Scenic Graphs II: Non-Traceable Graphs

Michael S. Jacobson, André E. Kézdy, and Jenő Lehel ${ }^{\dagger}$

Department of Mathematics
University of Louisville
Louisville, KY 40292

Abstract

A path of a graph is maximal if it is not a proper subpath of any other path of the graph. A graph is scenic if every maximal path of the graph is a maximum length path. In [4] we give a new proof of C. Thomassen's result characterizing all scenic graphs with Hamiltonian path. Using similar methods here we determine all scenic graphs with no Hamiltonian path.

1 Introduction

We employ the following notation some of which is non-standard. A path in a graph is a sequence of distinct vertices in which consecutive vertices are adjacent. The length of a path is the number of edges in the path. Thus a path $Q=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ has length k. All graphs we consider here are undirected. Therefore, although sequences have an orientation or direction, here we shall not distinguish between the sequences $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ and $\left(x_{k}, x_{k-1}, \ldots, x_{0}\right)$ as paths. For the path $Q=$ $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ we will also use the notation (x_{0}, Q, x_{k}), and (x_{i}, Q, x_{j}) is the corresponding subpath. If (x, P, y) and (u, Q, v) are disjoint paths with y and u adjacent, then their concatenation is a path we denote by either $((x, P, y),(u, Q, v))$, or $(x, \ldots, y,(u, Q, v))$, or $((x, P, y), u, \ldots, v)$, or $(x, \ldots, y, u, \ldots, v)$. A similar natural extension of this notation is used for concatenations of concatenated paths. A path P is a subpath of Q if the sequence corresponding to P appears as a consecutive subsequence of Q. A subpath P of a path Q is proper if $P \neq Q$. If P is a proper

[^0]subpath of Q, then we shall say that P extends to Q, or Q extends P, or Q is an extension of P. A path is maximal if it is not a proper subpath of any other path, or equivalently, if it has no extension. The path spectrum of a connected graph G is the set of lengths of all maximal paths in G. The concept of path spectrum was introduced by Jacobson et al. [3]. We say that a connected graph is scenic if its path spectrum is a singleton. A graph with a Hamiltonian path is called traceable.

The Prism is the graph $K_{6}-C_{6}$ obtained from K_{6} by removing the edges of a six-cycle. The Cube is the graph $K_{4,4}-4 K_{2}$ obtained by removing four disjoint edges from the complete 4×4 bipartite graph. Except for paths $P_{n}(n \geq 1)$, cycles $C_{n}(n \geq 3)$, the Prism, and the Cube, traceable scenic graphs emerge from cliques, K_{n} ($n \geq 1$), and from the complete bipartite graphs $K_{p, p}$ and $K_{p, p+1}(p \geq 1)$. Traceable scenic graphs were determined by C. Thomassen [9] and a different proof can be found in [4]. To present the family we need some notation. The union of t mutually disjoint edges (a matching) will be denoted by $t K_{2}$. The graph obtained from K_{n} by removing the edges of a copy of $t K_{2}(1 \leq t \leq n / 2)$ is denoted by $K_{n}-t K_{2}$. The complete $p \times p$ bipartite graph plus (resp. minus) an edge is denoted $K_{p, p}+K_{2}$ (resp. $K_{p, p}-K_{2}$). The graph obtained from the complete $p \times p$ bipartite graph by adding one edge into each partite set is denoted $K_{p, p}+2 K_{2}$. If $H \in\left\{K_{3}, 2 K_{2}, K_{1, q}\right\}$, then $K_{p, p+1}+H$ denotes the graph obtained from the complete $p \times(p+1)$ bipartite graph by adding all the edges of H to the largest partite set containing $p+1$ vertices. In [4] we give a new proof of the following theorem of C. Thomassen [9]:

Theorem 1.1 A traceable graph is scenic if and only if it belongs to one of the following families:

$$
\begin{aligned}
\Phi\left[K_{n}\right] & =\left\{K_{n}, K_{n}-t K_{2}(1 \leq t \leq n / 2)\right\}, \\
\Phi\left[K_{p, p}\right] & =\left\{K_{p, p}, K_{p, p}-K_{2}, K_{p, p}+K_{2}, K_{p, p}+2 K_{2}\right\}, \\
\Phi\left[K_{p, p+1}\right] & =\left\{K_{p, p+1}, K_{p, p+1}+K_{3}, K_{p, p+1}+2 K_{2}, K_{p, p+1}+K_{1, q}(1 \leq q \leq p)\right\}, \\
& =\left\{P_{n}, C_{n}, \text { Prism, Cube }\right\} .
\end{aligned}
$$

In this paper we determine all non-traceable scenic graphs ${ }^{1}$. In Section 2 we prove that every non-traceable scenic graph is bipartite. Let $K_{1, r}^{s}(r \geq 3)$ be the equisubdivided star obtained from a $K_{1, r}$ by subdividing each edge with $s \geq 0$ vertices. For $p \geq 2$ and $q \geq p+2$, we call $K_{p, q}-F$ a $p \times q$ generic graph if it is obtained from $K_{p, q}$ by removing an arbitrary star forest F with its star components centered in the q-element (i.e. largest) partite set of $K_{p, q}$. Note that a disconnected generic graph has the form $K_{p, q}-K_{p, 1}$ (or equivalently $K_{p, q-1}+y$, where y is an isolated vertex in the larger partite set). We show that besides a few exceptions, every non-traceable scenic graph is either an equi-subdivided star or a connected generic graph. The main result is formulated in the following theorem.

[^1]Theorem 1.2 A non-traceable graph is scenic if and only if it is one of the graphs G_{1}, \ldots, G_{6} in Fig. 1, an equi-subdivided star, or a connected generic graph.

G_{1}

G4

G_{2}

G5

G3

G6

Figure 1:

It is a routine to check that the six small graphs in Fig. 1 and the equi-subdivided stars are non-traceable and scenic. To prove the same for a connected $p \times q$ generic graph one may easily show that every maximal path covers the p-element partite set of G and both of its endvertices must be in the q-element partite set. Therefore, all maximal paths in a connected generic graph have the same length, namely $2 p \leq$ $p+q-2$. Hence connected generic graphs are scenic and non-traceable.

The next sections contain the proof of the 'only if' part of Theorem 1.2. The basic idea in the proof is the reduction of a non-traceable scenic graph G by removing a copy of $K_{2,2}$ from G together with all adjacent edges. To some extent the removal of a $K_{2,2}$ preserves the scenic property - the only exceptions are when the resulting graph is small or disconnected. Moreover, besides some exceptional cases discussed in Sections 4 and 5 , both G and H must be generic graphs.

The problem of determining the maximum path length of a graph is NP-complete, and the same is true for computing the independence number (maximum number of mutually non-adjacent vertices), see [6]. R.S. Sankaranarayana and L.K. Stewart [7] have shown that deciding whether a graph is well-covered, i.e., deciding whether all maximal independent sets of a graph have the same cardinality, is a co-NP-complete problem. Concerning the analogous decision problem whether all maximal paths are maximum Theorems 1.1 and 1.2 imply that the property of being scenic can be tested in polynomial time.

2 Non-Traceable Scenic Graphs are Bipartite

Proposition 2.1 A tree is non-traceable and scenic if and only if it is an equisubdivided star $K_{1, r}^{s}(r \geq 3, s \geq 0)$.

Proof. Let G be a non-traceable scenic tree, i.e., let it be different from a path. For arbitrary $x, y \in V(G)$, we use (x, G, y) to denote the (unique) path of G with endvertices x and y. Let $P=(x, G, y)$ be a maximal path of G and let $z \in V(P) \backslash$ $\{x, y\}$ be a vertex of degree at least three. Clearly, both x and y are leaves of G, and the subpaths (x, G, z) and (y, G, z) must have the same length. Therefore, z is the (unique) midvertex of P.

Assume that G has two distinct vertices of degree at least three, u and v. Consider a maximal extension P of (u, G, v). By the observation above, both u and v are midpoints of P, a contradiction. Therefore, G has exactly one vertex of degree $r \geq 3$ which is the midpoint of all paths between any two leaves. Thus G is an equi-subdivided star $K_{1, r}^{s}$, for some $s \geq 0$.

Theorem 2.2 Let G be a non-traceable scenic graph. If G is different from a tree, then it is a $p \times q$ bipartite graph with $p \geq 2$ and $q \geq p+2$ vertices in the partite sets. Furthermore, G has a dominating cycle on $2 p$ vertices and the maximum path length in G equals $2 p$.

Proof. Let C be a cycle of G with maximum length $k=|V(C)|$. Observe that $3<k<|V(G)|$. Indeed, C can not be a Hamiltonian cycle, because G is nontraceable. On the other hand, $k \neq 3$ holds by the following argument. Assuming that $C=\left(x_{1}, x_{2}, x_{3}\right)$, at least two vertices of C have degree greater than two (otherwise G would not be scenic). Let $x_{1} y_{1}, x_{2} y_{2} \in E(G)$, for some vertices $y_{1} \neq y_{2}$ and y_{1}, y_{2} not in C. Because C is a maximum cycle, every maximal extension Q of the path ($y_{1}, x_{1}, x_{2}, y_{2}$) misses x_{3}. A maximal path longer than Q can be found by including x_{3} into Q between x_{1} and x_{2}, contradicting that G is scenic.

