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Abstract

In this paper, we obtain a necessary and sufficient condition for a 3-connected
cubic graph to have a cycle containing any set of nine vertices and an edge. We also
prove that in every 3-connected cubic planar graph any set of fourteen vertices and
an edge is contained in a cycle. As there is a 3-connected cubic planar graph that
has a set of fifteen vertices and an edge not lying on any cycle, the result is the best
possible.

1 Introduction

We consider 3-connected cubic graphs. The connectivity of a graph G is denoted
by #(G) and if S C V(G) then K(G — S) denotes the components of G — 5. A
component containing a cycle is called a cyclic component. A cyclic cut set is a cut
set S with each component of G'— S cyclic. The cyclic connectivity of a graph is the
size of a minimal cyclic cut set of the graph. The coboundary B(H,J) of subgraphs
H and J of G is the set of edges of G with one end in H and the other in J.

Let G be a graph and let R be a spanning subgraph of G. Define a graph H with
V(H) = K(R) in which distinct vertices z,y € V(H) are adjacent if there is an edge
of GG between the components = and y of R. This graph H is called a contraction
of G and denoted H = G/ R. Roughly speaking, each component of R is contracted
to a single vertex in the contraction (7/R, while keeping the adjacencies between
components. If R is a spanning tree of G then G/R = Ky, and if R = G — E(G)
then /R = (. These two contractions are called trivial.
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The subgraph R defines an equivalence relation on V' (G) where vertices of G are
equivalent if they lie in the same component of R. This defines a function

a:G — H.

This function is also called a contraction of G onto H. If such a contraction « maps
a set A of elements of G to a set B of elements of H, then we write

a:(G,A) — (H,B)

or a(G, A) = (H, B).

Let e € E((). If e lies on every cycle containing A then ¢ is called an unavoidable
edge given A. If e is excluded by every cycle containing A then it is called a forbidden
edge given A. In a hamiltonian graph G, an unavoidable edge given V() is called
an a-edge and a forbidden edge given V(G) is called a b-edge.

Let ABCV(GYUE(G)and ANB=10. f G~ B has a cycle containing A,
then we say that A is cyclable in G — B and denote this fact by A € C(G — B). Let
p = (m,n;m’,n). If for every A and B with V(A =m, |[E(A)|=n, |V(B)| =
and |E(B)| = n' we have A € C(G — B), then we say that  is a p-cyclable graph.
Denote this fact by G' € C'(m,n;m’,n’). The quadruple p of integers is called the
type of the pair M = (A, B). The parameter

£(G) = max{m : G € C(m,0;0,0)}

has been called the cyclability of + and studied extensively. If G ¢ C(m,0;0,0)
then we simply call G an m-cyclable graph. We may define parameters

7(G) = max{m : G € C(m,0;0,1)}

and

((G) = max{m: G € C(m,1;0,0)}.
These two parameters inform us about the unavoidable edges and forbidden edges
of G.

A contraction o : ¢ — H is said to be a p-primitive contraction if (1) A ¢
C(G — B) implies a(A) & C(H — «(B)), (2) the pairs (A, B) and (a(A), «(B)) have
the same type, and (3) [V(H)]| is the smallest with respect to (1) and (2). In this
case, H is called a p-primitive graph and the pair (a(A), a(B)) is called a p-primitive
pair of H.

Let e € E(G) and denote by G + 2. the graph resulting from the subdivision
of the edge e with a vertex z. g V(G). In Section 2 the integer 7(e) = (G —¢)
assigned to e will frequently be used. ‘

The following nine point theorem (see [15] and [16]) is well known.

Theorem 1.1 Any 3-connected cubic graph is 9-cyclable.
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Let P be the Petersen graph. If there is a contraction (G, A) — (P, V(P)) then
clearly A & C(G). As |V(P)| = 10, the above theorem is sharp. It was shown
that this particular contraction determines noncyclable sets of ten (see [10]) and
eleven (see [3]) vertices. Holton and the author [7] have recently shown that if G is
a 3-connected cubic graph and A C V(@) with |A| = 12, then either A € C(G) or
there is a contraction « : (G, A) — (P, V(P)).

Results such as the following theorem (see [15]) have been frequently applied in
the study of cyclability of graphs.

Theorem 1.2 Let G be a 3-connected cubic graph and A C V(G) with |A] = 5.
Then for any e € E(G), A € C(G —e).

This theorem cannot be improved without introducing exceptional graphs. The
Petersen graph P can be presented by taking two disjoint 5-cycles [1, 2, 3, 4, 5, 1]
and [6, 8, 10, 7, 9, 6] and joining a vertex u of the first cycle and a vertex v of the
second if v = v (mod 5). A graph () can be constructed using P. Subdivide the
edge [3, 4] with a vertex 11 and the edge [7, 10] with a vertex 12 and introduce
the new edge [11, 12]. The resulting graph is . Let Ap = {1,3,4,6,7,10} and
ep € {[1,6],[7,10],[3,4]}. Then Ap & C(P —ep). Also if Ag = Ap and e = [1,6]
then Ag & C{Q) — eg). The twisted cube is the graph

W =1[1,2,3,4,1]U[5,6,7,8,5] U {[1,6],[2,5],(3, 7],[4,8]}.

