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Abstract 

It is proved that each 2-element generating set of A5 is a CI-subset 
and that the corresponding Cayley digraph is normal. It is furthermore 
proved that for each 3-element generating set of A5 the corresponding 
Cayley digraph is normal. 

1 Introduction 

Let G be a finite group and S a subset of G not containing the identity element 1. 
We define the Cayley digraph X = Cay(G, S) of G with respect to S by 

V(X) = G, 
E(X) = {(g, sg) I g E G, s E S}. 

If S -= S-l, then the adjacency relation is symmetric and Cay( G, S) is called 
the undirected Cayley graph of G with respect to S. The group G acting by right 
multiplication (that is, gR : x t-7 xg) is a subgroup of automorphisms of Cay(G, S) 
and acts transitively on vertices. We call G R = {gR I g E G} the right regular 
representation of G. Let Aut(G, S) = {a E Aut(G) I sa = S}. Obviously Aut(X) 2 
GRAut(G, S). If GR = Aut(X), then X is called a digraphical regular representation 
(DRR) of G and a DRR of a group G is a normal Cayley graph of G. 

Let A = Aut(X). We have 

Lemma 1.1 ([2, Proposition 1.3]) 

(1) NA(GR) = GRAut(G, S); 

(2) A = GRAut(G, S) is equivalent to GR <l A. 
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Definition 1.2 The Cayley (di)graph X = Cay( G, S) is called normal if G R, the 
right regular representation of G, is a normal subgroup of Aut(X). 

So, normal Cayley digraphs are just those which have the smallest possible full 
automorphism group. The following obvious result is a direct consequence of the 
above definition and Lemma 1.1. 

Lemma 1.3 Let X = Cay(G, S) be the Cayley digraph of G with respect to S, and 
let A = Aut(X). Let Al be the stabilizer of the identity element 1 in A. Then X is 
normal if and only if every element of Al is an automorphism of the group G. 

Let X = Cay(G, S) be the Cayley digraph of G with respect to S. Let a E 
Aut(G). Then it is easy to see that a is a graph isomorphism from Cay(G, S) 
to Cay(G, sa). We call this kind of isomorphism between Cayley digraphs of G a 
trivial automorphism. The subset S is said to be a CI -subset of G, if for any graph 
isomorphism Cay(G, S) ~ Cay(G, T), there exists an a E Aut(G) such that sa = T. 
In other words, that S is 01 means that there are only trivial isomorphisms between 
Cay(G, S) and other Cayley digraphs of G. 

The motivation for this paper comes from a survey of Xu [2] and an unpublished 
result of Li [7] which states that some 2-element generating sets of A5 are C I-subsets, 
and the corresponding Cayley digraph is normal. In order to make this paper self
contained, we prove Li's result in section 2 while in section 3 we give a further 
extension. The main results of this paper are the following two theorems. 

Theorem 1.4 (See [2]) Each 2-element generating set of As is a 01 -subset and the 
corresponding Cayley digraph is normal. 

This result was originally proved by X. Li. However, the proof of Theorem 1.4 in 
section 2 is independent of Li's. 

Theorem 1.5 Let G = A5 and S = {a, b, c} be a 3-element generating set of G not 
containing the identity 1. Then X = Cay(G, S) is a normal Cayley digraph. 

In this paper the symbol G will always denote the group A5 and 1 will denote 
its identity. For x E G we let o(x) denote the order of x. The symbol X will always 
denote a simple graph. By V(X), E(X) and A(X) = A we denote the vertex set, 
the edge set and the automorphism group of X, respectively. By Av(X) = Av we 
denote the stabilizer of the vertex v E V(X). For every set T, IT denotes the identity 
permutation on T. 

The group and graph-theoretic notation and terminology used here are generally 
standard, and the reader can refer to [3] and [6] when necessary. 

2 The Proof of Theorem 1 .. 4 

Lemma 2.1 Let S = {a, b} and T = {at, b/} be two 2- element generating subsets of 
G = As. If X = Cay(G, S) ~ Cay(G, T) = X' and if min {o(a), o(b)} :s; 3, then 
there exists a E Aut(G) such that sa = T. 
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Proof Let a be a graph isomorphism. Without loss of generality we may as
sume that 1 a = 1, since Cayley digraphs are vertex-transitive. Hence sa = T. By 
renaming the elements of T if necessary, we may also assume that 

We use induction on n to show that (XIX2' .. xn)a = x~x~ ... x~, where Xi = a or 
b for i 1, ... , n. (This implies that a E Aut(G), as required.) We distinguish two 
cases. 