A path $T \subset G$ with $|V(T) \cap V(C)|=1$ is called a tail of C. For a given vertex $z \in C$, let $T(z)$ denote the longest tail of C ending at z. Choose a maximum cycle C of G having a tail T of maximum possible length. Assume that $T=T(x)$ is a maximum tail of C at x, clearly it has length $t \geq 1$.

Let $y, x, y^{\prime}, x^{\prime}$ be consecutive vertices on C (they are distinct, since $k \geq 4$). Let $T(y)$ and $T\left(y^{\prime}\right)$ be maximum length tails of C at y and y^{\prime}, respectively. Because C is a maximum cycle, both $T(y)$ and $T\left(y^{\prime}\right)$ are disjoint from $T(x)$. Observe that $(T(x),(x, C, y), T(y))$ and $\left(T(x),\left(x, C, y^{\prime}\right), T\left(y^{\prime}\right)\right)$ are maximal paths of G, and because G is scenic, $T(y)$ and $T\left(y^{\prime}\right)$ have the same length s. Clearly, $1 \leq t, 0 \leq s \leq t$, and the maximum path length in G is $s+t+(k-1)$.

First we show that there is no vertex $z \in V(G) \backslash V(C)$ with $y z, y^{\prime} z \in E(G)$. Suppose that such a z exists. Because C has maximum length, z is not on $T(x)$. Hence z could substitute for x in C; that is $(C-x)+z$ would be a maximum cycle with longer tail $T(x)+y$ at y, a contradiction.

The previous paragraph implies that $T(y)$ and $T\left(y^{\prime}\right)$ are disjoint. If $s \neq 0$ then $\left(T(y),\left(y, C-x, y^{\prime}\right), T\left(y^{\prime}\right)\right)$ is a maximal path of length $2 s+(k-2)$. From $2 s+k-2=$ $s+t+k-1$ we obtain $s=t+1>t$, a contradiction. Consequently, $s=0$. Next we show that $t=1$. Note that this will imply that every vertex not in C is adjacent to some vertex of C (that is C is a dominating cycle in G.), and the maximum path lengths equals k.

Consider a maximum length tail $T\left(x^{\prime}\right)$ at x^{\prime}. Because G is scenic, and ($\left(y^{\prime}, C, x^{\prime}\right)$, $\left.T\left(x^{\prime}\right)\right)$ is a maximal path, $T\left(x^{\prime}\right)$ has t edges. If $T(x)$ and $T\left(x^{\prime}\right)$ are disjoint, then $\left(T(x),\left(x, C-y^{\prime}, x^{\prime}\right), T\left(x^{\prime}\right)\right)$ is a maximal path of length $2 t+(k-2)=t+k-1$ implying $t=1$. If $T(x)$ and $T\left(x^{\prime}\right)$ are not disjoint, then they must share a vertex $z \notin V(C)$ such that $z x, z x^{\prime} \in E(G)$. In this case $\left(y^{\prime}, x, z,\left(x^{\prime}, C-\left\{x, y^{\prime}\right\}, y\right)\right)$ is a maximal path of length $k=t+k-1$, implying $t=1$.

The argument above shows that the vertices of C have a two-coloring, namely $z \in C$ is assigned color $|T(z)|(=0$ or 1$)$. In particular, C is an even cycle of length $k=2 p$, for some $p \geq 2$. Let us color all vertices off of C with 0 . We claim that this is a proper two-coloring of G, i.e., G is bipartite.

Any vertex off of C can only be adjacent to vertices of color 1 on C, by the definition of our coloring and because G is connected. Now assume that $u v$ is a chord of C between vertices of the same color ϵ. Let u^{\prime} and v^{\prime} be neighbors of u and v, respectively, such that $V(C)$ is partitioned into two subpaths of $C: C_{1}$ going from u to v^{\prime} and C_{2} going from v to u^{\prime}. If $\epsilon=1$, then both u^{\prime} and v^{\prime} have color 0 , and the concatenation of C_{1} and C_{2} along the edge $u v$ would result in a maximal path Q of length $k-1$. Therefore, $\epsilon=0$, and both u^{\prime} and v^{\prime} have color 1 . This implies that u^{\prime} and v^{\prime} have a neighbor z and w not in C, respectively. If $z=w$, then the path Q above together with z would result in a cycle of length $k+1$. Hence $z \neq w$, and $\left(z,\left(u^{\prime}, Q, v^{\prime}\right), w\right)$ is a maximal path of length $k+1$, a contradiction.

Therefore G is a (connected) bipartite graph with p vertices in one partite sets and $q \geq p+1$ in the other one. If there was just one vertex not in C then G would be traceable. This shows that $q \geq p+2$ and the maximum path length is $2 p$.

3 Small Non-Traceable Scenic Graphs

For $p \geq 2$ and $q \geq p+2$, denote by $\mathcal{G}_{p, q}$ the class of all $p \times q$ bipartite graphs which are non-traceable scenic graphs different from trees. Notice that members of $\mathcal{G}_{p, q}$ have all properties described in Theorem 2.2. In this section we determine $\mathcal{G}_{p, q}$ for
$p=2$ and 3. Recall that G is $p \times q$ generic, if $G \cong K_{p, q}-F$, where F is some star forest with all star components centered at the q-element partite set.

Proposition 3.1 If $G \in \mathcal{G}_{2, q}$, then G is a connected generic graph.
Proof. Let $\{x, y\}$ be the smallest partite set of G and $Q=V(G) \backslash\{x, y\}$. Note that 4 is the maximum path length in G (by Theorem 2.2). Because G is connected, every vertex of Q is adjacent to either x or y. Assume that one of x and y, say y, is non-adjacent to $u, v \in Q$. In this case the path (u, x, v) would be maximal, a contradiction. This proves that $G \cong K_{2, q}-F$, where $F \cong K_{2}$ or $2 K_{2}$.

Proposition 3.2 If $G \in \mathcal{G}_{3, q}$ is not generic, then G is either G_{1}, G_{2} or G_{3}.
Proof. Suppose $P=\left\{x_{1}, x_{2}, x_{3}\right\}$ is the smallest partite set of G and $Q=V(G) \backslash P$. Note that G has a dominating 6 -cycle C and 6 is the maximum path length in G (by Theorem 2.2). Because G is connected, every vertex not in C is adjacent to at least one vertex of P. For every $I \subseteq\{1,2,3\}$, define $Q(I)=\left\{z \in Q \backslash V(C): z x_{i} \in\right.$ $E(G)$ iff $i \in I\}$. Obviously, $Q(I) \cap Q(J)=\emptyset$ holds for every $I \neq J$. Set $q(I)=|Q(I)|$. Observe that $\sum_{|I|=1} q(I) \leq 1$ and, for $|I|=2, q(I) \leq 1$ must hold, because otherwise, one easily finds maximal paths of length 4 or 2 . On the other hand, $q(I) \geq 2$, for some I, because G is non-traceable.

Case a: C is an induced 6 -cycle of G. If $q(\{i\})=1$ for some $i \in\{1,2,3\}$, then $q(I)=0$ must hold for every I containing i, because otherwise, one easily finds a maximal path of length 4 . Therefore, $q(\{1,2,3\} \backslash\{i\})=1$ and $G \cong G_{1}$ follows. Assume now that $q(I)=0$, for every $|I|=1$. If $q(\{1,2,3\})=0$, then $\sum_{|I|=2} q(I) \geq 2$, because otherwise, G would be traceable. Therefore G is isomorphic to one of G_{2} and G_{3}. If $q(\{1,2,3\})>0$, then $q(I)=0$, for every $|I|=2$. This implies that G is generic.

Case b: G has no induced 6-cycle. Assume first that C has just one chord, say at x_{3}. In this case $q(\{1,2\})=0$ (otherwise G would contain a C_{6}). Furthermore, $q(\{1,3\})=q(\{2,3\})=0$ and $q(I)=0$, for every $|I|=1$, because G has no maximal paths of length less than 6 . This proves that G is generic. Assume now that every 6 -cycle of G induces at least two chords. A similar argument as above shows that G must be generic. This proves the proposition.

$4 \quad K_{2,2}$-removal

In this section our goal is to prove that (to some extent) the removal of a $K_{2,2}$ preserves the scenic property - the only exceptions are when the resulting graph is small or disconnected.

Proposition 4.1 If $p \geq 4$ and $G \in \mathcal{G}_{p, q}$ is different from G_{4}, then G contains a copy of $K_{2,2}$.

Proof. By Theorem 2.2, G is bipartite and has a dominating cycle $C=\left(x_{1}, y_{1}, x_{2}\right.$, $y_{2}, \ldots, x_{p}, y_{p}$) of length $2 p$, where $P=\left\{x_{1}, \ldots, x_{p}\right\}$ is one of the partite sets of G. Furthermore, the proof of Theorem 2.2 implies that every vertex of P has a neighbor off of C. Assume that G has no $K_{2,2}$. For every $i, 1 \leq i \leq p$, there exist vertices $u, v \in V(G-C)$ with $u x_{i}, v x_{i+2} \in E(G)$ and $u x_{i+1}, v x_{i+1} \notin E(G)$ (because G is $K_{2,2}-\mathrm{free}$). (Indices are reduced modulo p in this paragraph.) If $u \neq v$, then the path ($u,\left(x_{i}, C-\left\{y_{i}, x_{i+1}, y_{i+1}\right\}, x_{i+2}\right), v$) is maximal and has length $2 p-2$. Hence $u=v$ follows, moreover, u must be adjacent to all vertices x_{i}, x_{i+2}, \ldots, and x_{i-2}. The same argument shows that there exists a vertex $w \in V(G-C)$ different from u and adjacent to all x_{i+1}, x_{i+3}, \ldots, and x_{i-1}. This implies that p must be even, in particular C has length $2 p \geq 8$.
If $p \geq 6$, then the path ($y_{1}, x_{1}, u, x_{3}, y_{3}, x_{4}, w, x_{2}, y_{2}$) of length 8 can not be maximal, hence it extends by an edge $y_{\epsilon} x_{i}$, where $\epsilon=1$ or 2 , and $4 \leq i \leq p$. Now $j=\epsilon$ or $\epsilon+1$ has the same parity as i, hence x_{i} and x_{j} are adjacent to the same vertex $z=u$ or w. Then $\left\{y_{\epsilon}, x_{i}, z, x_{j}\right\}$ induces a $K_{2,2}$, a contradiction. Thus we have $p=4$. Because any additional vertices or any further edges included to $C \cup\{u, w\}$ would complete a $K_{2,2}, G \cong G_{4}$ follows.

