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ABSTRAC"T 

A construction method for semiregular group divisible designs is given. This method 

can be applied to yield many classes of (in general, non-symmetric) semiregular group 

divisible designs whose duals are semiregular group divisible. In particular, the method 

can be used to construct many classes of transversal designs whose duals are 

serniregular group divisible designs, but not transversal designs. Also, some of the 

semiregular group divisible designs the construction method yields can be used to 

construct self-dual regular group divisible designs with two groups of points and 

blocks. Four infinite classes of such regular group divisible designs are constructed. 

1. INTRODUCTION 

Group divisible designs whose duals are also group divisible have received 

some attention (see [3] and [13]). Under the assumption that repeated points and 

repeated blocks are not permitted, Mitchell [13] has shown that, if ~ and its dual t 
are both group divisible, then ~ and t are each semiregular or ~ is symmetric and ~ 
and t are each regular. Some infinite classes of self-dual serniregular group divisible 

designs are known. Until recently, apart from the members of a class of self--dual 

semiregular group divisible designs given by Jungnickel ([11], p.282), the known 

self-dual semiregular group divisible designs were all self-dual transversal designs 

(such as those that arise from a generalized Hadamard matrix), On the other hand there 

seem to be no infinite classes of non-symmetric semiregular group divisible designs 

whose duals are semiregular group divisible in the literature (although two pairs of 

mutually dual semiregular group divisible designs appear in [5]). In a recent paper 

([14]) the author has used certain substructures of symmetric BIBDs to obtain 
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two infini te classes of, in general non-symmetric, semiregular group divisible designs 

whose duals are semiregular group divisible. The symmetric group divisible designs in 

one of these classes ([14], Theorem 3) have the parameters of the designs of Jungnickel 

mentioned above. The symmetric group divisible designs in the other class ([14], 

Theorem 2) are new. However, the method of [14] is of limited applicability. In order 

to obtain a better appreciation as to what semiregular group divisible designs with 

semiregular group divisible duals exist more powerful construction methods are needed. 

In Section 4 of this paper a method of constructing such group divisible designs is 

given. This method is shown to yield many infinite classes of semiregular group 

divisible designs whose duals are semiregular group divisible, some of which contain 

new symmetric examples. Many of the classes obtainable contain only non-symmetric 

examples since they contain only transversal designs whose duals are semiregular group 

divisible designs but not transversal designs. The method of Section 4 is, in fact, a 

generalization of the method introduced by Shrikhande and Raghavarao [18] in order to 

construct affine a-resolvable designs. 

The situation regarding regular group divisible designs whose duals are group 

divisible is as follows: First, such regular group divisible designs are self-dual. (We 

give a simple proof of this result of Mitchell [13] in Section 3.) Second, a range of 

self-dual regular group divisible designs are known. (For some examples see Bose [3], 

pp 95-96, and Dembowski [7], Section 7.2). Indeed, almost all of the known 

symmetric regular group divisible designs are self-duaL The only known infinite 

classes of exceptions to this appear in Jungnickel and Vedder [12] and Rahilly [15]. 

Regular group divisible designs have some properties in common with BIBDs. 

For example, the number of blocks of a regular group divisible design is greater than or 

equal to its number of points. Intuitively, the closest a regular group divisible design ~ 

comes to being a symmetric BIBD is when ~ is self-dual and has two groups of points 

and two groups of blocks. (The dual of a regular group divisible design cannot be a 

BIBD.) Eight such regular group divisible designs are given in [5]. These designs, 

however, have "trivial" complements which are each simply a pair of disjoint 

symmetric BIBDs. It seems to the author that a construction method which yields 

self-dual regular group divisible designs with two groups of points and blocks and with 

non-trivial complements would be of interest. In Section 5 we show that the existence 

of a self-dual semiregular group divisible design whose parameters satisfy a certain 

simple condition (equation (15) implies the existence of a self-dual regular group 

divisible design with two point and block classes and non-trivial complement. Four 
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infinite classes of such designs are constructed. The self-dual semiregular group 

divisible designs which lead to two of these classes are obtained by a double 

application of the construction method of Section 4. In Section 5 an infinite class of 

self-dual regular group divisible designs with more than two point and block classes is 

also constructed. 

In regard to the early sections of this paper, Section 2 contains basic definitions 

and facts concerning group divisible designs and resolutions of tactical configurations 

and in Section 3 some general properties of group divisible designs whose duals are 

group divisible are given. To a large extent, the constructions of Sections 4 and 5 rely 

on having available a supply of self-dual transversal designs. At the end of Section 3 

constructions for self-dual transversal designs, due to various authors, which involve 

generalized Hadamard matrices are mentioned. 