Let By = {1,2,7,8,[3,4],(5,6]} and Bp = {2,5,8,9,{3,4],[7,10]}. Then By ¢
C(W) and Bp &€ C(P).

Theorem 1.2 has been extended to cycles containing six vertices and avoiding
an edge in [10], where cycles through a set of four vertices and two edges were also
studied.

Theorem 1.3 Let (7 be a 3-connected cubic graph, A C V(G) with |A| = 6 and
e € E(G). Then A € C(G — €) unless there is a contraction « : G — P such that
oAy = Ap and ale) = ep, or a contraction §: G — Q such that f(A) = Ag and
Ble) = egq.

Theorem 1.4 Let G be a 3-connected cubic graph and let A be a set of four vertices
and two edges of G. Then A € C(G) unless there is a contraction o : G — W
such that «(A) = Bw, or a contraction 3 : GG — P such that 3(A) = Bp.

Theorem 1.3 has been extended to |[A| = T in [1]. We freely refer to [1] and do
not discuss the details here. The theorem of [1] has ten families of primitive graphs.
It is tedious to determine the unavoidable edges given a set of eight or more vertices.
The following result in [6] motivates us to study the forbidden edges given a set of
vertices. ‘

Proposition 1.5 Let G be a cubic graph and A C V(G). If G has no forbidden
edge given A then the unavoidable edges given A are independent.
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As we are often concerned about the nature of adjacencies of the unavoidable
edges, this proposition enables us to study it using the information on forbidden
edges. In P, take uv € E(P). If there is a contraction a : (¢ — P such that
a(e) = uwv € E(P) and o(A) = V(P) — {u.v} then clearly AU {e} ¢ C(G). The

converse of this assertion also holds [5].

Theorem 1.6 Let G be a 3-connected cubic graph, A C V(G), ¢ € E(G) and
[A] = 8. Then either AU {e} € C((G) or there is a contraction a - (¢ —s P such
that a(e) = wv € E(P) and o(A) = V(P) — {u,v}.

Corollary 1.7 If G is a 3-connected cubic graph, then any set of seven vertices and
an edge of G lies on a cycle.

Corollary 1.8 If G is a 3-connected cubic graph, then the unavoidable edges given
any set of seven vertices of G are independent.

connected. Let u,v € V(G) and e € E((). The edge ¢ can be subdivided by a
vertex z. without altering the connectivity of G— f. The situation where {u,v,2.} €
C(G — f) was characterised in [18]. From this result {u,v,e} & C(G = f) can be
characterised. That is, there is a contraction o : ¢ — K, such that a({u,v}) =
{1,2}, a(e) = [3,4] and a(f) = [1.2]. Here the complete graph K is given in the
obvious way by labelling the four vertices with integers 1,..., 4.

Consider deleting an edge f from a 3-connected graph G. Then G — f is 2-

Proposition 1.9 Let G be a 3-connected graph and A = {u,v} C V(G). Ife,f €
E(G), then {e,u,v} € C(G — f) unless there is a contraction « : (f — K, such
that a(A) = {1,2}, a(e) = [3,4] and o(f) = [1,2].

Let GG be a 3-connected cubic graph and S be any cyclic edge cut of size 3 in
G. Suppose that K(G —S) = {L,R} and L' = L U V(R), R = RUV(L). Then
the graphs H = G/R' and J = G/L' are called the 3-cut reductions of (} using S.
Note that G — S has precisely two components and the 3-cut reductions H and J
are 3-connected cubic graphs with order at least 2 less than that of (. For a cubic
graph ¢ and ¢ = wv € E(G) with N(u) = {ui,uz,v} and N(v) = {u,vy,v,}, the
graph

Ge = (G = {u,v}) U {uguy, vy}

is called the edge reduction of & using the edge e. The edges uju, and vyv, are

called the two new edges in the reduction.

Let G be a cubic graph and § = {wwi 1 0=1,2,3,4} be a cyclic cut set of four
independent edges. Suppose that K (G — S) = {L,R} and p,q ¢ V(G). Then the
graph

Ll{uy, uz) = LU {pqg, puy, pus, qus, qus }
is called the 4-cut reduction of G corresponding to the vertices uy,u, using 5. We
call p and ¢ the two new vertices in the reduction.
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2 Forbidden Edges in Small Graphs

We consider cyclically 4-connected cubic graphs of order not exceeding 18. All
graphs in this section can be found in the appendix.

If [V(G)] < 14 then G is contained in the catalogue produced in [8]. The graph
R = ((14.5) in the appendix is the only cyclically 4-connected cubic graph of order
not exceeding 14 which has a bedge. In R, let B = {k: 0 < k& < 9}. Then
B U{[12,13]} ¢ C(R). Any set of nine vertices and an edge is contained in a cycle
(i.e., ((R) = 9).

Proposition 2.1 Let (¢ be a hamiltonian cyclically 4-connected cubic graph of order
at most 14. Then ((R) =9 and for G # R, ((G) = |V(G)].