Case 1: min{o(a), o(b)} = 2. 
Without loss of generality, we may assume that o(a) = 2. Then o(b) =1= 2 since 

(a, b) ~ Thus (a,l) E E(X) and (b,l) rJ. E(X) by definition of the Cayley 
digraph X and so (a', 1) E E(X'). By definition of the Cayley digraph X', (a', b'a') E 

E(X') and (a', (a')2) E E(X'). If b'a' = 1, this would contradict (a',b') ~ As, so 
it follows that (a' )2 = 1 and thus (ba)a = b'a' and o(b') =1= 2. Using the fact that 
the graphs have indegrees and out degrees equal to 2, we have that (ab)a = a'b' and 
(b2)a = (b')2. So (XIX2)a = x~x~. 

Suppose n > 2 .. Set X = X3X4 ... Xn and x' = x~x~ ... x~. From the inductive 
assumption we can suppose that xa = x', (axY:t = a/x' and (bx)a = b'x'. An argument 
similar to the one above shows that (XIX2X)a = x~x~x'. Thus we have that for any 
positive integer n, (XIX2" ·xn)a = x~x~·· ·x~. 

Case 2: min{o(a),o(b)} = 3. 
Let o(a) = 3. As 1 t-+ a t-+ a2 t-+ 1 is a directed circuit of length 3 in X we have 

that 1 1--+ a' t-+ (a')2 t-+ (a')3 must be a directed circuit of length 3 in X' because 
a'b/a' =1= 1, (b')2a' =1= 1 and b'(a' )2 =1= 1 (otherwise G = (a', b') is abelian). Thus 
(a')3 = 1 and (a2)a = (a')2, (ba)a = b'a'. 

If o(b) = 3, similarly we have (b2)a = (b')2 and (ab)a = a'b'. If o(b) #- 3 then we 
also have (b2)a = (b')2 and (ab)a = a'b' because there is a unique directed circuit of 
length 3 through band b' in X and X' respectively. 

Thus for n = 1 or 2, (XIX2" ·xn)a = x~x~·· ·x~. Using the same method as in 
(1) completes the inductive step. 

It follows that a E Aut(G). 0 

We now prove Theorem 1.4. 
First we show that each 2-element generating subset S of G is CI. 
In Lemma 2.1, we checked that all 2-element generating subsets of G are CI

subsets except the case o(a) = o(b) = 5. Thus to prove our statement it suffices to 
prove that given two 2-element generating subsets S = {a, b I o(a) = o(b) = 5} and 
T = {ai, b'} such that X = Cay(G, S) and X' = Cay(G, T) are isomorphic, there 
exists an a E Aut(G) such that sa = T. 

Suppose that a : X = Cay(G, S) -+ Cay(G, T) is a graph isomorphism. Since 
Cayley digraphs are vertex-transitive, without loss of generality we may assume that 
1 a = 1. Hence sa = T. By renaming the elements of T if necessary, we may also 
assume that 
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As 1 t--t a t--t a2 H a3 H a4 t--t 1 is a directed circuit of length 5 in X we have that 
1 t--t a' t--t (a2)' H (a3)' H (a4)' t--t (a5), must be a directed circuit of length 5 in X'. 
We now distinguish three cases: 

(i) (b')i(a,)j = 1, for 0 < i ::; 4 and i + j = 5. 
Then (b')-i E (a') and so (b') E (a') which is a contradiction. So (i) cannot 

happen. 
(ii) (b'a,)2 a, = 1 or (a'b,)2 a, = l. 
If (b'a,)2 a' = 1 then a' E (b'a') and thus b' E (b'a') which contradicts A5 1"..1 

(a', b') ::; (a'b'). Similarly (a'b')2 a' =I- 1 and so (ii) cannot happen. 
(iii) a'(b')2(a')2 = 1 or a'(b,)3a, = l. 
If a'(b')2(a')2 = 1, then it is easy to check (b')2 =I- 1 and thus (b')2 E (a'). So 

b' E (a'), a contradiction. Similarly a' (b')2 =I- l. 
By (i), (ii), (iii), we have (a')5 = (a5)' = 1 and thus 1 t--t a' t--t (a')2 H (a')3 H 

(a')4 t--t (a')5 is a directed circuit of length 5 in X'. So (a')i = (a i )' for i=I,2,3,4,5 
and thus b'a' = (ba)'. Similariy we have (b')2 = (b2)' and a'b' = (ab)'. 