For $G^{\prime} \subset G, G-V\left(G^{\prime}\right)$ denotes the graph obtained from G by removing the vertices of G^{\prime} together with all incident edges.

Theorem 4.2 For $p \geq 4$, let $G \in \mathcal{G}_{p, q}(q \geq p+2)$, and let $K \cong K_{2,2}$ be a subgraph of G. If G is different from G_{5}, then either $G-V(K) \in \mathcal{G}_{p-2, q-2}$ or $G-V(K)$ is a scenic graph (traceable or non-traceable) plus an isolated vertex.

Proof. Let a_{1}, a_{2}, b_{1}, and b_{2} be the vertices of K. Let $H=G-V(K)$, let P and Q be the partite sets of H with $|P|=p-2$ and $|Q|=q-2$, furthermore, let $\left\{a_{1}, a_{2}\right\} \cup P$ and $\left\{b_{1}, b_{2}\right\} \cup Q$ be the partite sets of G. We know from Theorem 2.2 that
${ }^{(*)}$ every maximal path of G has both end vertices in the larger partite set, $\left\{b_{1}, b_{2}\right\} \cup Q$, and contains all vertices from the smaller one, $\left\{a_{1}, a_{2}\right\} \cup P$.

Our goal is to show that similar properties are satisfied by the maximal paths of H, as well. Let $M=(u, \ldots, v)$ be a maximal path in H (we may assume $u \neq v$). We shall prove that $u, v \in Q$, moreover, M contains all vertices of P. Because M has an extension in G containing a_{1} and a_{2}, we may assume that there is an edge, say $u z \in E(G)$, for some $z \in V(K)$. Thus M can be extended in G from its endvertex u to include the four vertices of K. This new path has no extension in G from the other endvertex v (because (u, M, v) is maximal in H). Hence $\left(^{*}\right.$) implies $v \in Q$.

Due to the argument above we may assume that if $M=(u, \ldots, v)$ is a maximal path of H, then $v \in Q$ and u sends an edge to K. The proof of the theorem consists of two claims, each will be verified in several numbered steps.

Claim I: Every maximal path of H has both end vertices in Q.
Proof. We assume that $M=(u, \ldots, v)$ is a maximal path of H with $v \in Q$. Suppose to the contrary that $u \in P$, and let $u b_{1} \in E(G)$. Let $M=\left(u, u^{\prime}, \ldots, v^{\prime}, v\right)$, and let $Y=V(H) \backslash V(M)$. Observe that $|Y| \geq 2$ holds, because $q \geq p+2$.

Assume that $v a_{i} \in E(G)$. The path $\left(u, M, v, a_{i}, K, b_{j}\right)$ extends in G from u, by property $\left({ }^{*}\right)$. This contradicts the maximality of M in H. Similar argument shows that $v a_{i}, u^{\prime} a_{i} \notin E(G)$, for each $i=1$ and 2 . Note also that, by property (*), path (v, M, u, b_{1}, K, a_{i}) has an extension in G from a_{i}. This implies that, for each $i=1$ and 2 , there exists $y_{i} \in Y$ with $a_{i} y_{i} \in E(G)$.
(1) There is an edge from Y to M.

Suppose $b_{2} x \in E(G)$, for some $x \in Y \cap P$. The path ($x, b_{2}, K, a_{i}, y_{i}$) covering K extends in G to include all vertices of P, as required by property $\left({ }^{*}\right)$. In this case there must be an edge from Y to M.

Next we suppose that $\left\{b_{1}, b_{2}\right\}$ has no neighbor in $Y \cap P$. If $y_{1} \neq y_{2}$, the path ($y_{1}, a_{1}, b_{1}, a_{2}, y_{2}$) extends to include P which requires of using some edge going from Y to M. Thus we may also assume that y_{1} is the unique neighbor of $\left\{a_{1}, a_{2}\right\}$ in Y. Because $q \geq p+2$, there is some $y^{\prime} \in Y \cap Q$ different from y_{1}. By the connectivity of G, there is an edge $z y^{\prime} \in E(G)$. If $z \in Y \cap P$, then the path $\left((v, M, u),\left(b_{1}, a_{1}, y_{1}, a_{2}, b_{2}\right)\right)$ has no extension to include z, thus $z \in V(M)$ follows.

Note that (1) implies that M has at least 4 vertices. In particular, $u^{\prime} \neq v$, and $u \neq v^{\prime}$.
(2) There is a vertex $y \in Y \cap Q$ such that $y v^{\prime} \in E(G)$.

Let $x \in V(M)$ be the closest vertex to v such that $x y \in E(G)$, for some $y \in Y$. By (1), such x exists, we shall show that $x=v^{\prime}$. Suppose to the contrary that $x \neq v^{\prime}$.

If $x \in Q$, then no extension of the path $S=\left(y,(x, M, u),\left(b_{1}, K, a_{i}\right), y_{i}\right)(i=1$ or 2) can include v^{\prime}, by the choice of x. This contradicts (${ }^{*}$), thus $x \in P$ follows. Note also that the path S above cannot exist, consequently, we have $y=y_{i}$, for $i=1,2$. Therefore, y is the only vertex of $Y \cap Q$ which is adjacent to a_{1} and a_{2}. The path ($y,(x, M, u),\left(b_{1}, K, a_{2}\right)$ extends in G with some $a_{2} t \in E(G)$, where $t \in Q$. By the assumption on y, we know that $t \notin Y \cap Q$, that is t is a vertex of (x, M, v) different from v.

If $Y \cap P=\emptyset$, then every vertex of Y sends an edge to M, because G is connected. Define $x^{\prime} \in V(M)$ as the first vertex along the subpath (x, M, u) having some neighbor $y^{\prime} \in Y \backslash\{y\}$. Because $x y^{\prime} \notin E(G)$, we have $x^{\prime} \neq x$. Let
x^{*} be the last vertex on $\left(x, M, x^{\prime}\right)$ adjacent to y (possibly $x^{*}=x$). The path $\left(y^{\prime},\left(x^{\prime}, M, u\right),\left(b_{1}, K, a_{2}\right),\left(t, M, x^{*}\right), y\right)$ is maximal and misses v^{\prime}, a contradiction.

If $Y \cap P \neq \emptyset$, then the path $\left((v, M, x), y,\left(a_{2}, K, b_{1}\right),\left(u, M, u^{\prime \prime}\right)\right)$ is not maximal in G. Therefore, there exists a vertex $z \in Y \cap P$ with $u^{\prime \prime} z \in E(G)$. No extension of the path $\left(z,\left(u^{\prime \prime}, M, u\right),\left(b_{1}, K, a_{2}\right),(t, M, x), y\right)$ may contain v^{\prime}, a contradiction. This proves (2).
(3) There is a vertex $w \in Y \cap P$ such that $w u^{\prime} \in E(G)$.

By (2), there is a vertex $y \in Y \cap Q$ such that $y v^{\prime} \in E(G)$. Let C be the connected component of the subgraph of H induced by Y and containing y.

Assume that $u v \notin E(G)$. First we verify that in this case C does not send any edge to K. Otherwise, let $S=\left(y, \ldots, y^{\prime}, z\right)$ be a shortest path from y to K (with $z \in V(K)$). Any extension of the path $\left(\left(u, M, v^{\prime}\right),\left(y, S, y^{\prime}\right),\left(z, K, z^{\prime}\right)\right)$ (with z and z^{\prime} in opposite partite sets) has endvertex at $u \in P$, which contradicts property (*). Hence $C \cup\{v\}$ has no neighbor in K. Let t be the last vertex on $\left(v^{\prime}, M, u\right)$ that sends an edge to some $w \in C \cup\{v\}$. Either the path $\left(v,\left(t, M, v^{\prime}\right), y\right)$ or the path $((v, M, t), w)$ leads to a contradiction, since no extension of these paths may include $a_{i}(i=1$ or 2$)$.

So we may assume that $u v \in E(G)$. Recall that $u^{\prime} a_{i} \notin E(G)$, for $i=1$ and 2 , The path $\left(v,\left(u, M, v^{\prime}\right), y\right)$ extends to include a_{i}. Let $S=(y, \ldots, z)$ be a shortest path from y to K (with $z \in V(K)$). Consider the path J obtained from the paths $\left(\left(u^{\prime}, M, v^{\prime}\right),(y, S, z)\right)$ and $\left(b_{1}, u, v\right)$ by joining them in K with a shortest path between b_{1} and z. Because J misses either a_{1} or a_{2}, there exists a vertex $w \in Y \cap P$ such that $u^{\prime} w \in E(G)$. This proves (3).
(4) To conclude the proof of Claim I we show that the existence of the vertices $y, w \in Y$ obtained in (2) and (3) leads to a contradiction.