All hamiltonian cyclically 4-connected cubic graphs on 16 and 18 vertices with
b-edges were given in [17]. The b-edges were also listed. These graphs are labelled
by G(16.4),7 = 1,2,3 and G(18.1), 1 <i < 17. We computed the parameter ( for
each of these graphs. This computation yields the following result.

Proposition 2.2 Let G be a hamiltonian cyclically 4-connected cubic graph. Then

(a) If [V(G)| = 16 then ((G) > 9. More specifically,

C(G(16.2)) = ¢(G(16.3)) = 9, ((G(16.1)) = 14
and for all other G, ((G) = 16.
(b) If [V(G)| = 18 then ((G) > 9. More specifically,
¢(G(18.4) = 9 fori € {1,5,6,7.8,9,10,11},
C(G(18.2)) = 11,{(G(18.13)) = ((G(18.17)) = 12,
((G(18.12)) = ((G(18.16)) = 13,
C(G(184)) = 15 for i € {3.4,14,15}
and for all other G, ((G) = 18.

The Petersen graph P is the only nonhamiltonian cyclically 4-connected cubic
graph on 10 vertices. There are precisely two nonhamiltonian cyclically 4-connected
cubic graphs on 18 vertices. These three graphs are included in the appendix. The
three graphs are the only nonhamiltonian cyclically 4-connected cubic graphs of
order not exceeding 18. The parameter ¢ for these three graphs can be computed
easily.

Proposition 2.3 ((P) =7,((B,) = 11 and ((B,) = 13. The set
S =1{1,2,3,4,5.6,7,9,11,13,16,18,[14,15]}
is a smallest noncyclable set of By. B

We now summarise this section.

Proposition 2.4 Let G be a cyclically 4-connected cubic graph with V(@) < 18.
Then ((P) =T and for every G # P, ((G)>9. ®
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3 Primitive Graphs

Let & be a 3-connected cubic graph and let 4 C V(G), e € E(G) and |A] = 8.
Theorem 1.6 asserts that AU {e} € C(G) if and only if there is a contraction

a:G— P

such that a(e) = uv € E(P) and a(A) = V(P) — {u,v}. Let |A| = 9. If there is a
contraction & : ¢ — P such that a(e) = uv € E(P) and o(4) D V(P) — {u,v} then
certainly A U {e} ¢ C(G). In this case, we call AU {e} derived in G. The graph
pair (G, AU {e}) is a derived pair.

Let M = AU{e} and suppose that (G, M) is not derived. We construct primitive
graph pairs for M ¢ C(G).

Let @(A) = V(P)—u and a(e) = u. Then clearly AU{e} ¢ C(G). This primitive
pair is denoted by

(Hy, My) = (P, V(P)).

For Ky with V(K,) = {1',2/,3,4'}, we know that
{1, 2,3, 41} ¢ C(Ky = [1,27])

by Proposition 1.9. We also know that for P, {k € V(P):3 <k < 10} U {[1,2]} ¢
C(P). Let H = (K4 —1)U(P —1)U{[2,2,[5,4'),[6,3]}. Take a connected graph
L with u; € V(L), ¢ = 1,2,3,4 such that the graph

Hy = (H —{[5,4],[6,3}) U{[5,u1], [6, 2], [3', ua], [4', u4] }
is a 3-connected cubic graph. Then
My ={k:3<k<10}U{2,[3,4} & C(H,).

We have thus found another primitive graph pair.

We display four other primitive graphs in Figure 1. They are labelled by (Hy, M)
k = 3,4,5,6. That M, ¢ C(Hy) for k = 3,4,5,6 can be seen by Theorem 1.3 and
Theorem 1.4.

The family of the six primitive graphs constructed above is denoted by P. If
(G, M) is derived or contractible to a graph pair in the primitive family P, then
clearly M ¢ C(G). One of the main objectives of this paper is to prove the converse.

’

4 Application of a Computer

We perform the inverse of an edge reduction on a primitive graph. Is it possible
that in this way, we produce a primitive graph? In this section, we describe a way
of deciding this on a computer. We call a possible inverse of an edge reduction an
extension. For A C V(G) and e = zy € E(G), if 2,y ¢ A then we say that e is
A-free.
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H, : the first graph with the edge [16, 17]. Hy = (Hi)pean- He: the second graph
with the edge [18, 19] H5 = (H‘;)[lg,lg].

Figure 1: Primitive graphs

Assume now that G is a cyclically 4-connected cubic graph. Let A C V(@) with

|A| = 9. Suppose that G has an A-free edge f = zy and G is the edge reduction of
G using f. Let

a: (G AU{e}) — (Hp, M) € P
be the primitive contraction. Denote by
S(v) = a7(v) = {w € V(Gy) : a(w) = v}

the preimages of the vertices of Hy under the contraction a and T'(v) = (S(v))
be the connected subgraph induced by S(v). Since G is cyclically 4-connected, f
must be incident with a vertex in each such subgraph. Let ¢t be the number of such
nontrivial induced subgraphs. Three cases occur. (1)t =0, (2) ¢t =1 and (3) ¢t = 2.
Now the computation is performed as follows.

