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Abstract 

For loopless multigraphs, the total chromatic number is asymptotically its 
fractional counterpart as the latter invariant tends to infinity. The proof 
of this is based on a recent theorem of Kahn establishing the analogous 
asymptotic behaviour of the list-chromatic index for multigraphs. 

The total colouring conjecture, proposed independently by Behzad [1] and Viz­
ing [11], asserts that the total chromatic number X

t 
of a simple graph exceeds the 

maximum degree ~ by at most two. The most recent increment (better: giant leap) 
toward a proof of this conjecture was made by Molloy and Reed [8], who established 
by probabilistic means that the difference between X

t 
and ~ is at most a constant 

( say c). An immediate consequence of their result is that for simple graphs, X
t 

is asymptotically its fractional analogue X: as the latter tends to infinity: for this 
follows from ~ + 1 :::; X: :::; X

t 
:::; ~ + c. This leads naturally to the following 

question: does X
t 

enjoy the same asymptotic connection with X: for loopless multi­
graphs (henceforth multigraphs)? That this question has an affirmative answer was 
conjectured in [6]. 

The purpose of this note is to verify that conjecture: 

Theorem 1 For multigraphs, 

(1) 
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That is, for each c > 0 there exists D = D(c) such that every multigraph G with 
X; (G) > D satisfies 

( )
-1 Xt (G) 

1 + c < X; (G) < 1 + c. (2) 

This adds X
t 

to a growing list of (hyper)graph colouring invariants exhibiting 
"asymptotically good" behaviour, in the sense elucidated, e.g., in [3] or [6]. 

Pausing briefly to fix notation, we point the reader to [5, 6] for background 
and further motivation, and to [2] for omitted definitions. In addition to X

t
' the 

colouring invariants that come into play here are the chromatic index X' and the list­
chromatic index X~. Regarding these as solutions to integer programming problems 
leads to their fractional variants X;, X'*, X~*, namely the optimal values of the linear 
relaxations of the respective IP's (see [10] for omitted LP lIP terminology). We can 
(and will) restrict our attention to X; and x'* since X'* = X~*; see [9]. 

The key ingredient in the proof of Theorem 1 is the following result of Kahn [4]: 

Theorem 2 For multigraphs, 

X~ tv x'* as X'* -+ 00. 

The convergence here is in the same sense as that in (1), but we again spell out the 
quantifiers for later reference: for each 'Y > 0 there exists C = C ( 'Y) such that every 
multigraph G with X'*(G) > C satisfies X~(G) < (1 + ,)X'*(G). 

Our proof also employs the following elementary inequalities (in (4), k is a positive 
constant and the multigraph needs to be non-empty): 

X~ < Xt ; (3) 

X~ ~ kX'*; (4) 

Xt < X~ + 2; (5) 

X'* < X;. (6) 

Proof of (3). The left side is the optimal value of the linear relaxation of the IP 
defining the right. I 

Proof of (4). Kostochka proved (see, e.g., [2, p. 86]) that X
t 

::; L3~/2J, but, for our 
needs, this is using a sledge for a finishing nail; greedy colouring yields X

t 
~ 2~ + 1. 

Either of these bounds together with (3) and the obvious ~ ::; X'* gives (4). I 

Proof of (5). See, e.g., [2, p. 87]. I 

Proof of (6). Straightforward; see [7]. I 

In light of (3), to complete the proof of Theorem 1 it remains only to establish 
the right-hand inequality in (2) for arbitrary c > 0 and sufficiently large X;. Given 
c > 0, let, = c/2, and choose C so large (according to Theorem 2) that 

X'* > C implies X: < (1 + ,)X'*. (7) 
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Let k be as in (4). If X; > D := max{kC, 4k/c}, then, since X'* ~ X; /k (by (4)), we 
see that x'* exceeds both C and 4/ c = 2/ T Thus, provided X; > D, we have 

xt ~ X: + 2 < (1 + ')')x'* + ')'X'* = (1 + c)X'* ~ (1 + c)X: 

(justifying the inequalities, respectively, by: (5); the preceding sentence and (7); and 
(6)), as desired. I 
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