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A collection of k-matchings of K 1'1 with the property that every pair of 

independent edges lies in exactly A of the k-matchings is called a MATCH(n.k.'A.)-design 

and the analogous design for the bipartite graph Kn •n is called a BIMATCH(n,k,'A.)­

design. Constructions for various MATCH(n,k,A)-designs and BIMATCH(n.k,'A.)-designs 

are given. There is special emphasis on the case k = 3. 

1. Introduction 

Jungnickel and Vanstone [9] studied what have been called hyperfactorizations 
of index A of the complete graph K 2n' A hyperfactorization consists of a family of 

perfect matchings of K 2n so that every pair of independent edges of K 2n lies in exactly 

A of the perfect matchings. Their motivation for studying such designs was a desire to 
construct new t-designs. They showed that a hyperfactorization of K 2n of index A 

yields a 5-(2n,6,15A) design. Thus, hyperfactorizations of index 1 have come to be of 

particular in terest. 

In the present paper, we study a natural generalization of hyperfactorizations, 

namely, given positive integers n and k, n ~ 2k, is it possible to find a family of k­
matchings of K n (a k-matching being a set of k independent edges) so that every pair 

of independent edges of K n lies in precisely A of the k-matchings? A different 

generalization has been considered by Stinson [12]. 
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1.1 Definition. By a MATCH(n,k,A)-design we shall mean a collection of k­
matchings of K n (repetitions are allowed) so that every pair of independent edges of 

K n lies in exactly A members of the collection. Note that such a design is equivalent 

to a partition of the edges of AG. where G is the complement of the line graph of K nand 

the prefix A means that each edge has multiplicity A, into subgraphs isomorphic to Kk, 

Let Z denote the set of integers. There are two obvious necessary conditions 

for the existence of a MATCH(n,k,A)-design: 

(1) 

and 

(2 ) 

Condition (1) is determined by the number of k-matchings required and condition (2) 

reflects the number of k-matchings in which a particular edge lies. 

We now summarize the known results concerning matching designs. A 

MATCH(n,2,1)-ciesign trivially exists by simply choosing each pair of independent 

edges exactly once. The trivial M ATC H (n,k,'A)-design is obtained by taking 

k . f K I . "I ~n.4)(n-6) (n-2(k-l)) A all -matchmgs 0 n' n such a desIgn I\, = (k-2)!\ 2 2 ... 2 . n y 

MATCH(n,k,'A)-design which does not have every k-matching of Kn occurring with the 

same multiplicity is called non-trivial. 

The most extensively studied matching designs have been the 

MATCH(2m,m,A)-designs. Note that the trivial design is the only MATCH(6,3,1)­

design. It has been verified that neither a MATCH(12,6,I)-design nor a 

MATCH(8,4,I)-design exists [10,11] and Mathon [11] has shown that there are 

precisely two non-isomorphic MATCH(lO,5,1)-designs. Using the Mathieu groups 
M 12 and M 24' Jungnickel and Vanstone [9] showed that both a MATCH(l2,6,15)-

design and a MATCH(24,I2,495)-design exist. In particular, for A = 1, there is a 

well-known infinite family of designs. Since the nature of these designs will be 

required later we will describe their construction. 
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1.2 Theorem. (see Cameron [3, p. 133]) A MATCH(2Q +2,2a-1+I,I)-design 

exists for all a ~ 2. 

Proof. Take a hyperoval H in a projective geometry PG(2,2a). Let the 2a+2 
points of H be the vertices of the complete graph K2a+

2
. Each point of the projective 

geometry which does not belong to H detennines a perfect matching of the complete 

graph. It is not difficult to show that these perfect matchings produce a 

MATCH(2a+2,2a-1 + 1, I)-design. •• 

The following argument by Godsil, mentioned in [2]. establishes that non­

trivial MATCH(2m,m,'A.)-designs exist for all m. 
Let A == (aij) be the (O,I)-incidence matrix whose rows correspond to pairs of 

independent edges and whose columns correspond to perfect matchings, where aij 1 

if and only if the pair of independent edges corresponding to the i th row lies in the 

perfect matching corresponding to the ph column. Let 1 denote the column vector of 

length (2m-1)(2m-3)···5·3 all of whose entries are 1. Since each row of A has 

precisely (2m-5)(2m-7)···5·3 ones in it, Al == (2m-5)(2m-7) .. ·5·31 so that Ax == 1 has 

a solution over the rational numbers CQ. Hence, there is a basic solution over CQ. (A 

solution is basic when the columns of A corresponding to the non-zero entries of the 

1 · l' l' d d ) W lr2m)(2m-2) .02m)(2m-2) (2) so utIon are mear y In epen ent. hen m ~ 5, 2\ 2 2 < m!\ 2 2'" 2 == 

(2m-l )(2m-3)···5·3. Thus, a basic solution has a.t most ~e;)e,;-2) non-zero entries. 

