Asymptotics of the total chromatic number for multigraphs*

P. Mark Kayll ${ }^{\dagger}$
Department of Mathematical Sciences, The University of Montana Missoula, MT 59812-1032, USA
kayll@charlo.math.umt.edu

Abstract

For loopless multigraphs, the total chromatic number is asymptotically its fractional counterpart as the latter invariant tends to infinity. The proof of this is based on a recent theorem of Kahn establishing the analogous asymptotic behaviour of the list-chromatic index for multigraphs.

The total colouring conjecture, proposed independently by Behzad [1] and Vizing [11], asserts that the total chromatic number χ_{t} of a simple graph exceeds the maximum degree Δ by at most two. The most recent increment (better: giant leap) toward a proof of this conjecture was made by Molloy and Reed [8], who established by probabilistic means that the difference between χ_{t} and Δ is at most a constant (say c). An immediate consequence of their result is that for simple graphs, χ_{t} is asymptotically its fractional analogue χ_{t}^{*} as the latter tends to infinity: for this follows from $\Delta+1 \leq \chi_{t}^{*} \leq \chi_{t} \leq \Delta+c$. This leads naturally to the following question: does χ_{t} enjoy the same asymptotic connection with χ_{t}^{*} for loopless multigraphs (henceforth multigraphs)? That this question has an affirmative answer was conjectured in [6].

The purpose of this note is to verify that conjecture:
Theorem 1 For multigraphs,

$$
\begin{equation*}
\chi_{t} \sim \chi_{t}^{*} \quad \text { as } \quad \chi_{t}^{*} \rightarrow \infty . \tag{1}
\end{equation*}
$$

[^0]That is, for each $\varepsilon>0$ there exists $D=D(\varepsilon)$ such that every multigraph G with $\chi_{t}^{*}(G)>D$ satisfies

$$
\begin{equation*}
(1+\varepsilon)^{-1}<\frac{\chi_{t}(G)}{\chi_{t}^{*}(G)}<1+\varepsilon \tag{2}
\end{equation*}
$$

This adds χ_{t} to a growing list of (hyper)graph colouring invariants exhibiting "asymptotically good" behaviour, in the sense elucidated, e.g., in [3] or [6].

Pausing briefly to fix notation, we point the reader to [5, 6] for background and further motivation, and to [2] for omitted definitions. In addition to χ_{t}, the colouring invariants that come into play here are the chromatic index χ^{\prime} and the listchromatic index χ_{ℓ}^{\prime}. Regarding these as solutions to integer programming problems leads to their fractional variants $\chi_{t}^{*}, \chi^{\prime *}, \chi_{t}^{\prime *}$, namely the optimal values of the linear relaxations of the respective IP's (see [10] for omitted LP/IP terminology). We can (and will) restrict our attention to χ_{t}^{*} and $\chi^{\prime *}$ since $\chi^{\prime *}=\chi_{\ell}^{\prime *}$; see [9].

The key ingredient in the proof of Theorem 1 is the following result of Kahn [4]:
Theorem 2 For multigraphs,

$$
\chi_{t}^{\prime} \sim \chi^{\prime *} \quad \text { as } \quad \chi^{\prime *} \rightarrow \infty
$$

The convergence here is in the same sense as that in (1), but we again spell out the quantifiers for later reference: for each $\gamma>0$ there exists $C=C(\gamma)$ such that every multigraph G with $\chi^{\prime *}(G)>C$ satisfies $\chi_{\ell}^{\prime}(G)<(1+\gamma) \chi^{\prime *}(G)$.

Our proof also employs the following elementary inequalities (in (4), k is a positive constant and the multigraph needs to be non-empty):

$$
\begin{align*}
\chi_{t}^{*} & \leq \chi_{t} ; \tag{3}\\
\chi_{t}^{*} & \leq k \chi^{\prime *} ; \tag{4}\\
\chi_{t} & \leq \chi_{t}^{\prime}+2 ; \tag{5}\\
\chi^{\prime *} & \leq \chi_{t}^{*} . \tag{6}
\end{align*}
$$

Proof of (3). The left side is the optimal value of the linear relaxation of the IP defining the right.
Proof of (4). Kostochka proved (see, e.g., [2, p. 86]) that $\chi_{t} \leq\lfloor 3 \Delta / 2\rfloor$, but, for our needs, this is using a sledge for a finishing nail; greedy colouring yields $\chi_{t} \leq 2 \Delta+1$. Either of these bounds together with (3) and the obvious $\Delta \leq \chi^{\prime *}$ gives (4).
Proof of (5). See, e.g., [2, p. 87].
Proof of (6). Straightforward; see [7].
In light of (3), to complete the proof of Theorem 1 it remains only to establish the right-hand inequality in (2) for arbitrary $\varepsilon>0$ and sufficiently large χ_{t}^{*}. Given $\varepsilon>0$, let $\gamma=\varepsilon / 2$, and choose C so large (according to Theorem 2) that

$$
\begin{equation*}
\chi^{\prime *}>C \quad \text { implies } \quad \chi_{\ell}^{\prime}<(1+\gamma) \chi^{\prime *} . \tag{7}
\end{equation*}
$$

Let k be as in (4). If $\chi_{t}^{*}>D:=\max \{k C, 4 k / \varepsilon\}$, then, since $\chi^{\prime *} \geq \chi_{t}^{*} / k$ (by (4)), we see that $\chi^{\prime *}$ exceeds both C and $4 / \varepsilon=2 / \gamma$. Thus, provided $\chi_{t}^{*}>D$, we have

$$
\chi_{t} \leq \chi_{\ell}^{\prime}+2<(1+\gamma) \chi^{\prime *}+\gamma \chi^{\prime *}=(1+\varepsilon) \chi^{\prime *} \leq(1+\varepsilon) \chi_{t}^{*}
$$

(justifying the inequalities, respectively, by: (5); the preceding sentence and (7); and (6)), as desired.

References

[1] M. Behzad, Graphs and Their Chromatic Numbers, Dissertation, Michigan State University, East Lansing, MI, 1965.
[2] T.R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 1995.
[3] J. Kahn, Asymptotics of the chromatic index for multigraphs, J. Combin. Theory Ser. B 68 (1996), 233-254.
[4] J. Kahn, Asymptotics of the list-chromatic index for multigraphs, submitted.
[5] P.M. Kayll, Asymptotics of the total chromatic number for simple graphs, Technical Report 96-20, DIMACS, Piscataway, NJ, 1996 [available via anonymous ftp at: http://dimacs.rutgers.edu/TechnicalReports/1996.html]
[6] P.M. Kayll, Asymptotically good colourings of graphs and multigraphs, Congr. Numer. 125 (1997), 83-96.
[7] P.M. Kayll, Asymptotics of the total chromatic number for multigraphs, Technical Report 97-19, DIMACS, Piscataway, NJ, 1997 [available via anonymous ftp at: http://dimacs.rutgers.edu/TechnicalReports/1997.html]
[8] M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorica, to appear.
[9] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory, Wiley, New York, 1997.
[10] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.
[11] V.G. Vizing, Some unsolved problems in graph theory, Russian Math Surveys 23 (1968), 125-141.

[^0]: *This is the final version of this note, a revision of [7].
 ${ }^{\dagger}$ Supported in part by the University Grant Program, The University of Montana.