Let $S=\left(y, \ldots, y^{\prime}, z\right)$ be a shortest path from y to K as introduced in (3) above. If $z=b_{i}(i=1$ or 2$)$, then any extension of $\left(w,\left(u^{\prime}, M, v^{\prime}\right),\left(y, S, y^{\prime}\right),\left(b_{i}, K, a_{2}\right)\right)$ misses u. Hence we may assume that $z=a_{i}(i=1$ or 2$)$. Furthermore, the path $\left(w,\left(u^{\prime}, M, v^{\prime}\right),\left(y, S, y^{\prime}\right),\left(a_{i}, K, b_{2}\right)\right)$ extends with $b_{2} u \in E(G)$.

Let $R=\left(w, \ldots, w^{\prime}, r\right)$ be some path that we start adding when the path $\left(v, u, b_{1}\right.$, $\left.\left(a_{i}, S, y\right),\left(v^{\prime}, M, u^{\prime}\right), w\right)$ is extended to include all vertices of $P \cup\left\{a_{1}, a_{2}\right\}$. In particular, the extension will include $a_{3-i} \in K$, thus R should enter K. Actually we assume that r is the first vertex from K along R. If $r=b_{2}$, then any extension of $\left(y,\left(v^{\prime}, M, u^{\prime}\right),\left(w, R, w^{\prime}\right),\left(b_{2}, K, a_{2}\right)\right)$ would miss u. Hence $r=a_{3-i}$. From this we obtain that the path $\left(w,\left(u^{\prime}, M, v^{\prime}\right),\left(y, S, a_{i}\right), b_{2},\left(a_{3-i}, R, w^{\prime}\right)\right)$ must extend with $w b_{1} \in E(G)$ to include u. Now any extension of $\left(y,\left(v^{\prime}, M, u^{\prime}\right), w,\left(b_{1}, K, a_{2}\right)\right)$ misses u, a contradiction. This concludes the proof of Claim I.

Claim II: Every maximal path of H with distinct endvertices contains all vertices of P.

Proof. Suppose to the contrary that there exists a maximal path $M=\left(u, \ldots, v^{\prime}, v\right)$ of H such that $P \backslash V(M)) \neq \emptyset$. Assume that M is the longest such path. By Claim I, we have $u, v \in Q$. Because M extends in G, and by the symmetry of the endvertices, we may assume that $u a_{1} \in E(G)$. Let $Y=V(H) \backslash V(M)$. For $i=1$ or 2 , the path $\left((v, M u),\left(a_{1}, K, b_{i}\right)\right)$ extends in G. Hence, for every $i=1$ and 2 , there exists a vertex $y_{i} \in Y \cap P$ with $b_{i} y_{i} \in E(G)$.
(1) There is an edge from Y to M.

First assume that $a_{j} z \in E(G)$, for some $z \in Y \cap Q$ and $j=1$ or 2. Any maximal extension of the path $\left(y_{1},\left(b_{1}, K, a_{j}\right), z\right)$ has to cover vertices of M, thus there exists an edge between Y and M. Assume now that there is no edge from $\left\{a_{1}, a_{2}\right\}$ to Y. If $y_{1} \neq y_{2}$, then the path ($y_{1}, b_{1}, a_{1}, b_{2}, y_{2}$) extends to include a_{2}, hence there is an edge from Y to M. So we may suppose that $y_{1}=y_{2}$ is the only neighbor of b_{1} and b_{2} in Y. In this case the path $\left((v, M, u), a_{1}, b_{1}, y_{1}, b_{2}, a_{2}\right)$ is maximal in G. This contradicts property $\left({ }^{*}\right)$ and concludes the proof of (1).
(2) There is a vertex $y \in Y \cap Q$ such that $y v^{\prime} \in E(G)$.

By (1), there is an edge between M and Y. Let x be the first vertex along the path (v, M, u) which has a neighbor from Y, say $x y \in E(G)$, for some $y \in Y$. Suppose to the contrary that $x \neq v^{\prime}$.

If $x \in P$ then the path $\left(y,(x, M, u),\left(a_{1}, K, b_{i}\right), y_{i}\right)$, where $i=1$ or 2 , has no extension including v^{\prime}, by the choice of x. Hence $x \in Q$. Moreover, as the path above can not exist, $y=y_{1}=y_{2}$ is the only vertex of $Y \cap P$ adjacent to b_{i} ($i=1$, $2)$ and x.

The path $\left((v, M, u), a_{1}, b_{1}, y, b_{2}, a_{2}\right)$ extends with $a_{2} w \in E(G)$, for some $w \in Y \cap Q$. The path $\left((v, M, u),\left(a_{1}, K, b_{1}\right), y\right)$ extends at y, thus $y z \in E(G)$, for some $z \in Y \cap Q$. If $z \neq w$, then the path $\left(z, y,(x, M, u), a_{1}, b_{1}, a_{2}, w\right)$ misses v^{\prime}. Thus we conclude that $z=w$ is the only neighbor of y from $Y \cap Q$.

For $i=1$ or 2 , the path $\left(w, a_{2}, b_{3-i}, y,(x, M, u), b_{i}\right)$ must extend at b_{i} to include v^{\prime}. Thus there is an edge $b_{i} t \in E(G)$, where $t \in P$ is a vertex of (v, M, x). The path $\left(w, a_{2}, b_{i},(t, M, u), a_{1}, b_{3-i}, y\right)$ misses v^{\prime} unless $t=v^{\prime}$. Therefore, we may assume that $b_{i} v^{\prime} \in E(G)$ for $i=1$ and 2. The path ($\left.y,(x, M, u), a_{1}, b_{1}, v^{\prime}, b_{2}, a_{2}, w\right)$ has no extension at y. This contradicts property $\left(^{*}\right)$. Therefore, $y v^{\prime} \in E(G)$ follows.
(3) For $j=1$ or 2 , there exists a path $S=\left(y, \ldots, x, b_{j}\right)$ such that $V(S) \backslash\left\{b_{j}\right\} \subset Y$.

Let C be the connected component of the subgraph of G induced by Y and containing y. First we show that there is a vertex $x \in C$ that is adjacent to some vertex of K. Suppose this is false. In particular, we may assume that the neighbor $y_{1} \in Y \cap P$ of b_{1} is not in C.

If $a_{2} v \in E(G)$, then no extension of $\left(y,\left(v^{\prime}, M, u\right), a_{1}, b_{1}, a_{2}, v\right)$ contains y_{1}. Hence $a_{2} v \notin E(G)$. Similarly, if $a_{1} v \notin E(G)$, then no extension of $\left(y,\left(v^{\prime}, M, u\right), a_{1}, v\right)$ contains y_{1}. Hence $a_{1} v \notin E(G)$. Let $t \in V(M)$ be the last vertex on (v^{\prime}, M, u) adjacent to v or to some vertex $x \in C$. One of the paths $((v, M, t), x)$ and $\left(y,\left(v^{\prime}, M, t\right), v\right)$ exists and misses y_{1}, a contradiction. Thus we obtain that some $x \in C$ is adjacent to some vertex of K.

The existence of x implies that there is a path $S=(y, \ldots, x, z)$, for some $z \in$ $V(K)$, such that $V(S) \backslash\{z\} \subset Y$. Now suppose that in every such path S we have $z=a_{i}\left(i=1\right.$ or 2). In particular, no vertex of C is adjacent to b_{1} or b_{2}. If $z=a_{2}$, then any extension of $\left((v, M, u), a_{1}, b_{1},(z, S, y)\right)$ would miss y_{1}. Hence $z=a_{1}$, for every path S, and a_{2} has no neighbor in C. The path $((v, M, u),(z, S, y))$ has no extension that includes a_{2}, a contradiction. This proves (3).
(4) For $k=1$ or $2, \quad u a_{k}, v a_{3-k} \in E(G)$.

Assume that $S=\left(y, \ldots, x, b_{1}\right)$ is a path guaranteed by (3). Let $R=\left(r, \ldots, y^{\prime \prime}\right)$ be a path (possibly empty) such that $\left((v, M, u),\left(a_{1}, K, b_{1}\right),(x, S, y),\left(r, R, y^{\prime \prime}\right)\right)$ is maximal in G. The path $\left((v, M, u), a_{1}, b_{1},(x, S, y),\left(r, R, y^{\prime \prime}\right)\right)$ has an extension to include a_{2}. Thus either $v a_{2} \in E(G)$ which proves (4), or we have $y^{\prime \prime} a_{2} \in E(G)$.

Assume that $v a_{2} \notin E(G)$. Let $v^{\prime \prime}$ be the neighbor of v^{\prime} in M different from v. The path $\left(v, v^{\prime}, y,\left(r, R, y^{\prime \prime}\right), a_{2}, b_{1}, a_{1},\left(u, M, v^{\prime \prime}\right)\right)$ extends with $v^{\prime \prime} w \in E(G)$, for some $w \in V(S) \cap P$. Thus we obtain a path $M^{\prime}=\left(\left(u, M, v^{\prime \prime}\right),(w, S, y), v^{\prime}, v\right)$ which is maximal in H and longer than M. By the choice of M, we have $P \subset M^{\prime}$, and $w=x$. This implies that R is empty ($y=y^{\prime \prime}$), furthermore, $y a_{2}, v^{\prime \prime} x \in E(G)$, and $b_{1} x, b_{2} x \in E(G)$. Observe that the path $\left(\left(u, M, v^{\prime \prime}\right), x,\left(b_{1}, K, a_{2}\right), y, v^{\prime}, v\right)$ is maximal in G, hence we have $S=\left(y, x, b_{1}\right)$.