Multiplyingby an appropriate integer c yields an integer solution of Ay == cl for some 

y :t; 1 and the resulting design is non-trivial. However, it may have many repeated 

perfect matchings. 

A MATCH(n,k,A)-design is said to be simple if no k-matching appears more 

than once. Boros, Jungnickel and Vanstone [2] use Theorem 1.2 as a basis for 

constructing simple, non-trivial MATCH(2m,m,'A.)-designs. As mentioned~ Godsil's 

proof given above produces non-trivial matching designs but gives no information 

about simplicity. 

We make the remark that if a point is deleted from a MATCH(2m,m,A)-design, 

then a MATCH(2m-l ,m-l ,'A.)-design results. 

2. Some constructions 

Much of the remainder of the paper will deal with the case when k == 3. Of 

course, by choosing all 3-matchings of K n' we obtain a MATCH(n,3,(ni
4

) )-design. 
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We would like to construct matching designs with smaller values of A. A first step in 

this direction is the following construction based on matching designs for the complete 

bipartite graph. 

2.1 Definition. By a BIMATCH(n,k,')..)-design we shall mean a collection of k­
matchings of K n,n (repetitions are allowed) so that every pair of independent edges of 

K n,n lies in exactly A members of the collection. 

Let Z denote the set of integers. There are two obvious necessary conditions 

for the existence of a BIMATCH(n,k,"J...)-design: 

"J...n2(n-l )2 
eZ (3 ) 

kCk-l) 

and 
"J...(n-1)2 

e Z. (4 ) 
k-l 

2.2 Theorem. If for n ~ 2k there exists a BIMATCH(n,k,Il)-design and a 

BIBD(v-n,n;y), then there exists a MATCH(v,k,A)-design, where A = 41ly(~~~). 

Proof. Let the v-set be V = {l,2, ... ,v}. For each n-set A C V, take a 

BIB D (v-n,n ,'1) on the set V -A. For each block B in the design, take a 
BIMATCH(n,k,Jl)-design on the complete bipartite graph KA,E' Consider a typical 

pair of independent edges 12 and 34. There are four types of n-subsets of V that 

contain exactly one endvertex from each edge. There are those that contain only 1 and 

3, only 1 and 4, only 2 and 3, and only 2 and 4. The number of such subsets is thus 

4(~~i). The total number of blocks containing the other two elements in the design is 

'1 and, for each such block, the pair of independent edges appears in Jl k-matchings of 
KA,B' Therefore, we have a MATCH(v,k,A)-design with the value of A as claimed. 

2.3 Corollary. There exist MATCH(n,3,A)-designs for all values of n ~ 6 

where A is as follows: 

1) A = 4(n-4) when n == O,4(mod 6), 

2) A = 8(n-4) when n == 1,3(mod 6), 

3) A = 12(n-4) when n == 2(mod 6), or 

4) A = 24(n-4) when n == 5(mod 6). 
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Proof. Trivially there is a BIMATCH(3,3, I)-design and it is well known (for 

example, see [6]) that if n == O,4(mod 6) there is a BIBD(n-3,3, 1), if n == 1,3(mod 6) 

there is a BIB D (n-3,3,2), if n == 2(mod 6) there is a BIB D (n-3,3,3), and if 

n == S(mod 6) there is a BIBD(n-3,3,6). Applying Theorem 2.2 yields the result. .. 

Notice that the trivial MATCH(n,3,A)-design has A = ~n-4 )(n-S), whereas, A 

is linear in n in the preceding result. 

2.4 Corollary. There exist MATCH(n,4,A)-designs for ail values of n ~ 8 

where A is as follows: 

1) A = 2(n-4)(n-S) when n == S,8(mod 12), 

2) A = 4(n-4)(n-S) when n == 2,1l(mod 12), 

3) A = 6(n-4)(n-S) when n == O,1,4,9(mod 12), or 

4) A = 12(n-4)(n-S) when n == 3,6,7,10(mod 12). 

Proof. A BIMATCH(4,4,l)-design is shown to exist in Theorem 4.2. A 

BIBD(n-4,4,A) exists if and only if A(n-4)(n-S) == O(mod 12) and A(n-S) == O(mod 3) 

[6]. Using the smallest possible value of A for each residue class of n modulo 12 and 

Theorem 2.2, the result follows. ... 