We treat designs as incidence structures in the manner of (7]. We denote the 

set of points of a design incident with a block B by (B). 

2. GROUP DIVISIBLE DESIGNS 

A tactical configuration with v points, b blocks, r blocks on each point and k 

points on each block is called a (v,b,r,k)-configuration. A (v,b,r,k)-configuration 

(,9),!lJ , j) is said to be a group divisible design (GDD) if there is a partition of ,9)into 

"groups" ,9)1'" ·,,9)m
2

' where m2 ~ 2, such that there are integers m I ~ 2 and Al and 

A2 such that 

(a) 1311 = mI for all i = 1" .. ,m2, 

(b) any two points common to a group are on Al blocks of !lJ, 

(c) any two points in different groups are on A2 blocks of !lJ, and 

(d) Al *- A2 . 

We say that such a GDD '1 "has parameters v,b,r,k; ml' m2; AI' A2". We also say that 

,9)1" .. , ,9) m
2 

form a group division of '1. 

The parameters of a GDD satisfy the following equations 
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and 

(1) 

(2) 

(3) 

Let A be an incidence matrix of a ODD '# with parameters v,b,r,k; mI' m2; AI' 

A2' The eigenvalues of AA t are rk, r - Al and rk vA2 with respective multiplicities 

1, v - m2 and m2 - 1. Since AAt is a Oram matrix we must have rk - vA2 ~ O. 

Oroup divisions can be exhaustively classified into the following mutually exclusive 

types: 

1. Singular for which r = AI' 

2. Semiregular for which r > Al and 

rk = vA2 (4) 

3. Regular for which r > Al and rk > VA2' 

Since a ODD has a unique group division we can apply the terms "singular", 

"semiregular" and "regular" to ODDs as well as to group divisions. 

Clearly, for a semiregular ODD we must have 

(5) 

Also, a regular ODD is of rank v ([7], pA) and so we must have b ~ v for regular 

ODDs. It is also easy to show that a ODD '# has repeated points if and only if '# is 

singular. 

These results for ODDs appear in Bose and Connor [4]. 

Next, let k > 0 and m2 ~ 2. An a-resolution of a (v,b,r,k)-configuration 

'6 = (.9',!l1, j) is a partition $1"'" 3J- of.31 such that each point of .9' is on 
. m2 

precisely a blocks of each block class ~. If.311,···, %2 is an a-resolution 
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of rs = (.:JJ,!iJ, .7), then the substructure of rs defined by .:JJ and c1{ is a (v, I ~ I ,a,k) 

-configuration and so I ~ I is independent of i. Clearly I c1{ I = ~ m l say) 
m2 

for i = 1, " ,m2. It follows that a = r A I-resolution of a (v,b,r,k)-configuration 

is called a parallelism. 

Let ~ = (.:JJ,!iJ,J) be a semiregular ODD with parameters v,b,r,k; ml' m2; AI' 

A2 and with groups .:JJI ,· . . ,.:JJ m
2 

Bose and Connor [4] have shown that each block of 

!iJ meets each !A in ~ points. A necessary condition for such a 'Ii. to exist is that 
1 m

2 
(f' 

m21 k. Clearly the groups of '1 fonn a (~2]-<"esOlUtiOn of 'I (the dual of 'fl. From 

(2), (3) and (4) we ream! y obtain Al (m 1 1) r (~2 - 1]. The substructure of '1 

defined by .9i and .2is an (m I , b, r, k A1)-design, provided m2 :t k. 

It is not difficult to show that the groups of a ODD ~ fonn an a-resolution of 

only if ~ is semiregular. An a-resolution !iJI ,· .. ,!iJ- of a m2 

(v,b,r,k)-configuration is said to be an affine a-resolution if .21"'" ~ is a 
2 

(necessarily semiregular) group division of ~. 
Suppose ~ is a semiregular ODD with parameters v,b,r,k; mt' m2; AI' A2. 

Solving (1), (2), (3) and (4) for v,b,r and Al in tenns of k, mt' ffi2 and A2 yields that ~ 

has parameters 

(6) 

If Al = 0, then k = m2 and ~ has parameters 

(7) 

A ODD with parameters (7) is called a transversal design. 
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3. DUAL PROPERTIES 

Consider a ODD '1 whose dual ~ is also a ODD. Under the assumption that 

'1 has no repeated points or repeated blocks, Mitchell [13] has shown that 

(a) '1 and ~ are each semiregular, or 

(b) '1 and ~ are each regular and '1 is symmetric. 