The path $\left(b_{2}, a_{1},\left(u, M, v^{\prime \prime}\right), x, y, a_{2}, b_{1}\right)$ extends to include v^{\prime}, the only uncovered vertex of P; therefore, $b_{j} v^{\prime} \in E(G)$, for $j=1$ or 2 . The path $\left(v, v^{\prime}, b_{j}, a_{1}, b_{3-j}, x\right.$, $\left(v^{\prime \prime}, M, u\right)$) extends to include a_{2}. Thus we have $u a_{2} \in E(G)$ (recall that, by assumption, $\left.v a_{2} \notin E(G)\right)$. If $v a_{1} \in E(G)$, then we are done. Assuming that $v a_{1} \notin E(G)$, we obtain that $y a_{1}, \in E(G)$, by the symmetry of a_{1} and a_{2}. For $i=1$ and 2 , the path $\left(v, v^{\prime}, y, x, b_{1}, a_{i},\left(u, M, v^{\prime \prime}\right)\right)$ extends with $v^{\prime \prime} a_{3-i} \in E(G)$. The path $\left(\left(u, M, v^{\prime \prime}\right),\left(a_{1}, K, b_{j}\right), v^{\prime}, v\right)$ is maximal in G and misses x, a contradiction. This concludes the proof of (4).

In the next step we use $S=\left(y, \ldots, x, b_{j}\right), j=1$ or 2 , a path guaranteed by (3), together with further paths similar to those in the proof of (4).
(5) $P \backslash V(M)=\{x\}, x b_{i} \in E(G)$, for $i=1,2$, and there exists $z \in Y \cap Q$ such that $z a_{1}, z x \in E(G)$.

By (4), and by the symmetry of a_{1} and a_{2}, we may assume that $v a_{2} \in E(G)$. Also assume that $S=\left(y, \ldots, x, b_{2}\right)$. The path $N=\left(v,\left(a_{2}, K, b_{2}\right),(x, S, y),\left(v^{\prime}, M, u\right)\right)$ is maximal, hence $(P \backslash V(M)) \subset V(S)$. Observe that N has no chord induced by two
non-consecutive vertices of S; for otherwise, a shorter maximal path of G would result by using that chord to skip over some vertex of $V(S) \cap P$. The same argument shows that if $b_{1} y_{1} \in E(G)$, for some $y_{1} \in Y \cap P$, then $y_{1}=x$ follows. Thus we have $b_{1} x \in E(G)$.

The path ($a_{1}, b_{1}, x, b_{2}, a_{2},(v, M, u)$) extends with $a_{1} z \in E(G)$, for some $z \in$ $Y \cap Q$. Note that $z \notin V(S)$, because otherwise, the maximal path ($\left(u, M, v^{\prime}\right)$, $\left.(y, S, z), a_{1}, b_{1}, a_{2}, v\right)$ would miss x. We show next that $z x \in E(G)$. Every extension of ($z, a_{1}, b_{1}, a_{2},(v, M, u)$) contains x, thus $z \in C$, where C is the connected component containing y in the subgraph of H induced by Y. This implies that $z z^{\prime} \in E(G)$, for some $z^{\prime} \in V(S) \cap P$. The maximal path $\left(\left(u, M, v^{\prime}\right),\left(y, S, z^{\prime}\right), z, a_{1}, b_{1}, a_{2}, v\right)$ contains x, thus $z^{\prime}=x$. Observe that the path $\left((u, M, v), a_{2}, b_{1}, a_{1}, z, x, b_{2}\right)$ must contain $V(S) \cap P$, on the other hand S has no chord from b_{2}. Therefore, $S=\left(y, x, b_{2}\right)$ which concludes the proof of (5).

$$
\begin{equation*}
P=\left\{v^{\prime}, x\right\}, Q=\{u, v, y, z\}, \text { and } v^{\prime} z \notin E(G) . \tag{6}
\end{equation*}
$$

The path $\left(z, x, b_{1}, a_{1},\left(u, M, v^{\prime}\right), y\right)$ extends to include a_{2}. Hence we have either $y a_{2} \in E(G)$ or $z a_{2} \in E(G)$. Suppose first that $y a_{2} \in E(G)$. The path $\left(v, v^{\prime}, y, a_{2}, b_{1}, a_{1},\left(u, M, v^{\prime \prime}\right)\right)$ extends to include x, thus $v^{\prime \prime} x \in E(G)$. The path $\left(z, a_{1},\left(u, M, v^{\prime \prime}\right), x, b_{1}, a_{2}, b_{2}\right)$ extends to include v^{\prime}. Hence we have either $v^{\prime} b_{2} \in E(G)$ or $v^{\prime} z \in E(G)$. None of them is possible, because in the first case ($\left(u, M, v^{\prime}\right)$, $\left.\left(b_{2}, K, a_{2}\right), v\right)$, and in the second case $\left(\left(u, M, v^{\prime}\right), z, a_{1}, b_{2}, a_{2}, v\right)$ is a maximal path of G missing x. Therefore, we may assume that $y a_{2} \notin E(G)$ and $z a_{2} \in E(G)$, that is y and z are not interchangeable. If $z v^{\prime} \in E(G)$, then y and z are interchangable with respect to v^{\prime}. Thus we may also assume that $z v^{\prime} \notin E(G)$,

We show that $v^{\prime \prime}=u$. Suppose that this is false, that is $u^{\prime} \neq v^{\prime}$, where u^{\prime} is the neighbor of u in M. The path ($\left.y, v^{\prime}, v,\left(a_{2}, K, b_{2}\right), x, z\right)$ extends to include uncovered vertices of $V(M) \cap P$. Let w be the last vertex on ($v^{\prime \prime}, M, u$) adjacent to y or z. In the first case $\left(y,(w, M, v),\left(a_{2}, K, b_{2}\right), x, z\right)$ and in the second case $\left(z,(w, M, v),\left(a_{2}, K, b_{2}\right), x, y\right)$ is a maximal path, therefore, $w=u^{\prime}$ must hold. Observe that $u^{\prime} z \notin E(G)$, for otherwise, the maximal path $\left(\left(v, M, u^{\prime}\right), z, a_{2}, b_{1}, a_{1}, u\right)$ in G would miss x. Hence we have $u^{\prime} y \in E(G)$.

The path ($\left.\left(v^{\prime \prime}, M, u^{\prime}\right), y, v^{\prime}, v, a_{2}, b_{1}, a_{1}, u\right)$ extends with $v^{\prime \prime} x \in E(G)$. The path $\left(z, a_{1},\left(u, M, v^{\prime \prime}\right), x, b_{1}, a_{2}, b_{2}\right)$ extends with $b_{2} v^{\prime} \in E(G)$. Thus we obtain that $\left(\left(u, M, v^{\prime}\right),\left(b_{2}, K, a_{2}\right), v\right)$ is a maximal path of G missing x, a contradiction. Therefore, $u^{\prime}=v^{\prime}$ and (6) follows.

To conclude the proof of Claim II we show that $G \cong G_{5}$. By (5) and (6), G is a 4×6 bipartite graph such that its edges determined so far (explicitly or by symmetry) induce a G_{5}. It is easy to check that including any of the four edges $u a_{2}, v a_{1}$, or $v^{\prime} b_{i}$, $i=1,2$, would result in a non-scenic graph containing a maximal path of length less than 8 . Therefore, $G \cong G_{5}$ follows, contradicting the assumption of the theorem.

Claim II implies that H has at most one non-trivial connected component, and this component is scenic. If H is connected, then it is non-traceable, because $q \geq$ $p+2$. If H is disconnected, then it has exactly one trivial component (i.e., isolated vertex). Indeed, in case of two isolated vertices $u, u^{\prime} \in V(H)$, one would easily find a path $M \subset K+\left\{u, u^{\prime}\right\}$ which is maximal in G and misses all vertices in the non-trivial component of H. This contradicts $\left({ }^{*}\right)$ and concludes the proof of Theorem 4.2.

$5 K_{2,2^{-}}$-extension

In this section we consider ways that a $K_{2,2}$ can be "added" to non-traceable scenic graphs so that the property of being scenic is preserved. If G is a non-traceable scenic graph containing a copy $K \cong K_{2,2}$, then we say that G is a scenic $K_{2,2}-$ extension of $H=G-V(K)$.

We use the following notations throughout this section. We assume that G is scenic non-traceable $K_{2,2^{-}}$extension of $H=G-V(K)$. The vertices of K are a_{1}, a_{2}, b_{1}, and b_{2}, the partite sets of H are P and Q with $|P| \leq|Q|-2$, and the partite sets of G are $P \cup\left\{a_{1}, a_{2}\right\}$ and $Q \cup\left\{b_{1}, b_{2}\right\}$. In the figures accompanying the proofs, black circles indicate vertices in the smaller partite set of G. Let $\left(a_{i}, K, b_{j}\right)$ denote the Hamiltonian path of K from a_{i} to $b_{j}(1 \leq i, j \leq 2)$. For $H^{\prime} \subseteq H$ and $u, v \in V\left(H^{\prime}\right)$, we denote by $\left(u, H^{\prime}, v\right)$ a path of H^{\prime} between u and v spanning as many vertices of $V\left(H^{\prime}\right) \cap P$ as possible.