Let J be a candidate of Gy and let g,h € E(J). Subdivide the edges g and &

with vertices z, and z, respectively. ,Then the graph
G* = Ext(J;9,h) = (J + 25+ z) U {z,2,}
is called an eztension of type 1. ,

Let uw € V(J),g € E(J) and Ny(u) = {v; : © = 1,2,3}. Subdivide the edge g¢
with a vertex z, and the edge uu; with a vertex v;. Then an eztension of type 2 is
the graph ‘

G" = Ext(Ju,9) = (J + 25 +v1 + v2 +v3) U {uzy, V1Vg, V1 V3, U203}

Let u,v € V(J) and wi, z; ¢ V(J), 1 = 1,2,3. Assume that N (u) = {u; 11 = 1,2,3}
and N;(v) = {v; : © = 1,2,3}. Subdivide uu; with w; and subdivide vv; with z;,
1=1,2,3. Then an extension of type 3 is the graph

: 3 3
G™ = Fzt(J;u,v) = (J + Zwi + Z zi) U {uw, wywg, wiws, wiws, 2129, 2173, 2223 }-

=1 =1 -

63



u3
(b) Extension of type 2
Yo v
/C‘)12 2 Q\Z z
Y [OWE!

u w/ O\ v up v e Nl
o T o 0t oo L0—0 vy
\\ \\\{.‘1 . " /(’Zr
=} cs/ o %

us v3 Vs

(c) Extension of type 3

Figure 2: Extensions

This is illustrated in Figure 2.

We omit J in Ezt(J;a,b) when the graph J is clear from the context. On a
computer, these extensions have been constructed and certain cycle properties have
been verified. -

If (Gy, M) is derived then by Theorem 1.6, there is a contraction o : Gy — P
such that a(e) = uv € E(P) and a(A) = V(P) — {u,v}. Return the edge f to the
graph. Then the proof that M € C(G) is exactly the same as the corresponding
part of the proof of Theorem 1.6 (see [5]).

Assume that there is a contraction ¢ : J — H € P. Then G = G*.

(1) Extensions of type 1. Then Gy =J. Take each H € P, perform all noniso-
morphic extensions of H. The edge e will then be subdivided in each of the resulting
" graphs. We then check whether the graph is hamiltonian. If the graph is hamil-
tonian then M € C(G) and if the resulting graph is nonhamiltonian we determine
¢(G). _

H = H,. Recall the labelling of P and dssume that the vertex 1 is replaced by a
component K. Denote the neighbours of 2, 5 and 6 in K by 2/, 5, and 6. Without
loss of generality the graph G is obtained by the edge extension involving an edge
g in K and either the'edge [2, 3] or the edge (3, 4]. (i) G = Ezi(g, [2,3]). Then let
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z € g and y € [2,3]. The 4-cut reduction K(2, ) is a 3-connected cubic graph since
5 # 6" and 2 # 2. Then &(K(2,z) — ¢) > 2, and there is a cycle D in K(2,z) —¢
that contains € and p. Then the cycle

(D "P) U [2,7277>1075v479’67 8737?}71:]

contains A U {e}. Hence M € C(G). (i) G = Ext(g,[3,4]). The argument is
precisely the same as that of (i). This time y lies on the edge [3, 4] and the cycle

(D-pyul?,2,7,10,5,4,9,6,8,3,y,z]

shows that M € C(G).

H = H,. In the extension G, the edge f = zy must join an edge on the triangle
and an edge incident with {k : 2 < k < 10} but different from the edges forming any
cyclic cut set of size 3. Now precisely the same argument as in the case of H = Hy
shows that M is cyclable in G.

H = Hs;. Any cyclically 4-connected edge extension of H is a cubic graph on 18
vertices and we have already discussed these graphs in Section 1.

H = H,. If (g, h) is not any of (e;,[9,15)), (ef, [14,15]) and (ey, [14, 16]) then for
each G = Ezt(g,h), € is not a b-edge of G. ((e) > 15 in Ext(ey,[9,15]),((e) > 14
in Ext(es,[14,15]) and ((e) > 12 in Euxt(eys,[14,16]). Here e; denotes the edge
corresponding to e in the extension. '

H = H; and G = Ezt(g,h). Then ¢; is not a b-edge of G unless g = [7,8] or
[7,9] and h = [11,17] or [12,18]. The automorphism

o = (1,4)(2,3)(5,6)(8,9)(10,13)(11,12)(14,15)(17,18)

interchanges [7, 8] and [7, 9] and fixes the edge e; = [5,6]. Hence we consider only
g = [7,8]. In both Ext([7,8],[11,17)) and Ext((7,8],[12,18]), C(es) > 11. .

H = Hg and G = Ext(g,h). Then € is not a b-edge of G unless g = [7,8] or [7,9]
and h € {[11,17],[12,18],[14,18],{15,17},{16,17],[16, 18] }. The automorphism

o = (1,4)(2,3)(5,6)(8,9)(10,13)(11,12)(14, 15)(17, 18)

interchanges [7, 8] and [7, 9] and fixes the edge e¢; = [5,6]. Hence we consider
= [7,8]. In each case, ((e) > 13 in G. Hence any edge extension of each of the
graphs in Phas a cycle containing M. ‘

(2) Extensions of type 2. We may assume that # € T, the nontrivial subgraph
and y is the midpoint of an edge g of H. We replace the subgraph T' with a copy
of K4, perform the extension of type 2, subdivide the edge e and store the resulting
graph G*. Since « is a primitive contraction, a(M) C H and |a(A)| = 9.

