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Abstract 

Let U(R, S) denote the class of all m x n matrices of O's and l's having 
row sum vector R and column sum vector S. The interchange graph 
G (R, S) is the graph where the vertices are the matrices in U (R, S) 
and two vertices are adjacent provided they differ by an interchange. 
Two tight upper-bounds of the maximum degree l:l.(G(R, S)) are given. 
Furthermore, those extreme graphs whose maximum degrees reach the 
upper-bounds are determined. 

1 INTRODUCTION 

All graphs discussed in this paper are simple, undirected finite graphs. For nota
tion and terminology not defined in this paper see [15]. 

Let G be a graph with vertex-set V(G) and edge-set E(G). The degree of a vertex 
x of G, denoted by d(x), is the number of vertices which are adjacent (are joined 
by an edge) to x. The maximum degree of G, denoted by ~(G), is the maximum 
degree of vertices of G, i.e. ~(G) = max{d(x) : x E V(G)}. 

Let R = (r1, r2," " rm ), S = (81,82,"', 8n ) be two (positive) integral vectors 
with rl +r2+' . ·+rm = 81 +82+" '+8n = N. Denote by U(R, S) [2,16] the class of all 
mxn (O,l)-matrices x = (Xij)mxn having row sum vector R and column sum vector S: 

n m 
Xij = 0 or 1 (i = 1,2", ',m;J = 1,2," ',n), E aij = ri (i = 1,2"" ,m) and E Xij 

j=l i=l 

= Sj (j = 1,2" .. , n). An interchange of a matrix x of U(R, S) is a transformation 

which replaces a 2 x 2 submatrix (~ ~) of x with the 2 x 2 submatrix (~ ~) or 

vice versa. The interchange graph G(R, S) is defined as follows [2]: the vertices are the 
matrices in U(R, S) where two matrices x and yare adjacent iff x can be obtained 
from y by one interchange (also y can be obtained from x by one interchange). 
Clearly, for x E V (G (R, S)), the number of different interchanges of x equals its 
degree: d(x). 
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Many results about the number of vertices, connectivity, diameter, transitivity 
and hamiltonicityetc. on interchange graphs have been obtained [1-14]. 

In this paper, we study the maximum degree of G(R, S). Two tight upper-bounds 
of .6.(G(R, S)) are obtained: 

(1) .6.(G(R, S)):S; (N) - f ( ri ) - t ( Sj ); 
2 i=1 2 j=1 2 

(2) Ll(G(R, S)) S ( ~ ) - t. ( ; ) -t, ( i ) - ~ t. ;=nt,;+1 (r; -1)(8; -1), 

81 ~ 82 ~ ... 2: 8n ; 

where ( : ) is the binomial coefficient (with ( : ) = 0 if m < n). All extreme 

graphs which reach these two bounds are also determined. 

2 MAIN RESULTS 

By the definition of G(R, S), it does not affect the isomorphism type of G(R, S) 
to rearrange rows and rearrange columns. We now make the assumption that r1 2: 
r2 ~ ... ~ r m and 81 ~ 82 ~ ... ~ 8n throughout the following. 

m n 
Let x = (Xij)mxn E V(G(R, S)). By the assumption: I: ri = I: 8j = N, the 

i=l j=1 

total number of l's in x is N, i.e. I{xij : Xij = 1}1 = N. Because every interchange 
of x involves just two l's (also two D's) and any pair of l's which are in the same row 
or the same column of x does not form an interchange, we have an upper-bound of 
.6.(G(R.S)) immediately: 

Ll (G (R, S)) S ( n -t. ( ; ) -n (i). (1) 

Denote ( ~ ) - t. ( ~ ) -t, ( i ) by </>( R, S). The following result gives 

us a characterization of the extreme graphs which reach the bound. 