By Theorem 4.2, one may assume that H is either a non-traceable scenic graph or a (traceable or non-traceable) scenic graph plus an isolated vertex. We need the following easy corollaries of Theorem 2.2.

Lemma 5.1 Let G be a scenic $K_{2,2}-$ extension of H.
(i) If there is a maximal path of H between $y, y^{\prime} \in Q$, then there is an edge from $\left\{y, y^{\prime}\right\}$ to $\left\{a_{1}, a_{2}\right\}$.
(ii) If at least two vertices of Q are adjacent to $\left\{a_{1}, a_{2}\right\}$, then there exist two independent edges $y_{1} a_{1}, y_{2} a_{2} \in E(G)$, for some $y_{1}, y_{2} \in Q$.

Proof. Because G is scenic, every maximal extension of the path between y and y^{\prime} contains a_{1} and a_{2} which proves (i). The maximum path length in G is $2|P|+2$, thus no maximal extensions of the path $\left(a_{1}, K, b_{2}\right)$ or (a_{2}, K, b_{2}) may start at a_{1} or at a_{2}. Therefore, both a_{1} and a_{2} are adjacent to Q. This observation together with the condition in (ii) imply that the edges between Q and $\left\{a_{1}, a_{2}\right\}$ can not be covered with one vertex. Hence there exist two independent edges, and (ii) follows.

Proposition 5.2 The equi-subdivided star $K_{1, r}^{s}(r \geq 3, s \geq 1)$ and the graphs G_{1}, \ldots, G_{6} have no scenic $K_{2,2}$-extensions.

Proof. Suppose on the contrary that G is a scenic $K_{2,2}$-extension of H, where H is one of the seven graphs in the proposition.

Figure 2:
Case 1: $H=K_{1, r}^{s}(r \geq 3, s \geq 1)$. Because $|P| \leq|Q|-2$, the center of H is a vertex $x_{0} \in P$, and all leaves of H are in Q. Let $y_{1}, y_{2}, y_{3} \in Q$ be distinct leaves of H. By Lemma 5.1 (i), one may assume that $y_{1} a_{1} \in E(G)$. The path $\left(\left(y_{2}, H, y_{1}\right),\left(a_{1}, K, b_{1}\right)\right)$ is not maximal, thus $b_{1} x_{1} \in E(G)$ holds, for some $x_{1} \in\left(x_{0}, H, y_{3}\right)$ (see Fig. 2). If $y_{4} \in Q$ is an arbitrary vertex on $\left(x_{0}, H, x_{1}\right)$, then no extension of the path $\left(\left(y_{4}, H, y_{1}\right),\left(a_{1}, K, b_{1}\right),\left(x_{1}, H, y_{3}\right)\right)$ contains the vertices of P on the path $\left(x_{0}, H, y_{2}\right)$, a contradiction.

Case 2: $H=G_{1}, G_{2}$ or G_{3}. Let $y, y^{\prime} \in Q$ be any pair of vertices such that their removal does not disconnect H (note that all pairs satisfy this in $H=G_{2}$ or G_{3}, and just one pair fails it in $H=G_{1}$). It is easy to check that between y and y^{\prime} there exists a maximal path in H (actually, covering all vertices in P). Hence, by Lemma 5.1 (i) and (ii), there exist $y_{1} a_{1}, y_{2} a_{2} \in E(G)$, with distinct $y_{1}, y_{2} \in Q$. Consider a maximal path $\left(b_{1}, a_{1},\left(y_{1}, H-x_{1}, y_{2}\right), a_{2}, b_{2}\right)$ in H which does not cover a vertex $x_{1} \in P$. This path has an extension $b_{1} x_{1} \in E(G)$ to include x_{1}. Fig. 3 (a) shows a particular case, where $H=G_{1}$. The argument works for any other choice of H, and for other positions of y_{1} and y_{2}, as well. Thus we always have $x_{1} b_{1} \in E(G)$, for some vertex $x_{1} \in P$.

Let x_{2} and x_{3} be the other two vertices in P. If x_{2} and x_{3} have two common neighbors in H, then, by Lemma 5.1 (i), one of them is adjacent to K, say $y_{2} a_{2} \in$ $E(G)$. The maximal path $\left(y_{1}, x_{1},\left(b_{1}, K, a_{2}\right), y_{2}, x_{3}, y_{3}\right)$ shown in Fig. 3 (b) misses x_{2}, a contradiction. Assume now that the previous argument does not apply (even if we relabel the vertices of P), because there is no edge from $\left\{x_{2}, x_{3}, y_{2}\right\}$ to K. In this case any path of H between x_{2} and y_{2} not containing edge $x_{2} y_{2}$ is maximal in G and misses K, a contradiction.

Figure 3:
Case 3: $H=G_{4}$. Since G is connected, either $x_{1} b_{\epsilon} \in E(G)$ or $y_{1} a_{\epsilon} \in E(G)$ holds, for some $x_{1} \in P$ or $y_{1} \in Q$, and $\epsilon=1$ or 2. Assume that $y_{1} a_{1} \in E(G)$ and let x_{1} be a neighbor of y_{1}. The path $\left(\left(b_{1}, K, a_{1}\right),\left(y_{1}, H-x_{1}, y_{3}\right)\right)$ extends to include x_{1} (see Fig. $4(\mathrm{a})$). Thus $x_{1} b_{1} \in E(G)$ follows. Because there is a path of H between y_{2} and y_{3} that covers all vertices of P, say $y_{2} a_{2} \in E(G)$. The path $\left(y_{1}, x_{1},\left(b_{1}, K, a_{2}\right),\left(y_{2}, H-\left\{x_{1} x_{4}\right\}, y_{4}\right)\right)$ in Fig. 4 (b) is maximal and misses x_{4}, a contradiction.

Figure 4:
Case 4: $H=G_{5}$. It is easy to verify that between any pair $y, y^{\prime} \in Q$ there exists a maximal path in H. Hence by Lemma 5.1, $y_{1} a_{1}, y_{2} a_{2} \in E(G)$, for some $y_{1}, y_{2} \in Q$. The path $\left(b_{1}, a_{1},\left(y_{1}, H-x_{1}, y_{2}\right), a_{2}, b_{2}\right)$ as shown in Fig. 5 (a) extends to include x_{1}. Thus one may assume that $x_{1} b_{1} \in E(G)$, so $\left(y_{1}, x_{1},\left(b_{1}, K, a_{2}\right),\left(y_{2}, H-\left\{x_{1}, x_{4}\right\}, y_{4}\right)\right)$ in Fig. 5 (b) is a maximal path missing x_{4}, a contradiction.

Case 5: $H=G_{6}$. Label the vertices of H as shown in Fig. 6. An easy argument using Lemma 5.1 shows the existence of $x_{1} b_{1}, y_{2} a_{2} \in E(G)$. The maximal path $\left(y_{3}, x_{3}, y_{1}, x_{1},\left(b_{1}, K, a_{2}\right), y_{2}, x_{2}, y_{4}\right)$ misses x_{4}, a contradiction.

This concludes the proof of the proposition.

Figure 5:
The following technical lemma will be used when proving that a $K_{2,2}$-extension of a generic graph is generic. We note in advance that the only exception will be the generic graph $K_{2,4}-2 K_{2}$ which has a non-generic $K_{2,2}$-extension, namely G_{6}. Recall that a $p \times q$ generic graph has the form $K_{p, q}-F$, where the partite sets P and Q contain $p \geq 2$ and $q \geq p+2$ vertices, respectively, and F is a star forest with its star components centered in Q.

Figure 6:

Lemma 5.3 Let H be a $p \times q$ generic graph with partite sets P and Q. If $H \neq$ $K_{2,4}-2 K_{2}$, then
(A) H has a maximal path between any two non-isolated vertices $y, y^{\prime} \in Q$;
(B) for every $x \in P$ and for every $y, y^{\prime} \in Q$ which are distinct non-isolated vertices of $H-x$, there is a path in $H-x$ between y and y^{\prime} that contains all vertices in $P \backslash\{x\}$.

Proof. (A) Let $M=\left(y, x, \ldots, x^{\prime}, y^{\prime}\right)$ be a maximum length path of H from y to y^{\prime}. We shall prove that M contains P. Suppose on the contrary that $x_{1} \in P \backslash V(M)$. First assume that there are vertices $y_{1}, y_{2}, y_{3} \in Q \backslash V(M)$. Because H is generic, x_{1} is adjacent to y or y^{\prime}, say $x_{1} y^{\prime} \in E(H)$. Moreover, by the pigeon hole principle, some y_{i} is adjacent to both x^{\prime} and x_{1}, for $i=1,2$ or 3 . The path $\left(\left(y, M, x^{\prime}\right), y_{i}, x_{1}, y^{\prime}\right)$ would be longer than M, a contradiction.