Therefore |[ANT| < 1. We now show that any hamiltonian ‘cycle of G* corre-
sponds to a cycle containing M = AU {e} in G.

Proposition 4. 1 ]f G* = E:ct(u g) is hamzltoman then M € C(C)
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Proof. Let B(T,G=T) = {up; 11 = 1,2, 3,4} be the coboundary of T and G —T
with u; € . Let C be any hamiltonian cycle of G*. Then (' O (G* — E(K,)) is the
union of paths having nonempty even intersection with the set {u;:1=1,2,3,4}.
By permuting the labels when necessary we may consider the following two cases.

(1) €N(G* — E(K,)) is a single (uy,uy)-path 7. Consider the 3-connected cubic
4-cut reduction T'(uy,uy) with two new vertices p, ¢ ¢ V(G). Since [ANT| < 1,
T'(uy,uz) has a cycle D which contains ANT U {r} and avoids ¢. Now = U (D —p)
is a cycle in G containing M. ,

(2) CU(G" — B(K,)) is the disjoint union of an (uy,uz)-path 7 and a (ug, ug)-
path ’. By Theorem 1.2, T'(wy,u,) has a cycle containing AN T'U {p, ¢} avoiding
the edge pg. Then 7 Ur' U (D — {p, q}) is a cycle in G through M. B

By this result, M € C(G) can be proved by the hamiltonicity of G*. If G* is
hamiltonian then M is cyclable in G. If G* is not hamiltonian then we compute
C(e) in G*. If M is cyclable in G* then it is certainly cyclable in . The result
of computing is as follows. For H = H, (i = 1,2,3), each G* is hamiltonian.
For H = H,, each extension G* is hamiltonian except * = Ert(u,[2,6]) for u €
{14,15,16}. In G* = Ext(14,[2,6]), ((e) > 10, in G* = Ezt(15,[2,6]), ((e) > 13
and in G* = Ext(16,[2,6]), ((e) > 13. For H = Hs, each G* = Ezt(u,g) has a
hamiltonian cycle through e. For H = H, each G~ = Ezt(u,g) has a hamiltonian
cycle through e except Ext(16,[7,8]) = Ext(16,[7,9]) for which ((e) > 14. Hence
in each case M € C(G).

(3) Extensions of type 3. Let the two nontrivial components be 77 and 7T5,. In
this case the edge e is also subdivided and both T} and T3 are replaced by a copy of
K4. The resulting graph is denoted by G*. The proof of the following statement is
similar to that of Proposition 4.1. !

Proposition 4.2 If G* = Ext(u,v) is hamiltonian then M € c(@).
The number of cases is comparably small. The cases can be analysed both on a

piece of paper and using a computer. In each case, we show that M = AU {e} is
cyclable in G, We now summarise this sectjon.

Proposition 4.3 Let G be any cyclically 4-connected cubic graph, A C V(G), |A| =
9 and e € E(G). If

(a) (G, AU {e}) is not derived, and 4

(b) G has an A-free edge f # ¢ such that the f-reduction Gy of G is contractible
to a primitive graph pair (Hy, M,) € P,
then M € C(G). & -

5 Cubic Graphs

In this section, we prove that any set of nine vertices and an edge in a 3-connected
cubic graph, that is not derived, is contained in a cycle if and only if the graph pair
is not mapped onto a primitive graph pair given in Section 3 under a contraction.
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Theorem 5.1 Let G be a 3-connected cubic graph and let M be any set of nine
vertices and an edge of . Then either M € C(G), or (G, M) is derived, or there
s a contraction

o (GM) — (Hk,Mk) eP.

Proof. The proof is by induction on the order of the graph. For |V(G)| <12, the
truth of this statement is established by considering the graphs catalogued in [8].
Suppose that G is a 3-connected cubic graph with |V(()| > 14 and the statement
holds for all 3-connected cubic graphs with fewer vertices. Consider the following
two cases,

(1) G has a cyclic 3-edge cut S = {uv; : i =1,2,3}. Let H and J be the 3-cut
reductions defined in Section 1, with e in H. Denote the new vertex in H adjacent
to uy, ug and us by u and the new vertex in J adjacent to vy,v; and v by v. Let
a=|ANV(H)|.

(1.1) @ = 0. Suppose first that e & 5. By the main theorem of [10], either (AN
V(J))U{v} € C(J) or there is a contraction a : (J,(ANV(J))U {v}) — (P,V(P)).
If(ANV(J))U{v} € C(J) then let D be the cycle containing (AN V(J)) U {v}.
Suppose that D avoids the edge vvs. Since k{H — wus) > 2, H — uuy has a cycle ¢
that contains {u,e}. But

C' = (C—u)U(D —v) U {ujvy, uve}
is a cycle containing A U {e} in G. If there is a contraction
a: (L(ANV(N)) U {v}) = (B V(P)),

then let o be defined by o'(z) = a(z), for each z € J — v and ¢/(z) = afv) for
each z € H —u. Then « is a primitive contraction of (G, M) onto (H,, M;) € P.
If e € S then (G, M) is derived.