Notice that the trivial MATCH(n,4,A)-design has A = -§-(n-4)(n-S)(n-6)(n-7). 

Since it 1s known [6,7,8] that there is a BIBD(n-S,S,y) if and only if 

y(n-6) :: O(mod 4), y(n-S)(n-6) :: O(mod 20) and (n-5,5,y) :;t; (1S,S,2), and there is a 

BI MATCH(S,S, I)-design (see Theorem 4.2) a similar corollary can be obtained for 

M ATCH(n,S,A)-designs. 

What we are particularly interested in are matching designs with A = 1. In 

panicular, consider a MATCH(n,3,1)-design. With A = 1 and k = 3, conditions (1) and 

(2) imply that n == 2,3(mod 4). We first give two results that yield infinitely many 

values of n for which such matching designs exist. 

2.5 Theorem. If a is even and a ~ 2, then there is a MATCH(2 a+2,3, 1)­

design. 

Proof. By Theorem 1.2 we know that a MATCH(2a +2,2a - 1+l,I)-design 

exists. When a is even, 2a-1+1 == 3(mod 6) and there is a BIBD(2a-1+1,3,1). Replace 

each perfect matching in a M ATC H(2 a+2,2a-1+ 1, I)-design by a collection of 3-

matchings as detennined by the BIBD(2a-1+l,3,l) . •• 



2.6 Corollary. If a is odd and a ~ 2, then there is a MATCH(2a+2,3,6)-design. 

Proof. Using a BIBD(2o- 1+1,3,6) instead of a BIBD(2a - 1+1,3,1) in the 

preceding proof yields the result •• 

2.7 Definition. Let M be a subset of 3-matchings in a MATCH(n,3.1)-design. 
Let Mx = {{ab,cd}: {ab,cd.,xy} E M for some vertex y}. If for each vertex x, Mx is the 

set of edges of Kn x, then M is called a core of the MATCH(n,3,1)-design. 

Remark. The MATCH(2°+2,3,1)-design of Theorem 2.5 has a core M. To see 

this recall the proof of Theorem 1.2. Take the perfect matchings determined by the 

2Q+ 1 points on a fixed line outside the hyperoval and observe that they constitute a 1-
factorization of K 2Q+

2
, We obtain the core M by taking the 3-matchings that arise 

from each of these perfect matchings using a BIBD(2o-1+1,3,l) as in the proof of 

Theorem 2.5. 

2.8 Theorem. If there exists a MATCH(n,3,1)-design with a core, then there 

exists a MATCH(3n,3, I)-design. 
Proof. Take a MATCH(n,3,1)-design with vertex-set (1,2, ... ,n} and core M. 

Consider K 3n :and partition its vertex-set into three sets A = {a 1 ,a2'· ... a n }, 

B = {b 1,b2, ... ,bn } and C = {cl,c2""'cn } (Figure 1). We will say that the vertices 

(aj,b i'c i} are the vertices of level i. 

• For each edge ij E E(Kn), take a MATCH(6,3,1)-design on the vertices 

(ai,aj,bi,bj,ci,Cj} (Figure 2). In these 3-matchings we have every pair of independent 

edges whose vertices lie in precisely two levels of K 3n· 

A B C 

Figure 1: The vertices of K 3n 

44 



ai bi Ci 

I ~ --r .. .. .. 1 1 1 I X >K .. .. .. ~ '-.!.-' 
a j bj Cj 

X 1 
~ 1 ~ ~ >S< ~ 

~ ~ ::0 ~ ~ 
Figure 2: MATCH(6.3,1)-design 

4) For each 3-cycle (ijJr,ir) C E(K n)' take the following eighteen 3-matchings on the 

set of vertices {ai,aj.a"bj.bj'b"ci,cj,c,l (Figure 3): 

{aja"b/"ciCj}, {aia"ai"bibj}, {ap,.biaj,bi,}. {aia"cibj'c/,}, {al1,.a/"btc) , 

{aia"cjai'cjb,} , (b ib"Gllj'C/,} , {bib"ap"cjcj}, (bib"ajcj.bp,) , {bjb"C/lj'b/,} , 
{bib"a/"cjbjl. {bib"aibj'cp,}, {al.Q.j,b,.Q."cl:,L {bibj.cp"cl,}, {bicj,b,b"cjc,}' 

