Blocking sets in balanced path designs*

Gaetano Quattrocchi
Department of Mathematics, University of Catania viale A. Doria, 6, 95125 Catania, Italy

Abstract

Let $k \geq 3$. For each admissible v, we determine the set $\mathcal{B S H}(v, k, 1)$ of integers x such that there exists a balanced path design $H(v, k, 1)$ with a blocking set of cardinality x.

1 Introduction

Let G be a subgraph of K_{v}, the complete undirected graph on v vertices. A G-design of K_{v} is a pair (V, \mathcal{B}), where V is the vertex set of K_{v} and \mathcal{B} is an edge-disjoint decomposition of K_{v} into copies of the graph G. Usually we say that b is a block of the G-design if $b \in \mathcal{B}$, and \mathcal{B} is called the block-set. A G-design of K_{v} is also called a G-design of order v.

A balanced G-design [5, 4] is a G-design such that each vertex belongs to the same number of copies of G. Obviously not every G-design is balanced.

A balanced path design $H(v, k, 1)$ [4] is a balanced P_{k}-design of K_{v}, where P_{k} is the simple path with $k-1$ edges (k vertices) $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=$
$\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}, \ldots,\left\{a_{k-1}, a_{k}\right\}\right\}$.
S. H. Y. Hung and N. S. Mendelsohn [5] proved that a $H(v, 2 h+1,1)(h \geq 1)$ exists if and only if $v \equiv 1(\bmod 4 h)$, and a $H(v, 2 h, 1)(h \geq 2)$ exists if and only if $v \equiv 1(\bmod 2 h-1)$.

Given a $H(v, k, 1)(V, \mathcal{B})$, a subset X of V is called a blocking set of \mathcal{B} if for each $b \in B, b \cap X \neq \emptyset$, and $b \cap(V-X) \neq \emptyset$. A $H(v, k, 1)$ with blocking set is said to be 2 -colorable, and the partition $(X, V-X)$ is called a 2 -coloring.

Numerous articles have been written on the existence of blocking sets in projective spaces, in t-designs and in G-designs [1, 2, 7, 8, 9].

For each admissible v, let $\mathcal{B S H}(v, k, 1)$ be the set of integers x such that there exists a $H(v, k, 1)$ with a blocking set of cardinality x. S. Milici [8] determined $\mathcal{B S H}(v, k, 1)$ for $k=3,4$. The aim of this note is to determine $\mathcal{B S H}(v, k, 1)$ for every $k \geq 3$.

[^0]Theorem 1 (Necessary condition). Let $x \in \mathcal{B S H}(v, k, 1)$, then

$$
\frac{v-1}{k-1} \leq x \leq \frac{(k-2) v+1}{k-1}
$$

Proof. Let X be a blocking set in a $H(v, k, 1)(V, \mathcal{B}),|X|=x$. Since each $b \in \mathcal{B}$ meets X, we have $x \frac{k(v-1)}{2(k-1)}-\frac{x(x-1)}{2} \geq \frac{v(v-1)}{2(k-1)}$. This inequality and the fact that $V-X$ is a blocking set imply the proof.

$2 \mathcal{B S H}(v, k, 1)$ for even $k \geq 4$.

In this section we determine the set $\mathcal{B S H}(v, k, 1)$ for each even $k \geq 4$. To prove this result we will use the $v \rightarrow v+k-1$ construction for $H(v, k, 1)$ [5].

Lemma 1 Let $k \geq 4$ be an even integer and let $x \in \mathcal{B S H}(v, k)$. Then $x+t \in$ $\mathcal{B S H}(v+k-1, k, 1)$ for each $t=1,2, \ldots, k-2$.

Proof. Let $W=\left\{a_{\mu} \mid \mu=0,1, \ldots, k-1\right\}$. For each $i=0,1, \ldots, \frac{k}{2}-1$ and $\rho=0,1, \ldots, \frac{k}{2}-1$ let $y_{2 \rho}^{i}=a_{\rho+i}$ and $y_{2 \rho+1}^{i}=a_{k-1-\rho+i}$, where the indices $\rho+i$ and $k-1-\rho+i$ are reduced $(\bmod k)$ to the range $\{0, \ldots, k-1\}$. Define the $H(k, k, 1)$ (W, \mathcal{D}) by putting in D the blocks $\left(y_{0}^{i}, y_{1}^{i}, \ldots, y_{k-1}^{i}\right)$.

Put $v=1+(k-1) \alpha, \alpha \geq 1$. Let $(V, \mathcal{B}), V \cap W=\emptyset$, be a $H(v, k, 1)$ with a blocking set X. Let $V=\left(\cup_{t=1}^{k-1} X^{t}\right) \cup\left\{a_{0}\right\}, X^{t}=\left\{x_{j}^{t} \mid j=1,2, \ldots, \alpha\right\}$. Suppose $X^{1} \subseteq X$ and $X^{k-1} \subseteq V-X$.