REMARK. It is possible for a semiregular ODD '1 to be such that ~ is a singular 

ODD. Let !t'be an affine a-resolvable BIBD and '1 be a multiple of !if. Then '1 is a 

semiregular ODD and ~ is a singular ODD. 

Let '1 be a semiregular ODD with parameters v,b,r,k; m!, m2; AI' A2 and ~ 

be a semiregular ODD with parameters b,v,k,r; m I, PI' P2' Then, as well as 

equations (1) to (4), we must have 

b = mi m2 

(m i - 1) PI + mi (m2 I)P2 k(r 1) 

and 

(8) 

(9) 

(10) 

Let A be an incidence matrix of '1. Then AA t has one non-zero eigenvalue distinct 

from rk (namely r - AI) of multiplicity v m2 and AtA has one such eigenvalue 

(namely k - PI) of multiplicity b - m2' Since the non-zero eigenvalues of AAt and 

AtA are the same with the same multiplicities, we also must have 

(11) 

and 

(12) 

REMARKS. The groups of '1 and ~ form a tactical decomposition ([7], p.7) of '1. 
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Since v m2 = b - m2 this tactical decomposition is (in the terminology of [1]) a 

"strong" tactical decomposition of ~, a result of Mitchell [13] which also applies when 

~ and 'I are regular ODDs. 

A ODD is said to be self-dual if 'I is a ODD with the same parameters as '1. 

PROPOsmON. Suppose ~ is a ODD with parameters v,b,r,k; fi!, ~; A.I' A.2 whose 

dual is a ODD with parameters b,v,k,r; m1, m2, P!, P2' 

(a) If ~ and 'I are semiregular, then the following conditions are 

equivalent: 

(i) '1 is self-dual, 

(ii) '1 is symmetric, and 

(iii) m1 = ml . 

(b) If ~ and 'I are regular, then ~ is self-dual. 

Proof. (a) Suppose ~ and 'I are semiregular ODDs with parameters as given. 

(i) =} (iii) is trivial. 

(iii) =} (ii) 

Equations (2), (8), (12) and ml = ml imply m2 m2. That v = b then follows 

from (2) and (8). 

(ii) =} (i) 

From (I) we have r = k. Equation (12) and v = b yield m2 = m2. Then (2), (8), 

v = band m2 = m2 yield ml = mi' That A.2 = P2 follows from (10) and v = b, and 

that A.I = PI follows from (11) and r = k. 

(b) Suppose ~ and 'I are regular ODDs. From an earlier observation we 

have b;?: v and v ;?: b. So v = b whence r = k. Let A be an incidence matrix of '1. We 

use the fact t~at the non-zero eigenvalues of AA t and At A are the same with the same 
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multiplicities, 

. t t 2 2 The eIgenvalues of AA (resp, A A) not equal to k are k - Al and k vA2 

(k P I and k2 vP2) with respective multiplicities v - m2 and m2 - I (v - m2 and 

m2 - 1), Since '1 and ~ are regular these eigenvalues are all non-zero. Now, if 

k - Al = k2 - vP2' then v + I = m2 + m2' But m2 and m2 divide v and som2 divides 

m2 - I and m2 divides m2 - I which is impossible since m2 2: 2 and m2 ~ 2. So 

2 2 
k - Al = k - PI' k - VA2 = k - vP2 and v m2 v m2' Thus Al = PI' A2 = P2 

v v -
and m2 = m2' But then ml = m = = ml , 

2 m2 

This proposition has the following well-known corollary. 

COROLLARY. If '1 and ~ are each transversal designs, then '1 is self-dual. 

Proof. If '1 and ~ are each transversal designs, then (from (7» b A2mi and r = 

A2ml . But b m l m2 and r = m2' So we have ml mI' The corollary then follows 

from Part (a) of the proposition. 

If '1 is a symmetric transversal design, then the parameters of '1 and ~ must 

2 2 
be of the form A2ml , A2ml , A2m I' A2m1; mI' A2ml ; 0, A2' We refer to m l and A2 as 

"the fundamental parameters" of '1. 
A transversal design '1 is said to be class regular if there is an automorphism 

group of '1 which acts regularly on each of the groups of '1. Let '1 be a class regular 

transversal design with automorphism group G acting regularly on the groups of 

Then G acts semiregularly on the block set of '1 and the block orbits of G form a 

parallelism of '1 ([2], p.360). If '1 is symmetric, then the block orbits of '1 constitute a 

group division of ~ ([2],pp.134-5). It follows that a symmetric class regular 

transversal design is a self-dual transversal design. 
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A generalized Hadamard matrix over a group G of order m1 is a "'2ml x "'2ml 

matrix (h .. ) such that 
IJ 

(a) hij e G for all ij = 1", " "'2mI' and 

"'2ml 
:E h· o h~~ = :E "'2g 

£=1 Ii:- Ji:- geG 
(b) 

whenever i * j and where the summations are inthe group ring Z[G] of G. 