Thus we may assume that $Q \backslash V(M)=\left\{y_{1}, y_{2}\right\}, P \backslash V(M)=\left\{x_{1}\right\}$. Furthermore, x_{1} is non-adjacent to one of y_{1} and y_{2}, say $x_{1} y_{2} \notin E(G)$. We have $x_{1} y_{1}, x_{1} y^{\prime}, x_{1} y \in$ $E(G)$, and by the argument above, $x y_{1}, x^{\prime} y_{1} \notin E(G)$. Hence $x y_{2}, x^{\prime} y_{2} \in E(G)$. Also $H \neq K_{2,4}-2 K_{2}$, thus $p \geq 3$. In particular, $x \neq x^{\prime}$, and $M=\left(y, x, \ldots, y^{\prime \prime}, x^{\prime}, y^{\prime}\right)$. We shall prove by induction on p that in the particular generic graph H described above there exists a path from y to y^{\prime} that covers P. This will contradict our assumption and will prove (A).

For $p=3$, the path $\left(y, x, y_{2}, x^{\prime}, y^{\prime \prime}, x_{1}, y^{\prime}\right)$ covers P. Thus (A) is true for $p=3$. Assume that $p \geq 4$ and (A) is true for $p-1$. Because our graph H is generic, x is adjacent to every vertex of $Q \backslash\left\{y_{1}\right\}$ and x_{1} is adjacent to every vertex of $Q \backslash\left\{y_{2}\right\}$. Hence y and $y^{\prime \prime}$ are not isolated vertices in $H^{\prime}=H-\left\{x^{\prime}, y^{\prime}\right\}$. By the induction hypothesis, H^{\prime} has a path $M^{\prime}=\left(y, \ldots, y^{\prime \prime}\right)$ that contains $P \backslash\left\{x^{\prime}\right\}$. The path ($\left.\left(y, M^{\prime}, y^{\prime \prime}\right), x^{\prime}, y^{\prime}\right)$ covers P, a contradiction. Thus (A) follows.
(B) If H or $H^{\prime}=H-x$ has an isolated vertex $u \in Q$, then $H-\{x, u\}$ is a complete bipartite graph and (B) obviously holds. Assume that H and H^{\prime} are both connected, in particular, $H^{\prime} \neq K_{2,4}-2 K_{2}$. Now (B) follows by applying (A) for the generic graph H^{\prime}.

Proposition 5.4 If H is the union of an isolated vertex and one of the following graphs: G_{1}, \ldots, G_{6}, an equi-subdivided star $K_{1, r}^{s}(r \geq 2, s \geq 1)$, or a connected $p \times q$ generic graph ($p \geq 2, q \geq p+2$) different from a complete bipartite graph, then H has no scenic $K_{2,2}-$ extension.

Proof. Let u be the isolated vertex of H and let $H^{\prime}=H-u$ be one of the graphs in the proposition. Suppose on the contrary that G is a scenic $K_{2,2}$-extension of H. Observe that $u \in Q$, for otherwise, G would have a path $\left(u,\left(b_{1}, K, a_{1}\right)\right.$) and a maximal extension of it with a black end vertex $u \in P$. One may assume that $u a_{1} \in E(G)$. The path $S=\left(u,\left(a_{1}, K, b_{2}\right)\right)$ extends in G with an edge $b_{2} z$, for some
$z \in V\left(H^{\prime}\right) \cap P$. All maximal extensions of S are obtained by concatenating a maximal path of H^{\prime} starting at z. Hence all maximal paths of H^{\prime} starting at z have the same length. This is obviously not true, for any black vertex z of H^{\prime}, if H^{\prime} is one of the graphs G_{1}, \ldots, G_{6} in Fig. 1 or an equi-subdivided star $K_{1, r}^{s}$ with $r \geq 2, s \geq 1$.

Now suppose that H^{\prime} is a connected generic graph different from a complete bipartite graph. The previous argument shows that $H^{\prime} \neq K_{2,4}-2 K_{2}$. Let $x y \notin$ $E\left(H^{\prime}\right)$, for some $x \in P$ and $y \in Q \backslash\{u\}$. By the connectivity of H^{\prime}, y is non-isolated in $H^{\prime}-x$. In addition, because $H^{\prime} \neq K_{2,4}-2 K_{2}$, we may choose x and y such that every $y^{\prime} \in Q \backslash\{u\}$ is a non-isolated vertex of $H^{\prime}-x$.

By Lemma 5.3 (A), there is a maximal path S_{1} of H^{\prime} between any two distinct vertices $y^{\prime}, y^{\prime \prime} \in Q \backslash\{u, y\}$. This path covers P and extends in G, say from end vertex y^{\prime} with an edge to $\left\{a_{1}, a_{2}\right\}$. If $y^{\prime} a_{2} \in E(G)$, then $M_{1}=\left(\left(y^{\prime \prime}, S_{1}, y^{\prime}\right), a_{2}, b_{1}, a_{1}, u\right)$ is a maximal path of G. If $y^{\prime} a_{2}, y^{\prime \prime} a_{2} \notin E(G)$, then one may assume that $y^{\prime} a_{1}, u a_{2} \in$ $E(G)$, and hence $M_{2}=\left(\left(y^{\prime \prime}, S_{1}, y^{\prime}\right), a_{1}, b_{1}, a_{2}, u\right)$ is a maximal path of G.

By Lemma 5.3 (B), $H^{\prime}-x$ has a path S_{2} between y^{\prime} and y covering all vertices in $P \backslash\{x\}$. By a similar argument as above, we obtain that either $M_{1}^{\prime}=\left(\left(y, S_{2}, y^{\prime}\right), a_{2}, b_{1}\right.$, $\left.a_{1}, u\right)$ or $M_{2}^{\prime}=\left(\left(y, S_{2}, y^{\prime}\right), a_{1}, b_{1}, a_{2}, u\right)$ exists and is a maximal path of G. The lengths of the maximal paths M_{i} and M_{i}^{\prime} are different, for $i=1$ or 2 , hence G is not scenic. This contradiction concludes the proof of the proposition.

Proposition 5.5 If G is a scenic $K_{2,2}$-extension of a $p \times q$ generic graph H, then either $G \cong G_{6}$ or G is generic.

Proof. By definition, G is generic if and only if at most one edge is missing at any vertex of $P \cup\left\{a_{1}, a_{2}\right\}$.

Case 1: H is connected and different from $K_{2,4}-2 K_{2}$. Suppose that $x y \notin E(G)$, for some $x \in P$ and $y \in Q$. By Lemma 5.3 (A), there is a maximal path of H between any two distinct vertices $y_{1}, y_{2} \in Q \backslash\{y\}$. This path extends in G, say $y_{1} a_{i} \in E(G)$ ($i=1$ or 2). Obviously, y and y_{1} are non-isolated vertices in $H-x$, thus by Lemma $5.3(\mathrm{~B})$, there is a path $S=\left(y, \ldots, y_{1}\right)$ in $H-x$ containing $P \backslash\{x\}$. The path $\left(\left(y, S, y_{1}\right),\left(a_{i}, K, b_{j}\right)\right)$ extends, hence $b_{j} x \in E(G)$ holds, for $j=1$ and 2 .

Let $x \in P$ be a vertex such that $x b_{i} \notin E(G), i=1$ or 2 . We shall prove that $x b_{3-i} \in E(G)$. By the argument above, $x y \in E(G)$, for every $y \in Q$. Lemmas 5.3 (A) and 5.1 imply the existence of independent edges $y a_{1}, y^{\prime} a_{2} \in E(G), y, y^{\prime} \in Q$. If y and y^{\prime} are non-isolated in $H-x$, then by Lemma 5.3 (B), $H-x$ has a path S between y and y^{\prime} which contains $P \backslash\{x\}$. The path $\left(b_{i}, a_{1},\left(y, S, y^{\prime}\right), a_{2}, b_{3-i}\right)$ extends with $b_{3-i} x \in E(G)$.

We show that the previous argument applies even if one of y and y^{\prime}, say y^{\prime}, is an isolated vertex of $H-x$. Note that no $y^{\prime \prime} \in Q \backslash\left\{y^{\prime}\right\}$ is isolated in $H-x$. Thus if we can not replace y^{\prime} with some $y^{\prime \prime} \in Q \backslash\left\{y, y^{\prime}\right\}$, and proceed as above, this is
because $y^{\prime \prime} a_{2} \notin E(G)$, for every $y^{\prime \prime} \in Q \backslash\{y\}$. We prove that this can not happen. Because $y^{\prime} x^{\prime} \notin E(G)$ holds for each $x^{\prime} \in P \backslash\{x\}$, there exists $u x^{\prime} \in E(G)$ with $x^{\prime} \in P \backslash\{x\}$ and $u \in Q \backslash\left\{y^{\prime}\right\}$ such that $H-\left\{x^{\prime}, u\right\}$ is a connected generic graph. By Lemma 5.3 (A), the generic graph $H-\left\{x^{\prime}, u\right\}$ has a path S between any two vertices $y_{1}, y_{2} \in Q \backslash\left\{u, y^{\prime}\right\}$ which contains $P \backslash\left\{x^{\prime}\right\}$. We know that there is an edge between $\left\{y_{1}, y_{2}\right\}$ and $\left\{a_{1}, a_{2}\right\}$. By our assumption, y_{1} or y_{2} is adjacent to a_{1}, say $a_{1} y_{1} \in E(G)$. Thus the path $\left(u, x^{\prime}, b_{1}, a_{1},\left(y_{1}, S, y_{2}\right)\right)$ misses a_{2}, a contradiction. We conclude that at every $x \in P$ at most one edge is missing in G.