(1.2 a=1. Let e ¢ S and ANV(H) = {x}. Assume that for any 7 € {1,2,3}
the edge uu; can be avoided by a cycle in H through {e,u, z}. By the nine point
theorem there is a cycle D in J through (AN V(J)) U {v}. Suppose that vvz ¢ D.
Then let ¢ be a cycle in H through {e,u,z} avoiding uusz. Now C'in (1.1) is a
cycle in (¢ through M. Hence, suppose that one of the edges in {wu, : ¢ = 1,2,3}
is unavoidable given {e,u,z}. Let this edge be uuy. By Proposition 1.9, there is
a contraction ag : H — K, such that ag({u,z}) = {1,2}, an(e) = [3,4] and
ag(uug) = [1,2]. Also for each ¢ € {2,3}, uu; can be avoided by a cycle in H
through {e,u,z}. If there is a cycle D in J through (A N V(J)) U {vv}, then
suppose that D avoids vvs. Now let ' be a cyclé in H through {e,u,z} avoiding
uus. Again € in (1.1) is a cycle in G containing M. Suppose then that vv; cannot
be contained in a cycle of J through A N V(J). Then by Theorem 1.6, there is a
contraction

ay: (L(ANV() U {vvr}) = (P (V(P) — {u,v}) U {uv}).
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Let a be the mapping whose restriction to H — u is ay and that to J — v is ay.
Then « is a contraction from (G, M) onto (H,, My).

If e € S then let e = uyv; and consider the edge wuy instead of e. Then the
discussion is similar but in this case M € C(G).

(1.3) a € {2,3}. Let e € S. By Corollary 1.7, for any i € {1.2,3}, there is a
cycle D in J which contains (A N V(J)) U {vr;}. Assume that none of vu;, s an
unaveidable edge given (ANV(J))U{v}. Then by Corollary 1.7. there is a cycle (7 in
H through (ANV(H)) U {e,u}, which must avoid one of the edges uw, (i =1.,2,3).
We choose D to avoid the corresponding edge of vv;. The two paths (' —u and D -,
and a pair of suitable edges from S, give rise to a desired cycle in . Suppose that
there is an unavoidable edge in vo; given (ANV(J))U{v}. Then let it be vo,. Then
by Proposition 1.5, any one of vv, and vvs can be avoided by a cycle containing
(ANV(J)U{v}in J. In H there is a cycle C' which contains (ANV(H)) U {e.uuy }
by Theorem 1.4. Suppose that € excludes uus. Since vo; is unavoidable in J given
(ANV(J))U{v}, vvs can be avoided by a cycle D containing (A N V() U {vvy }.
Once again ¢ in (1.1) is a cycle in G containing AU {e}. If € € S then let ¢ = U v,
and consider wuy in H.

(1.4) a = 4. Let e € S. Assume that for any ¢ € {1,2,3}, there is a cycle in J
through (A N V(J)) U {v} avoiding vv;. By Corollary 1.7, there is a cycle ' in H
containing (A NV(H)) U {e,u}. Such a cycle ¢' must exclude one of uu,, say uus.
Let D be a cycle in J through (AN V(J)) U {v} excluding vvs. Then " in (1.1)
Is a cycle containing AU {e} in (. Hence, one of the edges {vv; : i = 1,2,3} is
unavoidable given (ANV(J)) U {v} in J. Let this edge be vv;. By Theorem 1.3,
there is a contraction

ay (S (ANV(I) U{vr}) — (P, Ap U{ep}) or (Q,Ag U {eg}).

For each i € {2,3}. the edge vv; can be avoided by a cycle through (ANV () U {v}.
If there is a cycle C'in H containing (ANV(H)) U {e, uuy }, then let uuy & (. J has
a cycle D containing (AN V(J)) U {v} which avoids the edge vvs. Then (" in (1.1)
is again a cycle of (¢ containing M. If uu; cannot be contained in a cycle through
(ANV(H))U {e}, then by Theorem 1.4, there is a contraction

ag: (H(ANV(H))U{e,uu}) — (W, Bw) or (P, Bp),

Low let a be a mapping whose restriction to H — u is ay and to J — v is ay. Then
« is a primitive contraction of (G, M) onto (Hy, M) for some k € {3,4,5.6}. If
¢ € S then let e = u;v; and repeat the above argument for vv, instead of ¢. In this
case the contraction ay does not exist. Hence M € C'(G).

In the following four cases, whether ¢ € S or not does not affect our discussion.

(1.5) a € {5,6}. By Corollary 1.7, there is a cycle C' in H containing (A N
V(H)) U {e,u}. Suppose that C avoids the edge uuz. By Theorem 1.2 there is a
cycle D in J which contains (AN V(J)) U {v} and avoids the edge vvy. Then ¢ in
(1.1) is a desired cycle in G
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(1.6) a = 7. Since AU {e}is not derived in G, (ANV(H)) U {u,e} is not derived
in H. Hence by Theorem 1.6 there is a cycle ¢ in H containing (ANV(H))U {u,e}.
Suppose that € avoids the edge uuz. By Theorem 1.2 there is a cycle D in J which
contains (AN V(J))U{v} and avoids the edge vvs. Then €7 in (1.1) is a cycle in
containing M.