We refer to such a matrix as a GH(m l , "'2)' The existence of a GH(m1, "'2) is 

equivalent to the existence of a class regular symmetric (indeed self-dual) transversal 

design with fundamental parameters m l and "'2 ([2], pp.361-2). A Hadamard matrix 

of order 4n is a GH(2, 2n) over the multiplicative group {I, -I}. Some direct 

constructions are known for (non-Hadamard) generalized Hadamard matrices. Of 

these we mention 

1. GH(q,I), q a prime power, G elementary abelian (Drake [8]). 

2. GH(q,2), q a prime power, G elementary abelian (Jungnickel [10]). 

3. GH(q, q-l), q and q-l a prime power, G elementary abelian (Seberry [17]) . 

. Let H be a GH(ml , "'2) over a group G and H be a GH(mI' /\'2) over G. The 

direct product of Hand H is a GH(m1, "'2 A2m1) over G([8],p.619). We note in 

particular that a direct product of n GH(q, l)s over an elementary abelian group G of 

order q is a GH(q, qn-l) over G. Thus self-dual transversal designs with parameters 

n+ 1 n+ 1 n n n 0 n-l . c 11 . d . > 1 q ,q , q , q ; q, q; ,q eXIst lor a pnme powers q an mtegers n _ . 
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Also, if there is a GH(mI , /"'2) over a group G and G has a nonnal subgroup S of order 

s, then there is a GH [ 71, "'2s 1 over the factor group GIS ([2], p.363). These 

constructions provide us with a supply of self-dual transversal designs which are 

available to be used in applying the construction methods which appear in Sections 4 

and 5. 

REMARK. For a survey of constructions for generalized Hadamard matrices see [6]. 

4. A CONSTRUCTION METIIOD 

In this section we give a construction method for semiregular group divisible 

designs which can be used to construct many classes of semiregular group divisible 

designs whose duals are semiregular group divisible designs. 

Let g be a tactical configuration whose dual gd is a semiregular GDD or a 

BIBD with parameters 

Inlf, mlk, k, r; ml ,m2; P1'P2 

and with a parallelism with m I blocks in each parallel class. (If gd is a BIBD we take 

m2 = 1 and P2 has no value.) Let ~i' i = I,-··,Ie, be tactical configurations with 

mutually disjoint point sets 31. Suppose further that each ~ is a semiregular GDD or 
1 1 

a BIBD with parameters 

v,b,r,k; m1,m2; /"'1'/"'2 . 

(If 4 is a BIBD, then we take m2 = 1 and /"'2 has no value.) 

Let 

(i) .:iJy = USyp: p = 1,-, .,m l }, Y= 1,·· .,m2 be the groups of gd, 

(ii) .9i = {Pia: (J. = 1" .. ,mI ), i = 1" .. ,k, be the parallel classes of gd, 
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and 

(iii) ~i = {Bjia : a = 1" .. ,m I }, j == 1" .. ,m2, be the groups of if . 

'" * Define sets Boyf3 by Boyf3 = u(Boia)' where the union taken over all ia such that 

* k * * 
Pia is on Ifyf3 in !7. Let.9 = i~I 5i' $ = {B0113 : 0 1"" ,m2, y = 1" .. ,m2, 

- *d '" '" '" '" f3 = 1,··· ,m l } and r; = (.9 , $ , J ), where j is defined by set-theoretical 

'" inclusion. We then have that '1 is a semiregular GDD with groups 
'" '" - - * $oy= {B8yf3: f3 = 1", .,mI }, 0 = 1," -,m2, y= 1", .,m2. The parameters of r; are 

V = mi m2 m2, B = fb, R = Kr, K == kT, MI = mI, M2 = m2, Al = Plr + 

(I( - PI)AI and A2 = P2r + (I( - P2)AI, provided m2 * 1. When m2 = 1 and m2 * 1 

we get a GDD with all parameters as given except for A2 which is given in this case by 

- '" -A2 == KA2· When m2 = m2 == 1 '1 is a BIBD. In this case M2 == m2 m2 == I, AI' as 

'" given, is the index of r; and A2 has no value. 