Thus for n = 1 or 2, (XIX2'" xn)Ct: = x~ x~ ... x~. Using the same inductive 
method as in the proof of Lemma 2.1, we can show that a E Aut(G). 

Now we show that X = Cay(G, S) is a normal Cayley digraph of G. 
Let S = {a, b} be a 2-element generating subset of G and A = Aut(X). Then 

A = AIGR . For each ¢ E AI, 

¢: X = Cay(G, S) -+ X' = Cay(G, S4» 

is graph isomorphism. As shown above, S is GI, so ¢ E Aut(G) and this implies 
¢ E Aut(G, S). It follows that Al = Aut(G, S). By Lemma 1.1, Cay(G, S) is normal 
as required. 0 

3 The Proof of Theorem 1.5 

The proof is organized into twelve Lemmas. 

Lemma 3.1 Let G = A5 and S = {a, b, c} be a 3-element generating subset of 
G. Set X = Cay(G, S) and A = Aut(X). Then X = Cay(G, S) is normal if the 
following conditions hold: 

(1) for each ¢ E AI, ¢ Is = Is implies ¢ IS2 = ls2, 

(2) for each ¢ E AI, (Pis = Is. 

Proof Let Hs denote the subgroup of A which fixes 1, a, b, and c. First we show 
that Hs is trivial. Note that since A is transitive on V(X) = G, condition (1) applies 
to every vertex v, that is, for any ¢ E Av(X), ¢ Isv = lsv implies ¢ IS2v = Is2v' Now 
let ¢ E Hs , then ¢ E A, and ¢ Is = Is so ¢ IS2 = l s2. Let xES, then x4> = x, so 
¢ E Ax(X). Also Sx ~ S2 so ¢ Isx = Ilsx' Hence ¢ IS2x = l s2. Since this holds 
for all XES, we have ¢ IS3 = Is3. By induction, ¢ 1st = 1st holds for any positive 
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integer t. Since G = (8) and G is finite, we have that if CPs Is then cP = Ie. This 
implies that if cp E Hs, then cp = Ie and so Hs = 1 as required. 

Since condition (2) says that for each cp E AI, cp2 E Hs , we have cp2 = Ie for all 
cp E All so Al is 2-group. Since Al ~ 83HS = 83 , IAII :::; 2. As A = AIGR we have 
G R <I A. Thus X = Cay( G, 8) is normal. 0 

Using this lemma we can analyze the normality of a Cayley digraph of As in 
terms of its generating set. 

Let 8 be a generating subset of G of cardinality 3 and let l, m, n be integers 2: 2. 
We call 8 an (l, m, n)-generating set of G if a, b, c E 8, al = bm = en = 1 and 
G = (a, b, c). 

Lemma 3.2 Let 8 be a (2,3,S)-generating set of G. Then X 
normal Cayley digraph. Moreover X is a DRR of G. 

Cay(G,8) is a 

Proof Now As is by definition the group given by the presentation (a, b, c I a2 = 

b3 = eS = l,ab c) (or (a,b,c I a2 = b3 = C
S = l,ac = b)). Thus if 8 = {a,b,c} as 

above, then 0 1 = (1, a), O2 = (1, b, b2
) and 0 3 = (1, C, c2

, c3
, c4

) are unique cycles of 
lengths 2,3 and 5 at the point 1. So for each cp E AI, we have ot = 0 1, ot = O2 and 
ot = 0 3 , Since 0 1 , O2 and 0 3 are directed dicircuits, therefore cp fixes Cl , O2 and 
C3 pointwise, and so b¢ = b, c¢ = c and a¢ = a. It follows that Al = Aa = Ab = Ac. 
Finally because a, b, c generate the group G, therefore Al = Ag for any 9 E G and so 
Al = 1 and A = GRas required. 0 

In the remaining part of this section we shall discuss the case o(a) = o(b) f o(c). 
If cp is a non-trivial graph automorphism which fixes the point 1, it must have the 
form 

cp Is = (a, b), e¢ = c. 

This shows that cp21s = Is. Applying Lemma 3.1 in this case, to prove that 
Cay(G,8) is a normal Cayley digraph of G, we need only check that the condition (1) 
of Lemma 3.1 holds, that is, we focus on testing which digraphs meet the condition: 
for ¢ E AI, 

if cp Is = Is, then cp IS2 = 1s2. (3.1) 

Lemma 3.3 Let 8 be a (3,S,S)-generating set of G or a (3,3,S)-generating set of G. 
Then Cay(G, 8) is a normal digraph. 

