H1,Md E P. 

then (G, M) is derived. 
a 1. Let e tJ- 8 and An V(H) {x}. Assume that for any i E {1, 3} 
UUi can be avoided a cycle in H through {e, u, x}. the nine point 

theorem there is a cycle D in J through (A ri V(J)) U {v}. Suppose that VV3 tJ- D. 
Then let C be a cycle in H through {e, u, x} UU3. Now C' in (1.1) a 
cycle in G through M. Hence, suppose that one of the edges in {UUi i = 1,2. 3} 
is unavoidable given {e,u,x}. Let this edge be UUl' By Proposition 1.9, there is 
a contraction aH : H J{4 such that (XH({U,X}) {1, aH(e) = [3,4] and 

[1,2]. Also for each i E {2,3}, 1Hli can be avoided by cycle in H 
through {e,u,x}. If there is a cycle Din J through (A n V(J)) U {vvd, then 
suppose that D avoids VV3' Now let C be a cycle in H through {e, 11, x} avoiding 
U1J;3. Again C' in (1.1) is a cycle in G containing lH. Suppose then that VV1 cannot 
be contained in a cycle of J through An V( J). Then by Theorem 1.6, there is a 
contraction 

CXJ : (J, n V (J)) U {vvd) ~ (P, (V (P) - {u, v} ) U {ltv} ). 
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Let Q be the whose restriction to 11 U 0:ll and that to J U IS 0:J. 

TheIl 0: is contraction from 
If e E thf'n let e UV1 instead of Then the 

discussion 
a {2:3}. 

cycle D in J which contains an 
In 

3) . 
v, 

(; which contains U {e: uud 
by Theorem 1.1. that (; excludes 110'1.13_ Since V'Vj is unavoidable in J given 
(An J))U{v}, VV3 can be avoided D n U{vvd. 
Once (;' in (1.1) in G AU {t}. If e E 8 then let = UIVI 

IS 

there is a contraction 

in G. Hence, one of the 
U {1'} in J. Let this 

U 

in J 

one of uUi, 1101103' 

/)V3' Then (" in (1.1) 
i = 1,2,3} is 
Thporem 

Foreachi E through (Anll(J))U{v}. 
If there is a (A n 11 (11)) U Wil }, then let U1l3 (j C. J has 
a D (AnV(J))u {v} which avoids the VV3. Then (}' in (1.1) 
IS a of (; NI. If '1.11101 cannot bp contained in it through 
(A n lI(H)) U {e}, then by Theorem 1.4, there a cOlltraction 

all: (If, n V(H)) U {e,uud) or (P,Bp ), 

Low let a be a whose restriction to 11 - v is all and to J - v is a,J _ Then 
Cy primitive contraction of !vI) onto ( lvh) for some k E {3, 6}. If 
e E 8 then let e l1(V1 and repeat the above VVI instead of e. In this 
case the contraction aH does not exist. Hence ft.1 E 

In the following four cases, whether e E S or not does not affect our discnssion. 
(1.5) a E {5,6}. By Corollary 1.7, there is a cycle C in H containing (A n 

V(H)) U {e,u}. Suppose that C avoids the edge 1101103' By Theorem 1.2 there is a 
cycle D in J which contains (A n V (J)) U {v} and avoids the edge VV3' Then C' in 
(1.1) is a desired cycle in G. 
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Since A {e} is not derived in C. not derived 
in fl lIenee Theorem 1.G there C in H ~"~~CUoH"'L"" 

that C avoids the UU3. 

contains (A n V(J)) U {v} and avoids the in G 
At. 

8. Since Ii U (A n U {u, e} not derived 
C in H ~~'.LCU'HU.H"-

Then assume that C avoids the uU:s. Theorem 1 
which contains U {v} and avoids the 

v) U {Ul VI, desired in G. Assu me now that 
neither nor derived in fl. Then by the inductive 

contraction 

a : ( P. 

Let ex' be defined u and d(x) = o'(u) for each 
x contraction. 

a inductive 

cycle in H 
C, then let UU3 7r m the 

v. But (C u) U 
C'lllnn(:1SP then that the (H, is contractible to a ~~,r~,tn.~ 

P. Then let (} denote this contraction. Define ci for all 
and for all x E J - 'I). 

cut. Hence 
reduction of G is 3-connected. 

) Assume that there is an f :::J. f which A-free. and fare 
be the f-reduction of O. Then by the inductive assumption 

vVJLLCUdJUlUF, j\1 or is derived or it is wntractible 
to a in the statenwnt of the theorem. If AI E C( C; j) then "~1 E 

is derived or it is then by Proposition 4.3, Ai E C( G). 
then there is an edge Cj in G j corresponding to VVe apply 

the inductive to (Gj,AU{cj}). By 111 C(G). 
now that every other than e has an end vertex in A. Then 
the is completed Proposition II 

VVe note that the nine point theorem, the main theorem of [10] and Theorem 1.6 

can be as corollaries to this theorem. The of unavoidable edges 
can be determined this theorem. For the cydability of a set of ten vertices 
and an infinite family of primitive can be constructed (see [4]). 
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6 Planar 