We establish the values of Al and A2 and leave the rest to the reader. Consider 

'" '" '" * *d two blocks BI == Bo Y A and B2 = Bo Y A of '1 . We split the analysis into three 
1 IPI 2 2P2 

cases. 

'" '" '" BI and B2 "contain" a unique block from each of the '(5'i and, in fact, BI 

'" -and B2 contain PI such blocks in common. Each of the remaining f PI pairs of 

'" '" blocks from the same '(5'i in B I and B2 meet in A 1 points. 

First, this case does not arise if m2 = 1. If m2 * 1, then a similar 

* '" -argument to that of Case I show that Bland B2 meet in P2r + (f - P2)AI points. 
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This case does not arise if ~ 1. Assuming 

* 

* ~ 1 we have that BI 

and B2 contain no common blocks of the l5'io Each of the pairs of blocks from the 

* * n * * same 'i5'i (one in BI and one in B2) are from different groups of the ~. So BI and B2 

have KA2 common points. 

The results for Al and A2 are immediate unless ~ 1 ~ m2. So suppose m2 ~ 

1 "* Since g<i is a semiregular ODD we have 

P2r + (K - P2)"'1 P2(r + (m i 1)"'1) 

fi l A2 

So 

using (5) (which applies since if is a semiregular ODD, rather than a BIBD). But then 

P2r + (lC P2)AI = K A2 since K = P2ml' Thus blocks of ~*d in different classes J3l;8 

* meet in P2r + (lC - P2)AI (= K A2) points of .9 . 

REMARKS. (a) ~* is a transversal design if and only if gd and the if are 

transversal designs. In this situation we must have m l = mI" 
* -(b) ~ is symmetric if and only if Kr = kr. 

(c) If g is a self-dual transversal design and the l5'. are 
1 

* (v ,b,r,k,A)-designs , then ~ has the parameters of the GDD we can construct using 

Construction 3.1 of Rajkundlia [16]. 

Next, we suppose that g is a transversal design with parameters mlK, mlr, r, K; 

m l , K; 0, A2 and also that each 'i5'i is a semiregular ODD or a BIBD with parameters 

b,v,k,r; mt' m2; PI' P2" (If the l5'i are BIBDs, then we take m2 =1 and P2 has no 
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value.) In this situation is a semiregular GDD with parameters B, V, K, 

-
r . The groups of are the groups of the 'i5"i' 

To establish the values for and we consider two points Q and T of Y'*d 

and split the into three cases. 

Case 1 Q and T belong to the same group of some 'i5"i' 

In Q and T are on P I common blocks. These blocks are each 

"substituted" into r blocks of 3: So Q and T are on r PI common blocks of 

Q and T belong to different groups of some 'i5"" 
1 

This case does not arise if 1. If m2 "* I, then an argument similar 

*d to that of Case 1 shows that Q and T are on r P2 common blocks of Y' . 

Q and T are points of 'i5"i and 'i5"h' respectively, where i ::/= h. 

First, for each j = 1,·· ,m2, Q on k blocks of .2) .. and T is on ~ m2 J1 m2 

blocks of $h' Each pair of blocks, one from !if.. on Q and one from $h on T, are 
J J1 J 

substituted together into X2 blocks of :;: So Q and T are on m2 x [~2l2 x Xz common 

*d blocks of Y' . 

The resul ts for ~ land are immediate if m2 = 1. So suppose m2 ::/= 1. Now, 

since S is a transversal design we have r = m l X2 and, since the 'i5"i are semiregular 

rk k2 k 2 
GDDs (rather than BIBDs) we also have that P2 = r:-- = V - -- We thus obtain u m

1
m

2
' 
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REMARK. is a self-dual transversal design if and if and the "6. are 
1 

self-dual transversal In this situation has the parameters of the transversal 

design from the direct product construction ([16], p.66) to :T and a 

If is an affine I-resolvable BIBD and the are syrnmletrlc BIBDs (resp. 

affine ~ - resolvable 
m2 

then is an affine r-resolvable BIBD (resp. an affine 

r resolvable 

REMARK. The construction for affine r-resolvable BIBDs with each a 

symmetric BIBD is a dualized version of the construction for affine r-resolvable 

BIBDs due to Shrikhande and Raghavarao [18]. 