Proof Suppose that 8 = {b, el, C2} and G = (b, Cl, C2) or 8 = {bl , b2, c} and G = 
(bI , b2, c), where b, bl , b2 are elements of order 3 and Cl, C2, C are elements of order 
5 in G. Let 8 1 = {b, Cl} and 82 = {bl, c}. Since a subgoup of As which contains 
an element of order 3 and an element of order 5 is As, so G = (8i ) for i = 1,2. If 
1> Is = Is for ¢ E Al then ¢ induces an action on 8 i for i = 1,2. By Theorem 1.4 
Cay(G,8i ) is a normal Cayley digraph. Hence cp E Aut(G,8i ), for i = 1,2. In either 
case cp is an automorphism of G. Therefore ¢ fixes every element of G and hence 
1> = 1 (certainly we have cp IS2 = Is2). So G <I A as required. 0 
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Lemma 3.4 Let 8 be a (2,5,5)-generating set of G. Then X = Cay(G,8) is a 
normal Cayley digraph. 

Proof Let 8 = {a, CI, C2} be a (2,5,5)-generating set of G, where a is an involution 
and CI, C2 are elements of order 5. 

If G = (a, Ci), i = 1 or i = 2, the lemma can be proved similarly to Lemma 3.3. 
So we suppose that (a,ci) =f. G for i = 1,2. Since G = (a,cI,c2), we have 

(CI) =f. (C2)' Thus G = (CI,C2) and hence for the digraph Cay(G, {CI,C2}), the set 
{CI' C2} is OJ by Theorem 1.4, and so ¢ E Aut(G) for ¢ E AI. Therefore if ¢ Is = Is, 
then ¢ IS2 = Is2 and so (3.1) shows that X = Cay(G, S) is normal. 0 

Lemma 3.5 Let S be a (2,3,3)-generating set of G. Then X == Cay(G, S) is a 
normal Cayley digraph. 

Proof Assume that S = {a, bI , b2 I a2 = bf = b~ = I}. If (a, bi) = G or (b I , b2) = G, 
for i = 1,2, then the lemma can be proved similarly to Lemma 3.4. So it suffices to 
prove the result in the case: 

(i) (a, bi) =f. G, i = 1,2; and 

(ii) (b I , b2 ) =f. G. (3.5) 

Since A5 has only one conjug~cy class of involutions, without loss of generality we 
may assume that a = (12)(34). First we claim that if (a, bI ) ~ A4 then (a, b2) ~ S3 
by condition (3.5). Indeed, if (a, bI ) ~ A4 then we may suppose that bI = (123) and 
b2 = (i,j,k). Since G = (a,b1 ,b2 ), {i,j,k} must contain 5; say k = 5. Thus {i,j} 
cannot be one of {I, 3}, {2, 4}, {2, 3} or {I, 4} otherwise (a, b2) ~ A5 . So {i, j} must 
be either {I, 2} or {3,4}. In either case we have (a, b2 ) ~ S3. But if b2 = (345) or 
(354) then (b I , b2 ) ~ A5 . From this it follows that b2 = (125) or (152). Similarly, 
suppose that a = (12)(34), b2 = (125). If (a, bI ) ~ 83 , then bl must be (345) or 
(435); in either case we have (bI, b2 ) = G which contradicts condition (ii). Since 
(a, bl ) =f. G, it follows that (a, bI ) ~ A4 . 

Finally it remains to show the result in the case that (a, bI ) ~ A4 and (a, b2 ) ~ S3, 
where a = (12)(34), bI = (123), and b2 = (125). 

Indeed, we claim that ¢ Is = Is for each ¢ E Al in this case. If ¢ Is =f. Is 
then ¢ fixes a and interchanges bI and b2 and so ¢ induces a graph automorphism 
between Cay ( (a, bI ), {a, bd) and Cay ( (a, b2), { a, b2} ). This contradicts the assum p
tion (a, bI ) = A4 and (a, b2 ) = S3' Thus ¢ Is = Is. So ¢ fixes a, bI , b2 and hence 
Al = Aa = Abl = Ab2 . It follows that Al = 1 and the lemma is proved. 0 

Lemma 3.6 Let S be a (2,2,3)-generating set of G. Then X = Cay(G, S) is a 
normal Cayley digraph. 