{aibj,a,.Q."cic,} , -Ibl.Q.j,Ci"cic,} , and {ajcj,ai"cl,)' 
Let cr be the permutation given by cr = (a, b, C ,). Add to the above 3-

matchings a further thirty-two obtained by applying cr and cr2 to each of the eighteen 
3-matchings given in Figure 3. For example, from the 3-matching {aia,. b/" c/i} we 

obtain the 3-matchings {aib,. bp" cli} and {al" bjb" cli} 
aj bi Cj .. .. .. 
.. .. .. 
a· J bj Cj 

• .. .. 
a r br Cr 

~ ~ ~: fI: ~ ~ (~ ~ 
~~l i~~ ::f. ~ {( ~ 
~~ :J.k :!E !':~ ~~ ~ 

3: 3-matchings for a 3-cycle in K n' 

45 



In the 3-matchings defined from a given 3-cycle in K n no edge lies in a level, 

and any pair of independent edges they contain has vertices from exactly three levels. 

Moreover, a close inspection of these fifty-four 3-matchings shows that every 

possible pair of independent edges of this type occurs exactly once in one of these 3-

matchings. Since such 3-matchings are defined for all possible 3-cycles, every such 

pair of independent edges in K3n lies in one of these 54.(3) 3-matchings. 

• For every 3-matching ((j,tr,ms} in the matching design MA TC H(n,3, 1), take the 

following twenty-seven 3-matchings given in nine groups of three each (Figure 4): 

ai 0 bi O CiO I ° 0 ° I ° 0 ° I aj 0 OjO CjO 0 0 0 0 0 0 

ate btO cto I • 0 X':-"o >S:: I 

• , 
." "0 

arO hr O Cr· • .. . 
ani' ~ CJII 

~ • X X 0 
I I 

bso 
. I 

as. 
Cs• 

0 '. 0 

~ 
0 • ~ ~ 0 • 

I • 0 x~ .. o >S:: I 
I 

.' "0 • • .' . 
::>.< • X X • · '. • • 
~ /. • • Z • • 

I • 0 

X·~"· >S:: I 
I . ' 

• • . ' ' . e' • 

·····1/· I • ... .. • .. I . )', 
.. ,.' .......... . .. • • ., .... 

Figure 4: 3-matchings from the MATCH(n,3, I)-design 
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MI = {{allj.ap"amcs }. {a,.aj'bp"cmas }, {allj.CtC"bmbs}}; 

M2 = {{b,bj.ap"cmbsl. (bjbj'bf,.bmcs ), {b,bj,cp,.amaS }}; 

M3 = {{cl}al,.bmas }' (cljtbta,.ambsl, {c,cj'CP"cmcs }); 

M4 = {{aibj'ap"cmas } {azbj'bp,.bmbsl. {ajbj,ctc"amcs}}; 

MS = ((bjcj'ap"bmcs ), {bjcj,btc"amas}, {bjcj,cp"cmbs}}; 

M6 = {{cl.aj,al,.ambsL {c,.Qj,bra"cmcsl. {Cllj'Cp"bmaS }}; 

M7 = {(aicj'ap"bmbs ), {aiCj.bp,.amCs}, {a,ctcf,.cmas}}· 

M g = {{b,.Qj,arb"amas }' (bz.Qj.brc"cmbs ), {biaj,cp"bmcs }}' and 

M9 = {(cibj'al"cmcs ). {clbj'bp"bmasl, {ciJj'cp"ambs}}' 

From each of these 3-matchings we obtain a further two by letting the 
permutations ~ .. and ~2 act on it, where ~ = (aib, cj)(ajbj c}(a( b l cl)(a, b, c,) 

(am bm cm)(as bs cs); for a total of eighty-one 3-matchings. Note that every pair of 

independent edges of K3n which has vertices from four different levels lies in one of 

the 3-matchings. To see this note that if the edges are {xiYj' ZtW,}, then there is a 3-

matching in the MATCH(n,3,l)-design containing the edges (ij, trl and careful 

scrutiny shows that among the eighty-one 3-matchings arising from it, is one that 
contains the pair of edges {xjYj' zew,}, Reflection shows that in the 3-matchings so 

far described we have every pair of independent edges occuring except when the 

edges cover three levels and one of them lies entirely in a level. To take care of this 

we are now going to delete some of these 3-matchings and replace them by others. 