We call an affine I-resolvable BIBD with t blocks in each parallel and 

each pair of non-parallel blocks in ~ points, an ARD(J.l,t). An ARD is a 

[ 
2 J.lt

2
-I ~t-Il . ~t , 1=1' J.lt, t=r -desIgn ([7] p.73). The known ARD(~,t)s have t a 

prime power. If g<l is an ARD(~,t) and the ~l' are r(r-I) J -WcSl~~ns, then is an 
~ 

, . [ 2 t(~t2-I) r(~t2-I) 
affme r-resolvable J.lt, t-l ' t-l' ~rt, -design with t blocks in each 

affine r-resolution class, each pair of blocks in each affine r-resolution class meeting 

in ~r~~l-l) points, and each pair of blocks in different affine r-resolution classes 

meeting in ~r2 points. If we then use an ARD(~,t) as g<l and replicas of '1* as the "6i 

** we obtain '1 with parameters 

V=iJ:t2[ -1], 

_ J.lt -1 
[
-2 1 

R - J.lrt 1=1 ' K = iJ:rt [ -1 1 ' 

A - J.lrt(~rt-l) 
1 - t-l ' 

p _ ~rt(~rt-I) 
-1 - t -1 (13) 
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A2 Iir2 ( -1 1 ' ( 1 ' 

Ml iI t2, 

Kifl Jlt2 , 

REMARK. ODDs with parameters (13) are syrnmetnlc if and only if Jl == iI. 

Note that semiregular ODDs with group divisible duals having 

parameters with r = 1 are constructible by using an ARD(jI,t) as yd and replicas 

of an ARD(Jl,t) as the '&i in our construction. Some semiregular ODDs with 

semiregular group divisible duals having parameters of the form (13) with r = 1 have 

appeared in the literature prior to this. Values of Jl, Jl and t for such ODDs and a 

reference are given in the following list. 

1. 

2. 

3. 

Jl = = Jl, t = q, where q is a prime power and h ~ 2, Jungnickel [11]. 

h-2 n-2 -Jl = q , Jl == q , t = q, where q is a prime power, h ~ 2 and h ~ 2, Rahilly 

[14]. 

Jl = nl , iI == n2, t = 2, where n1 and n2 are orders of Hadamard designs, Rahilly 

[14]. 

Since a variety of symmetric BIBDs with a prime power number of points are 

known we can obtain many classes of semregular ODDs whose duals are semiregular 

with parameters (13) and r > 1. To the best of the author's knowledge these ODDs are 

new. Note that from each (t, r, r~~ll) - design with t a prime power we can obtain 

infinitely many such designs by varying Jl and jI. 

Consider an application of the construction method for ODDs of this section out 

of which it arises that c;* and c;*d are each a semiregular ODD. It is easy to show that 
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* 1 is a transversal design such that is not a transversal if and only if g is 

a self-dual transversal '6. is a BIBD or a semiregular ODD which is not a 
1 

transversal design and if is transversal it is easy to show that 

is a transversal design such that not a transversal design if and only if 

(a) gd is an affine I-resolvable BIBD, '6. is a transversal design and ~ is 
1 1 

a semiregular ODD, or 

(b) g is transversal design, is serruregular GDD and is an affine 

I-resolvable BIBD, or 

(c) g and '6. are transversal and gd and ~ are semiregular ODDs 
1 1 

with at least one of gd and if not a transversal 

As an example, let be a self -dual transversal design with parameters qn+ 2, 
n+2 n+l n+1 n+l n q , q , q ; q, q ; 0, q , where n 0 and q is a prime power. Also, let be 

an ARD(qh-2, q), where h ~ 2. Then has parameters 

B = qh+n+l , v n+2 h-l q (q + ... +1), 

R = qh+n, n+l h-l K=q (q +···+1), 

n+1 h-2 
~I=q (q +···+1), (14) 

A h+n-l 
2=q , 

n h-l 
~2 = q (q + ... + I) , 

n+l h-l M2 = q (q + ... + 1) , 

- h 
Ml =q , 

- n+I M2 =q 

REMARKS. (a) Let q = pO", 0" ~ 2. r;* with parameters (14) could be used in our 

construction method in the role of g with (for example) the '6i being semiregular 
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ODDs with sernm::l!lllar group divisible 

= ~t2. 
(b) with parameters 

construction method in the role of '6. or 
1 

with parameters by (13) and with q 

(14) could also be used in our 

3' an appropriately 

chosen self-dual transversal Constructions of this sort further transversal 

designs whose duals are Sernlfieglilar GDDs. 