Proof In this case G is generated by a pair of involutions aI, a2 and an element b of 
order 3. Without loss of generality we assume b = (123). Let ¢ E AI. If ¢ Is =f. Is, as 
before ¢ fixes b and interchanges al and a2 and so it induces a graph automorphism 
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from Cay((aI,b),{al,b}) to Cay((a2,b),{a2,b}). So l\al,b)1 = l\a2,b)1 and it follows 
that (at, b) (a2, b). 

Now we consider three cases. 
(1) (aI, b) ~ (a2, b) ~ A5 . 

Since Cay( (ai, b), 8i ) is a normal Cayley digraph by Theorem 1.4 (where 8 i = 
{ai,b} and i = 1,2), we have ¢ E Aut(G,{ai,b}) ::; Aut(G) and so the result is 
proved by Lemma 1.3. 

(2) (aI, b) ~ (a2l b) ~ A4• 

It is obvious that (at, b) =I- (a2' b). Let ¢ E AI. If ¢ Is = Is then ¢ induces an 
automorphism of the subgraph Xi = Cay((ai,b),8i), where 8 i = {ai,b} and i = 1,2. 
Since Cl = (1, al) is the unique circuit of length 2 and C2 = (1, b, b2 ) is the unique 
circuit of length 3 at the point 1, it follows that ¢ fixes Cl and C2 pointwise. Since 
1; fixes b, ¢ fixes the neighbourhood of b in Xl and thus ¢ fixes alb. Since ¢ fixes aI, 
1; fixes the neighbourhood of al in Xl and thus ¢ fixes bal' Since ¢ fixes all ¢ fixes 
the neighbourhood of al in X and thus ¢> fixes a2al. Similarly we can check that ¢> 
fixes the points a2b, a~, ba2 and ala2· This shows that ¢ IS2 = I s2. By Lemma 3.1, 
Cay(G,8) is normal as required. 

(3) (aI, b) ~ (a2l b) ~ 83, 
This case can not happen, since for each element of order 3 in the unique subgroup 

which is isomorphic to 83, if (aI, b) ~ (a2' b) ~ 83 then (aI, b) (a2' b) ~ 83 which 
contradicts (aI, a2 , b) = G. 

By (1), (2) and (3), the lemma is proved. 0 

Lemma 3.1 Let 8 be a (2,2,5j-generating set of G. Then X 
normal Cayley digraph. 

Cay(G,8) is a 

Proof Suppose that G is generated by a pair of involutions aI, a2 and an element 
c of order 5. If (aI, c) ~ DlO then (a2l c) ';p DlO by the fact that c is in a unique 
subgroup H ~ DlO , and so (a2' c) ~ A5 • Now we distinguish two cases. 

(1) (aI, c) ~ DlO and (a2, c) ~ A5; 
(2) (all c) ~ (a2' c) ~ A5 • 

The lemma follows in either case in the same way as the proof of Lemma 3.5. 0 

Lemma 3.8 Let 8 be a (5,5,5j-generating set of G. Then X = Cay(G,8) is a 
normal Cayley digraph. 

Proof Let 8 = {Cl' C2, C3 I cf = c~ = c~ = 1}. Clearly if (Cl) =I- (C2), then 
(Cll C2) = A5• Since G = (Cll C2, C3), we may assume that (Cl, C2) = A5 . If (C2, C3) ~ 
Z5, then ¢Is = (CI,C2,C3) is not a graph automorphism from Cay(G,{ct,C2}) to 
Cay(G¢>, {Cl,C2}¢» since (CI,C2) ~ A5 and (CI,C2)¢> = (C2,C3) ~ Z5. 

So we assume that (Cl, C2) = (C2, C3) = (C3, Cl) = G. Let Al,Cl denote the subgroup 
of A which fixes 1 and Cl' Then IAII ::; 31Al,cJ Let ¢ E A1,cll then ¢> fixes Cl and 
stabilizes the set {C2l C3}' Set 8 1 = {C2, C3}' Thus ¢ induces a graph automorphism 
of Cay(G, 8 1), Since Cay(G, 81) is a normal Cayley graph by Theorem 1.4, it follows 
that ¢> E Aut(G). But Aut(G) has no non identity automorphism that interchanges 
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a pair of elements (C2 and C3) of order 5 and fixes another element CI of order 5, so 
we have ¢ = 1 and thus AI,Cl = 1 and IAII ~ 3. 