We shm\' that every 3-connected cubic 
of fourteen vertices and an 

not difficult to show that every 3-connected cubic 

Theorem 6.1 
set 

of five vertices and two 

3-connectul cubic 

vertices and two 

has a 

Proof. Let A c V(G) and f Subdivide e and f with vprt.lrl~q 
y. Then}{ n u {x, } is 3-connected cubic 
}fxy By the main theorem of there C in 
A' Au {X,y} the xy II is contractible to a 

reduction of any such IS 

the theorem is 

The 

Then there is no 
nonhamiltonian 3-connected cubic 
graph shows that Theorem 6.1 
the situation for IA.I ;:::: 6. 

any 

any 

4, 

It shown that in any :3-connected cubic planar any set of nine vertices 
is contained in a which avoids any ,.~£"""£,,, [11] or [1:3]). 

Theoren16.2 Let G be a :~-connectfd cubic planar graph and A C V(Ci) with IAI = 

9. Then for any A.E -e). 

The main result in this section is the following. 

Theorem 6.3 Every 3-connfcied cubic planar graph has a cycle containing any set 

of fOlLrteen vertices and an 

Proof. The proof is induction on the ordn of G. It goes the 
same as that of Theorem In this case, however, the argument is nmeh simpler. 
First let IV (G) I ~ 22. Then the assertion was established by the fact that G is 
hamiltonian and it has no [9]. Suppose then that G is any 3-connected cubic 
planar graph with IV (G) I 24 and the statement holds for every 3-connected cubic 
planar graph of order smaller th,:m that of G. 

(1) Assume that G has a cyclic 3-edge cut S = {tl11h,U2V2,U3V3}' Let Hand J 
be the usual 3-cut reductions with e in H. 
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(1.1 ) 
contains (A n 

C in II 

a D in that 
There a 

IS 

a 

a 

u) U ( u 

can be avoided 
Theorem 6.1. there 

(' and Id 
(" 

the inductive there C in 

Such a C HlUst exclud(' one of UUi, 

UU;l. D that contains n F( J)) U {v} 
VV3' Then '~Vj.>CU,jHj,.uF, A U {(} in 

(lAc) A the inductive 
contains ( U t/: (', then this is the tl C 

. But then ."'<'""",,"':" that U1Il t/: C Since J v IS 

in G. 
then that G has no cyclic cut. Hence G is cyclically 4-

and any edge reduction of G is 3-connectecL 
Assurne that there an I f t which is A-free. Suppose e and I are 

there is a 

If e and f 

Let G j be the I-reduction of G, Then the inductive assumption 
C in that contains A U {e} which is the required in G. 

adjacent, then there is an e j in the I -reduction G j of G, that 
COITeSD()ll<:ls to e. 'vVe the inductive to Gf for AU {ef}. 

then that f'very other than e has an end vertex in A. Then 
28. But IV(G)I 24. Hence, 24 ~ IV(G)I ~ 28. 

I = 24. Then there is only one 3-connected cubic graph that has 
For this graph the assertion holds. If I = 26, then there are seven 

cubic planar graphs that have For these graphs, the assertion 
if IV( G) I then G is and [12], G is hamiltonian and 

vVe note that the 3-connected cubic planar graph of order 24 has a set of fifteen 
vertices and an edge that is not cyclable [14]). This shows that Theorem 6.3 
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IS We made no to determine of fifteen or more 
vertices and an 3-connected cubic 

6.4 Let G be a 3-connected cubic planaT graph and A c V( G) with 

IAI and f aTe two unavoidable A then and faTe 

This follows from Theorem 6.3 and 

Theorem 6.3, we 
3-connected cubic 

ror:)OS:ltlCIH 1.5. II 

Theorem 6.5 If every cyclically 4-connected cubic planar 

zs then every 3-connected cubic planar graph is 

The of this theorem is similar to that of Theorem 6.3. 

7 endices 

will be labelled by the elements of the 
UAHi"U-h'H 0 and IV(G)I. 

ZIV(G)I and we do not dis-

7.1 Cyclically 4-connected Cubic Graphs 
of Order 14, 16 and 18 That Contain 

The are listed after the labels of the graphs. 

G(14.1). [12,13] G(16.1). [4,5] G(16.2). [4,7], [5, 6] 
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G(16.3). [0,1] G(18.1). [0,13]' [1, , [10, 11] G(18.2). [8,9], [15,16] 

G(18.3). [8,11]' [9, 10] G(18.4). [5,6] G(18.5). [4, .5], [10, 13], [11, 12] 

G(18.6). [10,11] G(18.7). [8,9] G(18.8). [1.5,16] 
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G(lS.9). 10] G(lS.10). [I, G(lS.l1). [1, 16] 

G(lS.12). [16,17] G(lS.13). [16,17] G(lS.14). [4,5] 

I~ I~ /0 !$ 
I \ 7 I 
I 8 ri/ I / ~, 

Vt=fJ --~-J2 Y 
G(lS.15). [1,16] G(lS.16): [16, 17] G(18.17). [11, 13]. 
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7.2 The Three NonhamiItonian Cyclically 
4-connected Cubic Graphs of Order up to 18 

The Petersen graph P 
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