Next assume that $a_{i} y_{1}, a_{i} y_{2} \notin E(G)$, for some $y_{1}, y_{2} \in Q$ and $i=1$ or 2 . By Lemma 5.3 (A), H has a path $S=\left(y_{1}, x, \ldots, y_{2}\right)$ containing P. Furthermore, we know that one of y_{1} and y_{2} sends an edge to K, say $y_{1} a_{3-i} \in E(G)$. The path $\left(y_{1}, a_{3-i}, b_{1},\left(x, S, y_{2}\right)\right)$ is maximal in G and misses a_{i}, a contradiction. Therefore G is scenic.

Case 2: H is disconnected. By Proposition 5.4, $H=H^{\prime}+u$, where $u \in Q$ is an isolated vertex of H, and H^{\prime} is a complete bipartite graph. We may assume that $u a_{j} \in E(G)(j=1$ or 2$)$. For every $i=1,2$, the path $\left(u,\left(a_{j}, K, b_{i}\right)\right)$ extends with an edge, say $b_{i} x_{i} \in E(G)$, where $x_{i} \in P$.

First we show that $y a_{3-j} \in E(G)$, for some $y \in Q \backslash\{u\}$. This is obvious if $u a_{3-j} \notin E(G)$, because the path $\left(u, a_{j}, b_{1},\left(x_{1}, H^{\prime}, y\right)\right)$ extends with $y a_{3-j} \in E(G)$. If $u a_{3-j} \in E(G)$, then any maximal path $\left(y, \ldots, y^{\prime}\right)$ of H^{\prime} extends with an edge, say $y a_{k} \in E(G)$. Now the claim follows by choosing $j=3-k$, because $u a_{j} \in E(G)$ holds for every $i=1,2$, by assumption.

Our next claim is that $b_{i} x \in E(G)$, for every $i=1,2$ and $x \in P$. For any $x \in P$, $H^{\prime}-x$ is a complete bipartite graph, hence it has a path $S=\left(x_{i}, \ldots, y\right)$ containing all vertices in $P \backslash\{x\}$. The path $\left(u, a_{j}, b_{3-i}, a_{3-j},\left(y, S, x_{i}\right), b_{i}\right)$ extends with $b_{i} x \in E(G)$.

Suppose now that $u a_{i}, y a_{i} \notin E(G)$, for some $y \in Q \backslash\{u\}$ and $i=1$ or 2. Let $S=\left(x_{1}, \ldots, y\right)$ be a path of H^{\prime} containing P. The path $\left(u, a_{3-i}, b_{1},\left(x_{1}, S, y\right)\right)$ is maximal in G and misses a_{i}, a contradiction. Therefore, it remains to show that if $y a_{i} \notin E(G)$, for some $y \in Q \backslash\{u\}$ and $i=1$ or 2 , then $y^{\prime} a_{i} \in E(G)$, for every $y^{\prime} \in Q \backslash\{u, y\}$. Let $x, x^{\prime} \in P$, and let $S=\left(x^{\prime}, \ldots, y^{\prime}\right)$ be a path of $H^{\prime}-\{x, y\}$ covering all vertices in $P \backslash\{x\}$. The path $\left(y, x, b_{1}, a_{3-i}, b_{2},\left(x^{\prime}, S, y^{\prime}\right)\right)$ extends with $y^{\prime} a_{i} \in E(G)$. This proves that G is generic and concludes the proof of the proposition.

Case 3: $H=K_{2,4}-2 K_{2}$. We show that if G is not generic, then $G \cong G_{6}$. Let $P=\left\{x_{1}, x_{2}\right\}, Q=\left\{y_{1}, \ldots, y_{4}\right\}$, and assume that the two missing edges are $x_{1} y_{3}, x_{2} y_{4} \notin E(H)$. Suppose that $G \cong K_{4, q}-F$, and G is not generic.

First we assume that one of x_{1} or x_{2} has degree more than 1 in F, say $x_{2} b_{2} \notin$ $E(G)$. If $y_{i} a_{j} \in E(G)$ holds, for some $1 \leq i, j \leq 2$, then the maximal path $\left(\left(b_{2}, K, a_{j}\right), y_{i}, x_{1}, y_{4}\right)$ would miss x_{2}. Hence there are no edges between the sets $\left\{a_{1}, a_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$. This observation together with Lemma 5.1 imply the existence of two independent edges between the sets $\left\{a_{1}, a_{2}\right\}$ and $\left\{y_{3}, y_{4}\right\}$. Assume that
$a_{1} y_{3}, a_{2} y_{4} \in E(G)$. We shall verify that there are no further edges between H and K.

If $x_{2} b_{1} \in E(G)$, then the maximal path $\left(y_{1}, x_{1}, y_{4}, a_{2}, b_{1}, x_{2}, y_{2}\right)$ misses a_{1}, a contradiction. If $x_{1} b_{j} \in E(G)(j=1$ or 2$)$, then the maximal path ($y_{1}, x_{1}, b_{j}, a_{1}, y_{3}, x_{2}, y_{2}$) misses a_{2}, a contradiction. Assume now that one of $a_{1} y_{4}$ and $a_{2} y_{3}$ is an edge, say $a_{1} y_{4} \in E(G)$. The maximal path ($y_{1}, x_{1}, y_{4}, a_{1}, y_{3}, x_{2}, y_{2}$) misses a_{2}, a contradiction. Thus we obtain that $G \cong G_{6}$.

Second we assume that one of a_{1} and a_{2} has degree more than one in F. Because G is not generic, and $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ induces a $K_{2,2}$ in G, we have $G-\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \cong$ $G-\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\} \cong K_{2,4}-2 K_{2}$. By the symmetry of the sets $\left\{x_{1}, x_{2}\right\}$ and $\left\{a_{1}, a_{2}\right\}$ in G, the previous argument applies, and $G \cong G_{6}$ follows.

Proof of Theorem 1.2. Let G be a scenic non-traceable graph. If G has no cycle, then it is an equi-subdivided star by Proposition 2.1. Otherwise, by Theorem 2.2, G is a $p \times q$ bipartite graph with $p \geq 2$ and $q \geq p+2$. If $p=2$ or 3 then, by Propositions 3.2 and $3.1, G$ is either G_{1}, G_{2}, G_{3}, or a connected generic graph.

From now on assume that $p \geq 4$. If $G \neq G_{4}$ then, by Proposition 4.1, there exists a subgraph $K \cong K_{2,2}$ of G, so that G is a scenic $K_{2,2}$-extension of $H=G-V(K)$. If $G \neq G_{5}$, then by Theorem 4.2, either H is a scenic non-traceable graph or H is disconnected.

If H is a scenic non-traceable graph, then H must be generic. This follows by Proposition 3.1, for $p=4$, and by Proposition 5.2, for $p>4$. If H is disconnected, then by Theorem 4.2, $H=H^{\prime}+u$, where H^{\prime} is scenic and u is an isolated vertex. If H^{\prime} is traceable, then $H^{\prime} \cong K_{p, p+1}$, by Theorem 1.1. If H^{\prime} is non-traceable, then by definition, $H^{\prime} \in \mathcal{G}_{p-2, q-3}$. By Proposition 5.4, $H^{\prime}+u$ might have a scenic $K_{2,2^{-}}$ extension only if H^{\prime} is a complete bipartite graph. In thesc cases H is a disconnected $(p-2) \times(q-2)$ generic graph.

The previous paragraph shows that, whether or not H is connected, it must be generic. Proposition 5.5 implies that G is a connected generic graph or $G \cong G_{6}$. Consequently, every $G \in \mathcal{G}_{4, q}$ is either G_{4}, G_{5}, G_{6}, or a connected generic graph. Furthermore, each graph in $\mathcal{G}_{5, q}$ and $\mathcal{G}_{6, q}$ is generic. Proposition 5.5 implies that the same is true for every $\mathcal{G}_{p, q}, p \geq 7$. This concludes the proof of Theorem 1.2.

References

[1] G. Chartrand, and H.V. Kronk, Randomly traceable graphs, SIAM J. Appl. Math., 16 (1968), pp. 696-700.
[2] J.F. Fink, Randomly Near-Traceable Graphs, SIAM J. Alg. Disc. Meth., Vol. 6, No. 2 (1985), pp. 251-258.
[3] M.S. Jacobson, A.E. Kézdy, E. Kubicka, G. Kubicki, J. Lehel, C. Wang and D.B. West, The path spectrum of graphs, Congressus Numerantium 112 (1995) pp. 49-63.
[4] M.S. Jacobson, A.E. Kézdy, and J. Lehel, Scenic Graphs I: Traceable Graphs, Ars Combinatoria 49 (1998), pp. 79-96.
[5] M.D. Plummer, Well-covered graphs: a survey, Quaestiones-Math., 16 (1993) pp. 263-287.
[6] R.M. Karp, Reducibility among combinatorial problems, in R.E. Miller et al. (eds.) Complexity of Computer Computations. Plenum Press, New York, pp. 85-103.
[7] R.S. Sankaranarayana and L.K. Stewart, Complexity results for well-covered graphs, Networks 22 (1992) pp. 247-262.
[8] M. Tarsi, Graphs where every maximal path is maximum, J. Combin. Theory Ser. B 67 (1996) pp. 304-324.
[9] C. Thomassen, Graphs in which every path is contained in a Hamiltonian path, J. Reine Angew. Math.268/269 (1974) pp. 271-282.

[^0]: Research supported by ONR Grant Number N00014-91-J-1098.
 On leave from Computing and Automation Research Institute, Hungarian Academy of Sciences.

[^1]: ${ }^{1}$ The same problem has been considered independently by M. Tarsi [8] (personal communication by editors of JGT and JCT B).