(L.7) & = 8. Since AU {e} is not derived in G, (ANV(H)) U {u, e} is not derived
in H. We apply the inductive hypothesis to H. If there is a cycle ' in H containing
(ANV(H)) U {u,e}. Then assume that C' avoids the edge uus. By Theorem 1.2.
there is a cycle D in J which contains (AN V(J)) U {v} and avoids the edge vo,.
Then (C —w) U (D -~ v) U {wyvy,uzv,} is a desired cycle in (. Assume now that
(ANV(H)) U {u,e} is neither cyclable nor derived in H. Then by the inductive
assumption there is a contraction

a: (H(ANV(HY)U {u,e}) — (Hy, M) € P.

Let o' be defined by o/(z) = a(z) for each * € H — u and o'(z) = a(u) for each
z € J —v. Then ' is a desired primitive contraction.

(1.8) @ = 9. We apply the inductive assumption to (H, M). Assume that
M € C(H) and let C be a cycle in H through M. If u & C, then C itself is a cycle
of G through M. If u € C, then let uuy ¢ . There is a (vy,vy)-path 7 in the
2-connected graph J —v. But (€' —u) U {uyvy,u0,} Ur is a cycle of G through
M. Suppose then that the graph pair (H, M) is contractible to a primitive pair in
P. Then let o denote this contraction. Define o as o'(z) = e(2) for all z € H —u
and «'(z) = a(u) for all « € J —v. Then o' is a contraction of (G, M) onto the
corresponding primitive pair in P.

(2). Suppose that G has no cyclic 3-edge cut. Hence G is cyclically 4-connected,
and any edge reduction of G is 3-connected.

(2.1) Assume that there is an edge f # e which is A-free. Suppose ¢ and f are
independent. Let Gy be the f-reduction of . Then by the inductive assumption
either there is a cycle C'in Gy containing M or ((/5, M) is derived or it is contractible
to a primitive pair as in the statement of the theorem. If M € C(G;) then M €
C(G). T (G, M) is derived or it is contractible, then by Proposition 4.3, M € C(G).
If e and f are adjacent then there is an edge ey in Gy corresponding to e. We apply
the inductive assumption to (Gy, AU {es}). By Proposition 4.3, M € C'(G).

(2.2) Suppose now that every edge other than e has an end vertex in A. Then
V(G)] < 18, and the proof is completed by Proposition 2.4. &

We note that the nine point theorem, the main theorem of [10] and Theorem 1.6
can be proved as corollaries to this theorem. The adjacency of unavoidable edges
can be determined using this theorem. For the cyclability of a set of ten vertices
and an edge, an infinite family of primitive graphs can be constructed (see [4]).
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6 Cubic Planar Graphs

We show that every 3-connected cubic planar graph has a cycle containing any
specified set of fourteen vertices and an edge.

It is not difficult to show that every 3-connected cubic planar graph has a cycle
containing any specified set of five vertices and two edges.

Theorem 6.1 Every 3-connected cubic planar graph has a cycle containing any
specified set of five vertices and two edges.

Proof. Let A C V(G) and e, f € E(G). Subdivide e and f with vertices = and
y. Then H = G U {z,y,zy} is a 3-connected cubic graph and the edge reduction
Hy, is planar. By the main theorem of [1], there is a cycle (' in I containing
A" = AU {z.,y} avoiding the edge xy unless H is contractible to a graph in the
primitive family of [1]. But no edge reduction of any such graph is planar. Hence
the theorem is proved. B

The pentagonal prism T is obtained by taking two disjoint pentagons [1. 2, 3, 4,
5, 1] and [6, 7, 8, 9, 10, 6] and joining a vertex u of the first pentagon and a vertex v
of the second if v =u (mod 5). Take A = {1,3,4,6.8,9}, ¢ = [2,7] and f = [5,10].
Then there is no cycle in (7 that contains A U {e,f}. Tutte’s first example of a
nonhamiltonian 3-connected cubic planar graph was contructed using this fact. The
graph 7 shows that Theorem 6.1 is the best possible. We have not yet investigated
the situation for |A4] > 6.

It was shown that in any 3-connected cubic planar graph any set of nine vertices
Is contained in a cycle which avoids any specified edge (see [11] or [13]).

Theorem 6.2 Let (7 be a 3-connected cubic planar graph and A C V(G) with |A] =
9. Then for any e € E(G), A€ C(G —¢).

The main result in this section is the following.

Theorem 6.3 Every 3-connected cubic planar graph has a cycle containing any set
of fourteen vertices and an edge.

Proof. The proof is again by induction on the order of G. It goes exactly the
same as that of Theorem 5.1. In this case, however, the argument is much simpler.
First let [V(G)] < 22. Then the assertion was established by the fact that (7 is
hamiltonian and it has no b-edge [9]. Suppose then that G/ is any 3-connected cubic
planar graph with |V(G)| > 24 and the statement holds for every 3-connected cubic
planar graph of order smaller than that of G.