If IAII = 3, then IAI = 180 and A is not simple group. So A contains a non
trivial normal subgroup N, that is N i= 1 and N i= A. If G n N i= 1 then G n N 
is a nontrivial normal subgroup of G which contradicts G ~ As. It follows that 
G n N = 1 and thus A = N· G and Al = N. Since Al is the stabilizer of the point 
1, we get N = 1, a contradiction. It follows that IAll ~ 2 and Cay(G, 8) is a normal 
Cayley digraph as claimed. 0 

Lemma 3.9 ([4, Lemma 2.2]) Let X = Cay(G, 8). Then X is a normal Cayley 
digraph of G if the following conditions hold: 

(i) for each ¢ E Al there exists (J E Aut( G) such that ¢ Is = (J Is; 

(ii) for each ¢ E AI, cP Is = Is implies cP IS2 = I s2. 

Proof (1) Condition (ii) implies that if ¢ E Al and ¢ Is = Is, then cP = IG • 

(2) We show that Al ~ Aut(G,8). By the hypothesis (i), for each cP E AI, we 
may take (j E Aut( G) such that cP Is = (J Is. Then ¢(j-I Is = Is. By the proof above 
we have ¢(j-l = IG and ¢ = (J E Aut(G). Thus Al ~ Aut(G, 8). 

(1) and (2) imply that X is a normal graph of the group G. 0 

Lemma 3.10 Let 8 be a (3,3,3)-generating set of G. Then X = Cay(G,8) is a 
normal Cayley digraph. 

Proof First suppose that G is generated by three elements bl , b2 and b3 of order 3. 
We now distinguish two cases: 

(i) There exist bi, bj E 8 such that (bi, bj ) = G. In this case there must exist bi or 
bj such that (bi , bk ) i= G or (bj , bk ) i= G. As in Lemma 3.8 we can prove Cay(G,8) 
is a normal digraph of G. 

(ii) There are no bi, bj E 8 such that (bi , bj ) = G. In this case there exist bi, bj 
such that (bi, bj ) = A4 . It is clear that the 3-cycle bi and bj are in a same subgroup 
of G which is isomorphic to A4 if and only if they have two symbols that are the 
same. So without loss of generality, we assume that bi = (123) and b2 = (124). Since 
(b l , b2 , b3) = As, thus b3 = (i, j, 5), and in addition (bi, b3) ~ A4 , for i = 1,2 (If 
(bi , b3) ~ Z3, then b3 E (bi , bj ) ~ A 4 , a contradiction.) Hence we have b3 = (125) or 
(152). 

In this case for each ¢ E AI, if ¢ Is = (b l , b2 , b3 ), then there exists (j E Aut(G, 8) 
such that ¢ Is = (J Is; in fact by the assumption, (j = (345). If ¢ Is = Is, then ¢ 
induces a graph automorphism of Cay( (bi , bj ), {bi, bj}) for i, j E {I, 2, 3}. Set 8 1 = 
{bi, bj }. It is easy to check that the Cayley graph Cay( (bi, bj ), 81) satisfies the condi
tions of Lemma 3.9. So Cay( (bi, bj ), 8d is normal and hence ¢ lSI E Aut( (bi , bj )). It 
follows that ¢ fixes bi and bj and hence fixes br, bJ, bibj and bjbi . Similarly ¢ fixes the 
other elements of 8 2

• So if ¢ Is = Is then ¢ IS2 = Is2. By Lemma 3.9 our statement 
follows. 

By (i) and (ii), the lemma is proved. 0 
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Now consider the case when G is generated by three involutions all a2 and a3 
and X = Cay( G, S) is an undirected graph. We will use the following result. 

Lemma 3.11 ([5, Theorem 1.3]) Suppose that G is a nonabelian simple group. Then 
G is a 3-C 1 -group if and only if G = A 5 . 

Lemma 3.12 Let S be a (2,2,2)-generating set of G. Then X = Cay(G, S) is a 
normal Cayley graph. 

Proof Since S = {al,a2,a3} is 3-C1, for each ¢ E Al we have ¢ E Aut(G) by 
Lemma 3.11 and the lemma follows. 0 

PROOF OF THEOREM 1.5 This is given by Lemmas 3.2, 3.3, 3.4, 3.5, 3.6, 
3.7, 3.8, 3.10 and 3.12. 0 
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