Theorem 1. Let n = {i : ri > I}, 8 = {j : 8j > I}, k = Inl and h 181. 
We have 

.6.( G(R, S)) = ¢(R, S) 

if and only if n - I: ri ~ hand m - I: 8j 2: k. 
iER jES 

(2) 

Proof. Note that r1 ~ r2 ~ ... ~ rm and 81 ~ 82 ~ .•. ~ 8 n , so n = {I, 2", " k} 
and 8 = {I, 2,,,', h}. 

k 
Firstly, assume that n - I: ri ~ hand m 

i=1 

h 
I: 8j ~ k. 
j=1 

k h m n 
Let a = I: ri, f3 = I: 8j, "( = n-a-h, "(' = m-f3-k. Due to I: ri = E 8j = N, 

i=1 j=l i=1 j=1 

so N - a m - k, N - f3 = n - h. Hence "( = n - a - h = m - k - f3 = "('. Since 
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n - a ~ h, m - f3 ~ k, we have 'Y = 'Y' ~ O. Let 

( 

0 0 A) 
Xo = 0 Ly 0 

BOO 

where 

A= B= 

kxa 

(3xh 

and Ly is the 'Y x 'Y identity matrix, 0 is the matrix of all O's. 
It is easy to see that Xo E V(G(R, S)), and its any pair of l's which are in different 

rows and different columns forms an interchange of Xo. So d(xo) = ¢>(R, S). 
, k h 

Conversely, assume that n - r: ri < h or m - r: Sj < k. 
i=l j=l 

In this case, for any x = (Xij)mxn E V(G(R, S)), the submatrix of x which lies 
in rows 1,2"", k and columns 1,2,,'" h contains at least one 1, say Xpq. Since 
ri > 1, i E {1,2, .. ·,k} and Sj > 1, j E {1,2, .. ·,h}, then Tp,Sq > 1. So there 
are iitE{I, 2"", m}, q' E {I, 2,,'" n}, p' i= p , q' i= q such that Xpql = Xplq = 1. 
Clearly, Xpql and Xplq are in different rows and different columns but do not form an 
interchange of x. So we have d(x) < ¢>(R, S). The theorem follows. 

Let x be a matrix. A I-type submatrix, or I-T for short, of x is one of the 2 x 2 

. (*1)(1*)(11) (11) submatnces: 1 1 ' 1 1 ' * 1 and 1 * ,where * equals 0 or 1. 

Let T be a I-T of x. The pair consisting of two l's which lie in different rows and 
different columns of T is called the acute-l of T, while the other 1 of T is called its 
right-I. IfT lies in rows i,j and columns s, t while its right-l is at the (i, s)-position, 
then we denote it by T1x(i, S : j, t). Two I-T's, say T1x(i, S : j, t) and T1x(i', s' : j', t'), 
are considered to be the same iff i = i', j = j', S = s' and t = t'. A 2- type submatrix 

of x, or 2-T for short, is a 2 x 2 submatrix (i i) of x. The 2-T of x which lies 

in rows i,j and columns s, t is denoted by T2x (i, s : j, t). Similarly,two 2-T's, say 
T2x (i,s : j,t) and T2x (i',s' : j',t'), are said to be the same iff {i,j} = {i',)'} and 
{s, t} = {s', t'l. The total number of I-T's and 2-T's of x are denoted by t1(X) and 
t 2 (x) respectively. 
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Example. Let 

x=o ~ n 
We have t1 (x) 8 and t2(x) = 1. Its eight I-T's are T1x(I, 1 : 3,3); T1x(I, 3 : 2,1); 
T1x (I,3 : 3,1); T1x (2,3 : 1,2); T1x (2,3 : 3,2); T1x (3,1 : 1,3); T1x(3,3 : 1,1) and 
T1x (3,3 : 2,1). Its unique 2-T is T2x(I, 1 : 3,3). 

Lemma 1. Let x = (Xij)mxn E V(G(R, S)). We have 
(1) t1(x) = L (ri - I)(sj - 1) 

Xij=l 

(2) t1(x) ~ 4t2(X) 
(3) d(x) = ¢(R, S) t1(x) + 2t2(X). 