For each $j=1,2, \ldots, \alpha, i=0,1, \ldots, k-2$ and $\rho=0,1, \ldots, \frac{k}{2}-1$ put $z_{2 \rho}^{j, i}=x_{j}^{k-\rho+i}$ and $z_{2 \rho+1}^{j, i}=a_{1+\rho+i}$ where the indices $k-\rho+i$ and $1+\rho+i$ are reduced $(\bmod k-1)$ to the range $\{1,2, \ldots, k-1\}$. Let \mathcal{C} contain the blocks $\left(z_{0}^{j, i}, z_{1}^{j, i}, \ldots, z_{k-1}^{j, i}\right)$.

Put $\mathcal{E}=\mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$. It is easy to verify that (see [5]) $(V \cup W, \mathcal{E})$ is a $H(v+k-1, k, 1)$.
Now we prove that $\bar{X}=X \cup\left\{a_{i} \mid i=1,2, \ldots, t\right\}, t=1,2, \ldots, k-2$, is a blocking set of \mathcal{E}. Let $b \in \mathcal{E}$. If $b \in \mathcal{D}$ then $b \cap \bar{X}=\left\{a_{i} \mid i=1,2, \ldots, t\right\}$ and $b \cap(V-\bar{X})=\left\{a_{0}\right\} \cup\left\{a_{i} \mid i=t+1, t+2, \ldots, k-1\right\}$. If $b \in \mathcal{B}$ then $b \cap X \neq \emptyset$ and $b \cap(V-X) \neq \emptyset$. If $b \in \mathcal{C}$ then $b \cap\left(X^{1} \cup\left\{a_{1}\right\}\right) \neq \emptyset$ and $b \cap\left(X^{k-1} \cup\left\{a_{k-1}\right\}\right) \neq \emptyset$.

Theorem 2 For each even $k \geq 4$ and for each $v \equiv 1(\bmod k-1)$, we have $\mathcal{B S H}(v, k, 1)=\left\{x \left\lvert\, \frac{v-1}{k-1} \leq x \leq \frac{(k-2) v+1}{k-1}\right.\right\}$.

Proof. For $v=k$ the proof follows from the fact that each block has cardinality k. Theorem 1 and Lemma 1 complete the proof.

$3 \mathcal{B S H}(v, k, 1)$ for odd $k \geq 3$.

In this section we determine the set $\mathcal{B S H}(v, k, 1)$ for each odd $k \geq 3$. We will use the difference method to construct $H(v, k, 1)[3,6]$.

Lemma 2 If $2 \in \mathcal{B S H}(4 h+1,2 h+1,1), h \geq 1$, then $\mathcal{B S H}(4 h+1,2 h+1,1)=$ $\{2,3, \ldots, 4 h-1\}$.

Proof. For $h=1$ the proof is straight forward. Suppose $h \geq 2$. By Theorem 1 it is sufficient to prove that $\{2,3, \ldots, 2 h\} \subseteq \mathcal{B S H}(4 h+1,2 h+1,1)$.

Let X be a blocking set in a $\mathcal{B S H}(4 h+1,2 h+1,1)(V, \mathcal{B}),|X|=2$. For each x with $3 \leq x \leq 2 h$, let Y be a subset of V such that $|Y|=x-2$ and $|Y \cap X|=0$. Then $X \cup Y$ is a blocking set of \mathcal{B}.

Theorem 3 For each odd $k \geq 3$ and for each $v \equiv 1(\bmod k-1)$, we have $\mathcal{B S H}(v, k, 1)=\left\{x \left\lvert\, \frac{v-1}{k-1} \leq x \leq \frac{(k-2) v+1}{k-1}\right.\right\}$.

Proof. Put $k=2 h+1$ and $v=1+4 h m, h \geq 1$ and $m \geq 1$. For each $j=0,1, \ldots$, $m-1$ and $t=0,1, \ldots, h-1$ define $a_{0}=0, a_{2 t+1}=t+1+2 h j$ and $a_{2 t+2}=4 h m-t$. Using the difference method construct a $H(1+4 h m, 1+2 h, 1)(V, \mathcal{B})$ having the following base blocks [6]:

$$
b_{j}=\left(a_{0}, a_{1}, \ldots, a_{2 h-1}, a_{2 h}\right)
$$

The difference of the pair $\left\{a_{i_{1}}, a_{i_{2}}\right\}$, named so that $a_{i_{1}}<a_{i_{2}}$, is defined to be $D\left(a_{i_{1}}, a_{i_{2}}\right)=\min \left\{a_{i_{2}}-a_{i_{1}}, v-\left(a_{i_{2}}-a_{i_{1}}\right)\right\}$.