For each 3-matching in the core M, replace the fifty-four 3-matchings 
9 

tx, ~(X): X E VMd obtained from it, by the following one hundred and sixty-two 3-
1=1 

9 
matchings. Begin with three copies of I = {X: X E vMil and three copies of ~(I) = 

1=1 
9 

(~(X): X E vMd. Let 1: be the permutation 1: = (a b e), and let x E {a,b,e}. 
t=l 

In the first copy of I, if XiX} is an edge of a 3-matching replace it by the edge 

aibi; if X(c(x)j is an edge of a 3-matching replace it by the edge biei; and if X(C2(x)) is 

an edge of a 3-matching replace it by the edge aiei. In the second copy of I, if XtYr is 

an edge of the 3-matching replace it by the edge xr't(x)t. In the third copy, if XmXs is 

an edge of the 3-matching replace it by the edge ambm; if xm't(x)s is an edge of a 3-

matching replace it by the edge bmcm; and if Xm1:2(x)s is an edge of a 3-matching 

replace it by the edge amem. In the first copy of ~(l), if XiX} is an edge of a 3-matching 

replace it by the edge alb}; if Xi't(X)} is an edge of a 3-matching replace it by the edge 

bjc); and if Xi1:2(x)} is an edge of a 3-matching replace it by the edge a}c}. In the 
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second copy of ~(l). if XtYy is an edge of the 3-matching replace It by tne eage X,'l:,X)r' 

In the third copy, if XmXs is an edge of the 3-matching replace it by the edge Qsbs; if 

xm't(x)s is an edge of a 3-matching replace it by the bscs; and if x m't 2(x)s is an 

edge of a 3-matching replace it by the edge ascs. For example if {ij, tr, ms} is a 3-
matching in M. then the three 3-matchings derived from those of M 1 U {~(X): Xe M 3 J 

are shown in Figure 5. 
There are two points to be noted. First, any two independent edges in K 3n' 

where one edge lies in a level and the other covers an additional two levels, occurs in 

one of the 3-matchings arising from the 3-matchings of M. Suppose one edge lies in 

level i and the other covers levels t and r. In M there is a 3-matching containing the 

pair {ij, tr} for exactly one value of j. So we need to study all 3-matchings arising 

from this 3-matching in M. A close study reveals that every edge in a level occurs 

with every other edge that covers a further two levels. The second point is that any 

pair of independent edges that occurred in one of the fifty-four 3-matchings of I u ~(l) 

also occurs in one of the one hundred and sixty-two 3-matchings defined from 

I u ~(1). Again this is revealed by a close study of the 3-matchings. These 

observations combined with our earlier comments imply that every 
edges in K3n lies in a 3-matching. 

of independent 

~ • ! • • ! • • 
• • • • • • • ,.------, 

I • • ----- .... I • • From Ml I , 
I I 

• • • • • • • 
>K >K .--....• 
••••• • •• • • • 
• • • I • • ! • • 
~ • • • • • 
/: ,'. • • • >: ." From ~(M3) ... ~.~ "' ........... ... ,~~ 

.. '. . -- ......... · ... 
• X • X • • • I I 
I I .--..... • '. • 

Figure 5: The 3-matchings derived from Ml u {~(X): XeM 3 } 
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In fact, we have shown that every pair of independent in lies in 

exactly one 3-matching. However, this also follows by counting the total number of 3-

matchings: From the first step we have (~) 15; from the second (3)·18-3; and from the 

third «(~)("/)/6) - IMI)·81 + IMI·(162+27). Noting that IMI :::: n'("i
1
)/12, we find 

that the total is indeed e2
n)e;-2)/6 as required. ... 

3. 

2.9 Corollary. If a is even. there is a MATCH(3·2a+6,3, I)-design. 

Proof. This follows from Theorem 2.8 and the remark after Definition 

In.-'.:lLHleS:U!11S for small values of n 

Recall from Section 2 that a MATCH(n,3,1)-design can exist only if n 2, 3 (mod 4). 

We will now consider the existence of these designs for small values of n. As we 

have observed in 2, there is a MATCH(6,3,1 ru.',-,.;)!;;;'H. 

3.1 Theorem. There is no MATCH(7,3,1)-design. 

Proof. If there exists a MATCH(7,3, M, there are thirty-five 3-

in M to condition (1). Condition that each xy of 
K 7 lies in five 3-matchings of M and, thus, these five 3-matchings must cover all the 

edges of {x,y}. 

Each vertex x lies in precisely thirty because each of the six 

edges incident with x lies in five 3-matchings. Consider the five 3-matchings of M 

that miss the vertex x. We prove they must be edge-disjoint. If not, two of them 

have an yz in common. The union of the remaining two of these two 3-
matchings must be a 4-cycle on the vertices V(K 7)- {x,y,z}. The remaining three 3-

matchings containing the edge yz must cover the edges of K T {y,z} with a 4-cycle 

removed, but this is impossible. 
Now add a new vertex w to K7. To all five 3-matchings missing the vertex x, 

add the edge wx. Do this for each vertex of K7. This gives a MATCH(8,4,1)-design 

which, as mentioned in Section 1, does not exist. Therefore, there is no 

MATCH(7,3,1)-design. 