(1) Assume that G has a cyclic 3-edge cut S = {uivi, ugvg, uzvs}. Let H and J
be the usual 3-cut reductions with e in H.
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(1.1) Let A C V(J). By the inductive assumption, we have a cycle ) in ./ that
contains (A N V(J)) U {vv;}. Suppose that D also uses the edges vv,. There is a
cycle Cin H — uuz which contains {u, e} since x(H —uus) = 2. Then

C' = (C —u) U (D =) U {ugvy, ugvy }

is a cycle containing A U {e}.

(1.2) 1 < JANV(H)| < 5. If for every ¢ € {1,2,3} the edge vv; can be avoided
by a cycle in J containing (A NV (J)) U {v}, then let ' be a cycle in H through
(ANV(H))U{e, u} which exists by the inductive assumption. Assume that vy @ C.
Then let D be a cycle of J containing (ANV(J)jU{v} avoiding vvs. Then the cycle
C’in (1.1) 18 a cycle of G that contains AU {e} in this case. Hence assume that one
of the edges vv; (7 = 1,2,3) is unavoidable given (AN V(J)) U {v}. Let vvy be such
an unavoidable edge. Then any one of the two edges vv, and vvs can be avoided by
a cycle in J through (AN V(J))U{v} by Proposition 1.5. By Theorem 6.1, there is
a cycle C in H that contains (A NV(H)) U {e,uu;}. Suppose that uug ¢ ¢ and let
D be a cycle of J through (AN V(J)) U {v} avoiding the edge vvs. Then again ¢’
is a cycle of ¢ containing A U {e}.

(1.3) 6 < |[ANV(H)| < 13. By the inductive hypothesis, there is a cycle C in
H that contains (ANV(H))U {e.u}. Such a cycle ' must exclude one of uu;, say
uuz. By Theorem 6.2, J has a cycle D that contains (A N V(J)) U {v} excluding
vvs. Then €7 is a cycle containing AU {e} in G.

(1.4) A ¢ V(H). By the inductive hypothesis, there is a cycle ¢/ in H that
contains (ANV{H)) U {e}. If uw & €, then this is the required cycle in G. If uw € C'
then suppose that uus ¢ C'. Since J -- v is connected, it has a (v1,vy)-path =. But

(C —=u) U{uvg, vt Un
is a desired cycle in G.

(2). Suppose then that ¢ has no cyclic 3-edge cut. Hence G is cyclically 4-
connected, and any edge reduction of (7 is 3-connected.

(2.1) Assume that there is an edge f # e which is A-free. Suppose e and f are
independent. Let Gy be the f-reduction of . Then by the inductive assumption
there is a cycle C in Gy that contains AU {e} which is the required cycle in G.
If ¢ and f are adjacent, then there is an edge e; in the f-reduction Gy of G, that
corresponds to e. We apply the inductive assumption to Gy for AU {e;}.

(2.2) Suppose then that every edge other than e has an end vertex in A. Then
[V(GH] < 28. But [V(G)] > 24. Hence, 24 < |[V(G)| < 28.

Let [V(()] = 24. Then there is only one 3-connected cubic planar graph that has
a b-edge. For this graph the assertion holds. If |V(G)| = 26, then there are seven
‘3-connected cubic planar graphs that have b-edges. For these graphs, the assertion
holds. Finally, if |[V(G)] = 28, then G is bipartite and by {12}, G is hamiltonian and
has no b-edge. B

We note that the 3-connected cubic planar graph of order 24 has a set of fifteen
vertices and an edge that is not cyclable (see [14]). This shows that Theorem 6.3
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is sharp. We have made no attempt to determine cyclable sets of fifteen or more
vertices and an edge in 3-connected cubic planar graphs.

Corollary 6.4 Let G be a F-connected cubic planar graph and A C V(G) with
[Al = 14. Ife and [ are two unavoidable edges given A then e and f are independent.
Froof. This follows from Theorem 6.3 and Proposition 1.5. &

Employing Theorem 6.3, we have the following result. This result is significant
since there are 3-connected cubic planar graphs that are not 24-cyclable.

Theorem 6.5 If every cyclically 4-connected cubic planar graph G with V(G| <44
is 23-cyclable. then every 3-connected cubic planar graph is 23-cyciable.

The proof of this theorem is similar to that of Theorem 6.3.

7 Appendices

The graphs will be labelled by the elements of the ring Zyv(c), and we do not dis-
tinguish 0 and [V/(G@)].

7.1 Cyclically 4-connected Cubic Hamiltonian Graphs
of Order 14, 16 and 18 That Contain b-edges

The b-edges are listed after the labels of the graphs.

G(141). [12,13]  G(16.1). [4,5]  G(16.2). [4, 7], [5, 6]
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G(18.6). [10, 11] G(18.7).. 8, 9]

G(18.8). [15, 16]
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G(18.10). [1,16]  G(18.11). [1, 16]

G(18.9). [7. 10]

S .HWJ
/

14). [4, 5]

8

G(1

G(18.13). [16, 17)

G(18.12). (16, 17]

G(18.16): 16, 17)  G(18.17). [11, 13].

G(18.15). [1, 16]
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7.2 The Three Nonhamiltonian Cyclically
4-connected Cubic Graphs of Order up to 18

The Petersen graph P By ‘ B,
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