Let S be the set of the differences of the pairs $\left\{a_{i_{1}}, a_{i_{2}}\right\}$ where $a_{i_{1}}$ and $a_{i_{2}}$ are vertices of $b_{j}, j=0,1, \ldots, m-1$, such that $\left\{a_{i_{1}}, a_{i_{2}}\right\}$ is not an edge in b_{j}. The elements of S are the following:
$D\left(a_{2 t+2}, a_{2 \rho}\right)=t-\rho+1$ for each $\rho=0,1, \ldots, h-1$ and $t=\rho+1, \rho+2, \ldots, h-1 ;$ and, if $h \geq 2$,
$D\left(a_{2 \rho+1}, a_{2 t+1}\right)=t-\rho$,
$D\left(a_{2 \rho+1}, a_{2 t+2}\right)=t+2+\rho+2 h j$,
$D\left(a_{2 t+1}, a_{2 \rho}\right)=t+1+\rho+2 h j$,
for each $\rho=0,1, \ldots, h-2$ and $t=\rho+1, \rho+2, \ldots, h-1$.
It is easy to see that $S \cap\{2 h \sigma \mid \sigma=1,2, \ldots, 2 m-1\}=\emptyset$. So there is exactly one $b \in \mathcal{B}$ meeting both the elements $2 h \sigma_{1}$ and $2 h \sigma_{2}$, for every $\sigma_{1}, \sigma_{2} \in\{0,1, \ldots, 2 m-1\}$, $\sigma_{1} \neq \sigma_{2}$. Therefore the pair $\left\{2 h \sigma_{1}, 2 h \sigma_{2}\right\}$ is an edge in b.

Since every point of V meets $m(2 h+1)$ paths of \mathcal{B}, the following inequalities hold:

$$
\begin{equation*}
1 \leq|b \cap\{2 h \sigma \mid \sigma=0,1, \ldots, 2 m-1\}| \leq 2 \quad \forall b \in \mathcal{B} . \tag{1}
\end{equation*}
$$

From (1) it follows that $\{2 h \sigma \mid \sigma=0,1, \ldots, 2 m-1\}$ is a blocking set of minimum cardinality.

Put $X_{i}=\{i+2 h \sigma \mid \sigma=0,1, \ldots, 2 m-1\}, i=0,1, \ldots, h-1$. It is easy to see that $X_{i} \cap X_{j}=\emptyset$ for each $i, j \in\{0,1, \ldots, h-1\}, i \neq j$. Then from (1) and $|b|=2 h+1$
it follows that $\bigcup_{i=0}^{\mu} X_{i}, \mu=1,2, \ldots, h-1$, is a blocking set of \mathcal{B} having cardinality $2 m(\mu+1)$.

To complete the proof it is sufficient to prove that if x is an integer such that $2 m<x<2 h m$ and $x \neq 2 \mu m$ for each $\mu=1,2, \ldots, h-1$, then $x \in \mathcal{B S H}(1+4 h m$, $1+2 h)$. For $m=1$ this result follows from Lemma 2 . For $m \geq 2$, let $x=2 \mu m+\sigma$, $\sigma=1,2, \ldots, 2 m-1$. Then $\left(\cup_{i=0}^{\mu-1} X_{i}\right) \cup\{\mu+2 h j \mid j=0,1, \ldots, \sigma-1\}$ is a blocking set having cardinality $2 \mu m+\sigma$.

References

[1] L.M. Batten, Blocking sets in designs, Congressus Numerantium,99 (1994), 139154.
[2] H. Gropp, Blocking sets in configurations n_{3}, Mitt. Math. Sem. Giessen 201 (1991), 59-72.
[3] M. Hall Jr, Combinatorial Theory, Cambridge University Press, Cambridge (1986).
[4] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Math., 2 (1972), 229-252.
[5] S. H. Y. Hung and N. S. Mendelsohn, (1974) Handcuffed designs, Aequationes Math., 18, 256-266.
[6] J.F. Lawless, On the construction of handcuffed designs, J. Combin. Theory Ser. A, 16 (1974), 76-86.
[7] C.C. Lindner and C.A. Rodger, Blocking set preserving embedding of partial $K_{4}-e$ designs, Australasian J. Combin., 12 (1995), 121-126.
[8] S. Milici, Blocking sets in handcuffed designs, Australasian J. Combin., 7 (1993), 229-236.
[9] S. Milici and Z. Tuza, Disjoint blocking sets in cycle systems, Discrete Math, to appear.

[^0]: *Research supported by MURST and GNSAGA of CNR Italy.