The next value is n = 10, and we do not know of the existence of a MATCH(l0,3,1)­

design. 
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3.2 Theorem. There is a MATCH(ll ,3, I)-desIgn. 
Proof. Let V(K ll ) {u 1,u2' ...• uu} and let a' be the permutation given by 

(j' = (ul u2 u3 ... ull)' Consider the permutation (j acting on E(K 11) induced by a', In 

the decomposition of 0' into disjoint cycles. there are five cycles of length 11. One 
cycle contains the edge u 1u2' another cycle contains the edge u 1u3' another contains 

u 1u4' another u1us, and the last one ulu6, 

We take the following 3-matchings and let 0' act on each of them: 

(u 1 ~,u5u9,u7ull). (u1 ~,u6ulO,ul1 u4), {ulu6,u4u7'ulO~}, {u 1u6,u7ulO,u ll u3), 

(ulu3,u4u5'~ulOJ. {ulu3,U6U7,Ug~}, (ulu3,U5Ug,U6~), {ulu3,UgUll,UlO~L 

(u 1u4,uSu6,ugu9). {u 1u4,u6u7'ulOu ll }, {ul~.u6ull,~u3}, (ul~,u4u9'uSulO}, 

(u 1uS,U3Ug,UlOu4}, {ulu5,~u7,u4u9}. {uluS,U6Ug,U7~}. (ulu5,u4u6,ull~), 

{u1 u6,U2U4,UgUlO}, {ulu6,u3u5,ull~}. {ulu4,~u6,ulOu3}, (u 1u4,u6ulO'u7u ll }, 

(u1 u2,ulOU3,U6Ug}, {u 1u2,U3Ug,U4u7}, (ul~,ull US,UgUlO), (u 1uS,u6u ll ,ulOu2}, 

(u 1 u5,u9ull ,u4u7)' (u1 ~,u3u7,ulOu4). {ul~,u4u8,ull u3}, {u 1u2,u3u5,u6u9}, 

{ Ii 1 Us ,u9u3 ,~u4 }, and {u 1 u6'U7U9,UgU 11 } . 

This gives a suitable family of 3-matchings. ... 

At this point recall that there is a MATCH(n,3, I)-design if and only if there is a 
partition of the edges of the complement of the line-graph of K n into 3-cyc1es. Nash-

Williams (see [1, p. 237]) has conjectured that if G is a graph with IV(G)I = n Z 15, in 

which each vertex has even degree at least 3; and IE(G)I is a multiple of 3, then the 

edges of G can be partitioned into triangles. Should this conjecture be true it would 

immediately imply that MATCH(n,3,1)-designs exist for all n, n == 2,3 (mod 4), except 

n = 7 ,and perhaps n = 10 and n = 14. 

The next design we have been able to construct is a MATCH(15,3,1)-design. 

We do not know if a MATCH(l4,3,1)-design exists. 

3.3 Theorem. There is a MATCH(l5,3, I)-design. 
Proof. Let G denote the complement of L(K IS)' Let a denote the permutation 

acting on V(G) induced by the permutation a' = (va VI , .. V14) on the vertices of K 15' 

The disjoint cycle decomposition of cr has seven cycles of length 15. Let Gi , 1 ::; i::; 7, 

denote the graph K 15 with all edges of length i removed. The graphs G l • G2, ... , G7 are 

the subgraphs induced on the cycles of a by G. Colboum and Rosa [3J have proved 

50 



that such a graph has an edge-partition into triangles, Thus, it suffices to prove that 

the remainder of the edges of G can be partitioned into triangles. 
We shall say that the edge from ukuHk of G i to uyuY+j of G j has jump r - k 

computed modulo 15 on the residues 0, 1 •...• 14. The edges joining Gj to Gj in G are all 

possible edges except those of jumps 0, i, i-j, and -j from Gj to Gj" 

There exists a BIBD(7,3,l) on the element-set G l • . .. , G7, Let {Gi,Gi'G k } 

be one of the blocks, and consider the sub graph of K 15,15,15 defined by it. Under the 

action of cr, the missing edges in this sub graph can be partitioned into the triangles: 

{u l UH 1 ,U1Uj+l 'UIUk+l}. {UIUHl'UH 1 UHj+l 'Ui+ l-kUHl}' 

{U I UHl ,Ui-j+l UHl 'UHl uHk+l)' and (uluH 1 ,U_j+ 1 Ul ,u-k+l ul}' 

These triangles define a partial latin square of order 15, say A = (a rs)' byars = t if and 

only if (uruHr,UsUj+s,UtUk+l) is one of the triangles. Clearly. a completion of this 

square to a latin square yields a partition of the edges of the tripartite subgraph on 
G j U Gj U Gk into triangles. 