Proof. (1) If Xij 1, then the number of different I-T's with Xij being its right-
1 is (ri - I)(sj - 1). Since every I-T of x has just one right-I, and any two I-T's 
with different right-I are different, then (1) follows. 
(2) Because every 2-T contains four I-T's, (2) is immediate. 
(3) We know that every interchange of x involves just two I's (also two O's) of x, 

while the number of ways of choosing two I's from x is ( ~ ). Thus, to determine 

the number of interchanges of x, we need only to calculate the number of such pairs 
of 1 's which can not form interchanges. 

Two I's of x which cannot form an interchange must come from one of the 
following three cases. 
Case 1. They lie in the same row of x. 

~ (r2i). In this case, the number of pairs is ~ 
i=l 

Case 2. They lie in the same column of x. 

The number of pairs is t ( i ). 
J=l 

Case 3. The pair consisting of these two I's is the acute-I of a I-T. 
In this case, we prove that the number of pairs is t1 (x) 2t2 (x). 
In fact, assume that these two I's are at the (i, S )-position and (j, t)-position 

respectively, i :f. j, s :f. t. Clearly, the pair consisting of these two I's is the acute-I 
of at most two I-T's. If it is the acute-1 of exactly one 1-T, then it contributes to 
t1(x) just once. If it is the acute-I of two I-T's, then it contributes to t1(x) twice 
and the entries at the (i, s)-,(j, s)-,(i, t)- and (j, t)-positions are anI's. That is, these 
four I's form a 2-T. Hence, the pair consisting of the other two I's (i.e. at the (i, t)
and (j,s)-positions) is also the acute-I of two I-T's. So the pair contributes to t1(x) 
twice too. Therefore, the number of pairs in this case is no less than t1(x) - 2t2(X). 

Conversely, every 2-T contains just four I-T's and two pairs of l's which lie in 
different rows and different columns. Among these, each pair is the acute-I of two 
I-T's. Hence, the number of pairs is no more than t1(x) 2t2(X). 
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From Case 1, Case 2 and Case 3, (3) is immediate. The proof of the lemma is 
completed. 

By Lemma 1, for any x E V(G(R, S)), we have 

1 
d(x) ::; ¢(R, S) - "2t1(x). (3) 

The equality holds iff t1 (x) = 4t2 (x). On the other hand, h (x) = 4t2 (x) iff every 
1-T of x is contained in a 2-T. Thus, (3) holds iff every 1-T of x is contained in a 2-T. 

Theorem 2. 

1 m n 

~(G(R, S)) ::; ¢(R, S) - "2 L L (ri - 1)(3j - 1). (4) 
i=1 j=n-ri+1 

Equality holds if and only if 31 = 32 ... = 3 n = 3, and r1 = ... = r 8 2:: r 8+1 = 
... = r2s 2:: ... 2:: r(k-1)s+1 = ... = rks· 

Proof Since 81 2:: 82 2:: ... 2:: 8n , then 

m n 

L L (ri - 1)(8j - 1) ::; (5) 
i=l j=n-ri+1 

for any x E V(G(R,S)). By (3) and Lemma 1.1, (4) is immediate. 
N ow assume that 

1 m n 

~(G(R, S)) = ¢(R, S) - "2 L L (ri - I)(8j - 1). (6) 
i=l j=n-ri+1 

Let Xo = (Xij)mxn be a vertex of G(R, S) with 

1 m n 

d(xo) = ¢(R, S) - - L L (ri - I)(8j - 1). 
2 i=1 j=n-ri+1 

(7) 

We first prove that 81 = 82 = ... = 8 n = 8. 
m n 

By (3), (5) and (7), we have ¢(R, S) - ~ E E (ri - I)(8j - 1) = d(xo) :s; 
i=1 j=n-ri+1 