With one ODDs with parameters (14) or as in 

(a) and (b) appear to be new. With h q and n 0 in (14) we obtain a ODD with 

the parameters of SR66 in ClllltwC:1rttlv 

5. SELF-DUAL REGULAR GROUP DIVISIBLE DESIGNS 

Consider two self--dual sermre!!lllar ODDs 
i' 1,2, with 

parameters We suppose that .91 and are LU.:>'IVAi .... Let the 

groups of be 

$. 
1J 

{Bijf - f = 1,- - -,m1 ' j = 1,-·-

1,· . - and f 1,- - - by 

and 

and the groups of 

Define sets B ~ . fI , where i 
IJ{. 

be 

1,2, j 

Let !II' = 1,2, j = 1, - .. ,m2, f 1, - - -,m1} and define an incidence 

structure C;' (.91 u .92' !1J', J" ), J" being 

If the parameters of C; 1 and satisfy 

by set-theoretical inclusion. 

j:. 2k and 
m2 

(15) 

2k then C;' is a self-dual ODD with parameters 2v, k+ml' k+m1; v, 2; }.,2' m
2 

The 

groups of C;' are .91 and .92 and the groups of C;,d are !1J i = {B ijf : j = 1,· .. ,m2, 

173 



1" .. ,mI},i = 1 

We show that $ i and $2 fonn a group division of ~,d and leave the rest to 

the reader. We consider two blocks BijC and Bapy of c;t and split the analysis into 

three cases. 

i = a, j p, C -:t Y-
In this case (B~ . Ii) n (B I R) = «B .. Ii) n (B .. _) U 

IJ{, apy IJ{, IJY where v = 2 or 1 

i = a, j -:t p. 
Here (Bijc) n (B~py (B·· Ii) n (B·Rt So B" 1i and IJ{, Ipy IJ{, have 

common points. 

i -:t a. 

Here (Bijc) n (B~py) (Bije) n lJ «Bapy) n 3'a/ But each block 

of C;i meets each group of in ~2 points, and similarly for So and B~py 

h 
2k . 

ave - common pomts. m2 

We now show that is a regular ODD. 

C;' cannot be singular since k + m i > Al + m i If C;' is semiregular, then 

4~~ = (k + m I)2 and so 4m Ik = (k + mI)2, whence k = mI" But then we have A2 

Al = m i and, from (5), m l A2 - (ml I)A I mI' Solving these equations for Al 

yields Al = m i - mi· But Al ~ 0 and so we must have mIl, a contradiction. 

Suppose that C; is a self-dual semiregular ODD with parameters v,v,k,k; 

ml'm2; Al ,A2 satisfying (15). By solving A2 - Al = m i and m i A2 - (mI-I)AI = k 

2 2 k 2 
for A2 we obtain A2 = k m i + mI' But vA2 = k and so we have v = 2 . It 

k-mI+m1 

is straightforward to show that, in the special case where k - mi + m1 divides k, the 
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parameters of 1 have the form 

222 q ofj, q ofj, qofj, qofj; 0, q fj; 0(fj-1), of3, (16) 

where 0 fj( q-l) + 1 and fj = yq + 1 for some y ~ 0. The case 'Y ° yields parameters 
q3,q3,q2,q2; q,q2; O,q. From Section 3 self-dual ODDs with these parameters exist for 
all prime powers q. The self-dual regular ODDs we can obtain from these designs 
have parameters 

33223 2q , 2q , q + q, q + q; q , 2; q, 2, 

where q is a prime power greater than two. 

REMARK. Ifq 2, then 1...2 = 2 k = 2 and we obtain a (l6,6,2)-design. m2 

(17) 

We note that, if the parameters of a semiregular ODD satisfy (15), then its 
complement also has parameters which satisfy (15). From the complements of ODDs 
with parameters q3,q3,q2,q2; q,q2,O,q, where q > 2, we obtain self-dual regular ODDs 
with parameters 

3332 32 3 2 2q ,2q ,q --q +q, q -q +q; q ,2; q(q-l) ,2(q-l). (18) 

For fixed q > 2 we have that the parameter lists (17) and (18) are different. They are 
also not parameter lists for complementary ODDs. 

Next, we show that self-dual ODDs with parameters (16) exist when y = 1 and 
q is a prime power. 

First, affine planes of order q (that is, ARD(1,q)s) exist for each prime power q. 
Using an affine plane of order q as gd and replicas of such a plane as the '&. in the 

1 
construction of Section 4 we obtain a self-dual ODD with parameters 

2 2 2 q (q+l), q (q+1), q(q+l), q(q+l); q ,q+l; q, q+1 (19) 
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(These parameters are those of (13) with Jl = Jl = r = 1 and t = q.) Then apply the 

construction of Section 4 again in the following way: Let 3' be a self-dual transversal 

d · °h 44222201 h o. de h eSlgn wIt parameters q ,q ,q ,q ; q ,q; , , were q IS a pnme power, an , lor eac 
2 i = 1"" ,q , let yg'i be a self-dual ODD with parameters (19). The construction 

:/< 
method of Section 4 then yields a self-dual semiregular ODD ~ with parameters 

* Clearly ~ has parameters which satisfy (15). Using the construction method of this 

section we obtain a self-dual regular ODD with parameters 

where q is any prime power. 