Shown below are the seven triples of an BIB D (7,3, l) and the first row of a 

latin square associated with each, where the boldface entries correspond to the 
missing triples. The remainder of each square is determined by Qi+tJ+t = aij + t, with 

calculations modulo 15. 

G1,G2,G4: o 12 7 10 8 4 9 2 14 6 3 5 13 111 

G2,G3,G5: o 3 12 14 8 6 11 13 5 1 9 4 10 7 2 

G3,G4 ,G6: o 4 13 12 6 11 7 14 1 8 5 9 2 10 3 

G4,GS,G7: o 13 11 7 12 1 9 6 3 10 8 2 14 5 4 

GS,G6,G1: o 13 12 11 8 4 7 3 10 14 2 9 6 1 5 

G6,G7,G2: o 7 3 11 8 2 4 1 13 12 5 10 14 9 6 

G7,G 1,G2: o 9 6 2 10 14 7 4 13 11 5 3 8 1 12 

This completes the proof of the theorem. 

The proof technique used for Theorem 3.3 can be generalized whenever 

n == 3(mod 12). Then n is odd, (~) - n == O(mod 3) and == l(rnod 6). Thus, each G i 

has a partition into triangles [4] and there is a BIBDe;1,3,1), All that needs to be 

shown is that the partial latin squares corresponding to the blocks of the 

BIBDC;1,3,1) can be completed. This suggests the following question. 
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3.4 Question. Does there exist an N such that if four transversals of a partial 

latin square of order n ~ N are prescribed, then the square can always be completed? 

More generally, does there exists an N(k) such that if k transversals of a partial latin 

square of order n ~ N(k) are prescribed, the square can always be completed? 

The following shows that N(4) ~ 10. Let the first row of a 9 x 9 partial latin 
square A = (at} be 1 7 '" •• '" • 6 2, where", denotes an empty cell, and let the 

remaining entries be defined by ai+tj+l = aU + t if aU:l- • and ai+tJ+t = ... if ail =., This 

cannot be completed to a 9 x 9 latin square. 

4. Bipartite matching designs 

It is apparent from Theorem 2.2 that bipartite matching designs are important in 

the construction of matching designs. This naturally leads to the consideration of the 

existence of BIMATCH(n,k,'A.)-designs with A. small. In the important special case 

that k = n, conditions (3) and (4) are always satisfied for 'A. = 1. This suggests the 

possibility that a BIMATCH(n,n,l)-design exists for all n ~ 2. The following result 

gives one way to obtain bipartite matching designs. 

4.1 Proposition. If a BIMATCH(n ,n, 1 )-desig n exists and there is a 

BIBD(n,k,'A.), then there exists a BIMATCH(n,k,'A.)-design. 

Proof. For each perfect matching M of a BIMATCH(n,n,I)-design, take a 

BIBD(n,k,'A.) D with the n edges of M as the points of D. For each block of D, take 

the k-matching made up of the edges corresponding to the set of points in the block. It 
is easy to see that each pair of independent edges in K n,n lies in precisely 'A. k-

matchings. 

If we knew that a BIMATCH(n,n, l)-design existed for all n ~ 2, then we could 

apply Proposition 4.1 to prove a variety of results. However, we do not know whether 

or not a BIMATCH(n,n,I)-design always exists. Nevertheless, we can prove the 

following result. 

4.2 Theorem. There exists a BIMATCH(n,n,I)-design whenever n is a prime 

power. 
Proof. Since n is a prime power, there exists a complete set A 1,A2 • .. :, A n-1 of 

mutually orthogonal latin squares of side n. Let Mi,!' M i ,2' ... , Mi,n be the n perfect 

matchings of Kn,n corresponding to the latin square Ai' i = 1, 2, ... , n-l. This yields 
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n(n-l) perfect matchings. If the same pair of independent edges xy and uv appears in 

two distinct perfect matchings in this set, there are two distinct latin squares each of 

which has the same entry in the (x,y) and (u,v) cells. This contradicts the 

orthogonality of the two squares. It then follows that we have a BIMATCH(n,n, 1)­

design whenever n is a prime power. .. 