11m n 
¢(R, S) - 2' L (ri - I)(8j - 1) ::; ¢(G, S) - 2' L L (ri - I)(8j - 1). So 

Xij=1 i=1 j=n-ri+1 
m n . 
L L (ri - 1)(8j - 1) = L(ri - I)(8j - 1). If 81 > 3 n , then there exists 
i=1 j=n-ri+1 Xij 

p E {I, 2, ... ,m} such that the entry at the (p, n)-position is 0 while the entry 
at the (p, I)-position is 1. Since 81 2:: 82 2:: ... 2:: 8 n , we have 

I: (ri - I)(8j - 1) 
Xij=l 

= ( ~ . (ri -I)(8j -1) + (rp -I)(8n -1)) + (rp 1)(81 -1) - (rp -I)(8n -1) 
Xij =1,(t,J )¥=(p,l) 
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m n 

2:: L L (ri - I)(8j - 1) + (rp - 1)(81 - 1) - (rp I)(8n - 1) 
i=l j=n-ri+1 
m n 

> L L (ri - I)(8j - 1). 
i=l j=n-ri+1 

This is a contradiction. Hence 81 = 82 = ... = 8 n . 
m n 

We know that L L (ri -I)(8j -1) = L (ri I)(8j 1) = tl(xo), i.e. d(xo) 
i=l j=n-ri+l Xij=l 

m n 
= ¢(R, S)- ~ L L (ri - I)(8j - 1) = ¢(G, S) ~tl (xo). So every I-T must be 

i=l j=n-ri+l 

contained in a 2-T of Xo. Thus, there is no 2 x 2 submatrix in Xo with the form: 

(i ~). (~ i), (i ~) or (~ i). 
Suppose that all the I's which lie in row 1 (the pt row) are at the positions: 

(1, jl), (I,j2)"'" (1, jrJ respectively, and all the I's which lie in column jl are at the 
positions: (I,jl), (i2 ,jl), "', (is,jl) respectively. Since every I-T of Xo is contained 
in a 2-T, then the entry at the (i,j)-position, i E {1,i2, "', is}, is 1 iff j E {jl,12, 
.. " jrJ. Similarly, the entry at the (8, t)-position, t E {jl, i2, "', jrJ, is 1 iff 
8 E {I, i2, "', is}. This shows that the submatrix of Xo which lies in rows 1,i2' 
... , is, and columns jl, j2, "', jq is an 8 x rl matrix of allI's. Furthermore, this 
submatrix contains all the l's of Xo which lie in rows 1,i2,"', is and all the l's which 
lie in columns jl, j2, ... ,jrl' Denote this submatrix by x~. 

Delete rows I,i2,"', is and columns jl,j2,'" ,jrl from Xo. The remaining sub
matrix, denoted by Xl, also has the property: every I-T of Xl is contained in a 2-T, 
and each of its column sums is 8. We can obtain a submatrix xi from Xl in the same 
way as that from Xo. For the same reason, xi is a matrix of all l's with 8 rows. 

In this way, we obtain a sequence of submatrices: x~, xi, ... , X~_l' Each of them 
is a matrix of all I's with 8 rows. Clearly, every 1 of Xo is contained and only 
contained in one of them. By r1 2:: r2 2:: ... 2:::: r m and the property of x~, xi, ... , 
X~_l' we have the following immediately: r1 = ... = r s 2:::: r s+1 = ... = r2s 2:: 
2:: r(k-1)s ... = rks' 

Conversely, assume 81 = 82 = ... = 8n = 8, and r1 ... = rs 2:: Ts+l = 
= r2s 2:::: ••• 2:::: r(k-1)s = ... = rks· Let 

where Ai is the s x ris matrix of anI's, i = 1,2, .. " k, and all other entries are O. It 
is easy to check that Xo E V ( G (R, S)) and 

1 m n 

2 L L (ri - I)(8j - 1). 
i=l j=n-ri+1 

This completes the proof of the theorem. 
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