From the complements of the designs with parameters (20) we can obtain 

self-dual regular ODDs with parameters 

where q is any prime power. 

Self-dual regular ODDs with two point and block groups can also be 

constructed in the following way: Let #. = (.9., $, J.), i = 1,2, be (v,k,A)-designs 
1 1 1 1 

such that .91 (j .92 = ¢ = "~i (j~. Complementing (.91 u .92' $1 v ~, J} v ~) 

yields a self-dual regular ODD ~' with parameters 2v, 2v, 2v-k, 2v-k; v, 2; 

2(v-k)+A,2(v-k). The groups of ~' are .91 and .92 and the groups of ~,d are $1 and 

~. If a self-dual regular ODD ~' with two point and block groups is such that its 

complement is the union ofa pair of disjoint symmetric BIBDs, then we say that the 

complement ~,c of ~' is trivial. The self-dual regularGDDs with two point and 

block groups listed in [5] (namely R94, 133, 166, 173, 187, 195, 204 and 206) all have 

trivial complements. 
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Now consider a self-dual semiregular ODD '# with parameters v,v,k,k; m I ,m2; 

AI' Al + mI' Using the construction at the start of this section we can construct a 

self-dual regular ODD '#' with two point and block classes, Consider two points PI 

and P2 of '#' one from each group of ,#'. In '#' PI and P2 are on precisely 2v - 2k 

2mI + ~ = A2 say) blocks. Suppose that '#,C is trivial. Then we must have A2 = 0 

k k2 
and so v k + fil But, as earlier shown, v = ------,..---. m

2
' After some algebra 

we see that 

(21) 

From (21) we must have m I + 2m2 > m1m2 + 1 and so we have 

(22) 

and 

(23) 

2m 
If m I ~ 2m2, then (using (22» 2 ~ 1 + ~ > m2 + 1 > 2, which is impossible. If m1 m I 

m1 1 
m I < 2m2, then (using (23» 4 > m

2 
+ 2 > m1 + m

2 
> 2. Thus we have m1 = 2 or 3. 

If m1 = 3, then 3 + 2m2> 3m2 + 1, whence m2 < 2, again impossible. If m 1 = 2, then 

2 (using (21» (k 1) + 4m2 - 1 = 0, which is also impossible. We infer that the 

complement of '# I is not trivial. 

We can obtain self-dual regular ODDs with more than two groups from the 

construction method of this section. For, if A2 = 2 k then this method yields a 

177 



REMARK If Al + m i = A2 = ;~, then we obtain a symmetric BIBD. We will 

shortly show that a symmetric BIBD obtained in this way must be a (16,6,2)-design. 

Suppose A2 = ;~. From (2) and (4) we obtain k = 2mI. Immediately we have 

A2m2 A2m2 A2m 2 ( A2-2) 
---::r- and k = --r-' From (6) we obtain Al from which we 

infer that A2m2 - 4 divides 4(A2 2). So A2 2 or m2 2 or 3. If m2 = 2, then Al = 

A2, a contradiction and, if m2 = 3, then we must have 3A2 4 divides 4A2 8 which 

yields A2 = 4. We thus have that the parameters of ~I and '#2 are either 

(i) of the form 2q2, 2q2, 2q, 2q; q, 2q; 0, 2 or 

(ii) 9, 9, 6, 6; 3, 3; 3,4 

1 ). 

2 2 parameters complementary to 3 ,3 ,3, 3; 3, 3; 0, 

The only parameters satisfying Al + m i = A2 2 k are now easily verified to be m2 
8, 8, 4, 4; 2, 4; 0, 2. It follows that, if ~' is a symmetric BIBD, then ~' must be a 

( 16,6,2)-design. 

From Section 3 self-dual GDDs with parameters as in (i) exist for q any prime 

power. The self-dual ODDs we can obtain from self-dual ODDs with parameters as in 

(i) and (ii) have parameters 4q2, 4q2, 3q, 3q; q, 4q; q, 2 and 18, 18, 9, 9; 3, 6; 6, 4. 

These GDDs are clearly regular. 
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