While the existence of a complete set of mutually orthogonal latin squares of 

side n implies the existence of a BIMATCH(n,n,l)-design the converse need not be 

true. There must be n(n-l) matchings in the BIMATCH(n,n, but 

there is no requirement that they have a partition into n-l sets of n matchings 

so that every corTesD01'1CiS to latin square. 

4.3 Corollary. If n is a prime power and n 3, there exists a 

BIMATCH(n,3,A)-design with A taking on the following values: 

(i) AI, when n == 1 or 3(mod 6), 

(ii) A when n == 4(mod 

(iii) A 3, when n 5(mod 6), and 

(iv) A == 6, when n == 2(mod 6). 

There is another method for constructing B 1M AT C H (n, 3,1 gn s. 

Conditions (3) and (4) imply that n 1 or 3(mod 6) must hold for a BIMATCH(n,3, 1)­
design to exist. Let the bipartition sets of K n,n be (i 1: 1 ~ i ~ n) and {i2: 1 ~ i ~ n} . 

Take a BIBD(n,3,1) with blocks T, For each block T == {a,b,c} E T, take all six 3-
matchings on K3•3 with vertex bipartition (al,b1,c 1} and {a2,b 2,c2}' For each triple 

{a,b,c} of {l,2, .. "n} which is not a block of T, take the two 3-matchings {a 1b2, b1c2' 

c1a2J and {aIc2' b1a2' c1b2}. At this point all of independent edges in Kn•n of the 

form x 1Y2 and u1v2' where l{x,y,u,v}1 :::;; 3, appear in one 3-matching. Only pairs of 

edges of the form x 1Y2 and u 1v2, where l{x,y,u,v}1 == 4, do not appear in any 3-

matching. 

To finish the . construction, we use a MATCH(n,3, I)-design which requires that 

n == 2 or 3(mod 4) and, because of the above conditions on n, we see that we are 

restricted to n == 3 or 7(mod 12). For each triple {ab,cd,ef} in the MATCH(n,3,1)­
design, we take the 3-matchings {a 1b2• c1d2, e/2}. {a 1b2, dlc2,fle2}, {b 1a2' c1d2, 

f 1e2 }, and {b1a2' d1c2' e/2}' Every pair of independent edges of Kn,n now appears 

precisely once. 
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Unfortunately, none of the MATCH(n,3,1)-designs arising from Theorem 2.5 

and Corollary 2.9 satisfy n == 3 or 7(moo 12), The only one available to us is a 

MATCH(l5,3,1)-design so that the following result is proved, 

4.4 Proposition. There exists a BIMATCH(15,3,1)-design. 

5. A comment on t-MATCH(n,k,A.).designs 

In the same spirit as MATCH(n,k,A.)-designs were defined, we can also define 

a design in which we ask that every subset of t independent edges lies in exactly A. k­

matchings. The notation for this will be t-MATCH(n,k,A.)-design. Godsil's proof, 

given in Section- 1, can be generalized to show that non-trivial t-MATCH(n,k,A.)­

designs exist. The number of columns in the incidence matrix is 

and the number of rows is 

Thus, the number of rows is smaller than the number of columns when k > t and 

n ~ 2(k+t). 

We can generalize the idea used in Corollary 2.3 for constructing 

MATCH(n,3,A.)-designs to construct t-MATCH(n,k,A.)-designs. We illustrate this 

using Steiner quadruple systems 3-(v,4,1), which exist exactly when 

v == 2 or 4(mod 6) [5]. Let n == 0 or 2(mod 6) and let N = (1 ,2, ... ,n). For each 

___ +,{a=,~aE (~), choose a 3-C1'1-4,4,l) desig!l on N-la~c,d}. For every block __ _ 

(iJ,k,r) of the design, take the 4! 4-matchings in K4,4 with vertex partitions (a,b,c,d) 

and {iJ,k,r}. 

To see that this gives us a 3-MATCH(n,4,8(n-6))-design, consider the three 
independent edges 12, 34 and 56. They come from designs on N - ( 1,3,5 ,x 1 ) , 

N - { 1,3 ,6,x2} , ... , N - {2,4,6,xS}' where Xi e {I ,2,3,4,5,6}, an~ so has n-6 possible 

values in each case. Notice that the trivial 3-MATCH(n,4,A.)-design has A. = (ni6). 

The preceding method will not be fruitful in general because little is known 

about t-designs for t> 4. 
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