$\overrightarrow{P_{3}}$-factorization of complete bipartite symmetric digraphs

B. Du
Department of Mathematics
Suzhou University
Suzhou 215006, P. R. China

Abstract

In this paper, it is shown that a necessary and sufficient condition for the existence of a $\overrightarrow{P_{3}}$-factorization of the complete bipartite symmetric digraph $K_{m, n}^{*}$ is (1) $m+n \equiv 0(\bmod 3)$, (2) $m \leq 2 n$, (3) $n \leq 2 m$, and (4) $3 m n /(m+n)$ is an integer.

1. Introduction

Let $\overrightarrow{P_{3}}$ be the directed path on three vertices and let $K_{m, n}^{*}$ be the complete bipartite symmetric digraph with partite sets V_{1} and V_{2}, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. A spanning subgraph \vec{F} of $K_{m, n}^{*}$ is called a \vec{P}_{3}-factor if each component of \vec{F} is isomorphic to $\overrightarrow{P_{3}}$. If $K_{m, n}^{*}$ is expressed as an arc-disjoint sum of $\overrightarrow{P_{3}}$-factors, then this sum is called a $\overrightarrow{P_{3}}$-factorization of $K_{m, n}^{*}$.

The spectrum problems for P_{3}-factorization of the complete graph K_{n}, the complete bipartite graph $K_{m, n}$ and the complete multipartite graph K_{n}^{m} have been completely solved. (See $[2,4,5,6]$.) In this paper a necessary and sufficient condition for the existence of a $\overrightarrow{P_{3}}$-factorization of the complete symmetric digraph $K_{m, n}^{*}$ will be given.
Theorem $1.1 K_{m, n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization if and only if (1) $m+n \equiv 0(\bmod 3)$, (2) $m \leq 2 n$, (3) $n \leq 2 m$, and (4) $3 m n /(m+n)$ is an integer.

It is easy to see that a $\overrightarrow{P_{3}}$-factorization of $K_{m, n}^{*}$ gives rise to a P_{3}-factorization of $2 K_{m, n}$. We get the following as a by-product of Theorem 1.1.
Theorem $1.22 K_{m, n}$ has a P_{3}-factorization if and only if (1) $m+n \equiv 0(\bmod 3)$,
(2) $m \leq 2 n$,
(3) $n \leq 2 m$, and
(4) $3 m n /(m+n)$ is an integer.

2. Main result

From simple counting we have

Theorem 2.1 If $K_{m, n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization then \quad (1) $m+n \equiv 0(\bmod 3)$, (2) $m \leq 2 n$, (3) $n \leq 2 m$, and (4) $3 m n /(m+n)$ is an integer.

We prove the following existence theorem, which is used later in this paper.
Theorem 2.2 If $K_{m, n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization, then $K_{s m, s n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization for every positive integer s.
Proof: Let V_{1}, V_{2} be the independent sets of $K_{s m, s n}^{*}$ where $\left|V_{1}\right|=s m$ and $\left|V_{2}\right|=s n$. Divide V_{1} and V_{2} into s subsets of m and n vertices each, respectively. Construct a new graph G with vertex set consisting of the subsets which were just constructed. In this graph, two vertices are adjacent if and only if the subsets come from disjoint independent sets of $K_{s m, s n}^{*}$. Thus G is a complete bipartite graph $K_{s, s}$. Noting that the cardinality of each subset identified with a vertex set of G is m or n and that $K_{s, s}$ has a 1 -factorization, we see that the desired result is obtained. (1-factorizations of $K_{s, s}$ are discussed in [1, 3].)

Now we start to prove our main result. There are three cases to consider.
Case $m=2 n$: In this case, from Theorem 2.2, $K_{2 n, n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization since $K_{2,1}^{*}$ has a $\overrightarrow{P_{3}}$-factorization:

$$
x_{1} y_{1} x_{2}, \quad x_{2} y_{1} x_{1}
$$

Case $n=2 m$: Obviously, $K_{m, 2 m}^{*}$ has a $\overrightarrow{P_{3}}$-factorization.
Case $m<2 n$ and $n<2 m$: In this case, let $x=(2 n-m) / 3, y=(2 m-n) / 3$, $t=(m+n) / 3$, and $r=3 m n /(m+n)$. Then from conditions (1)-(4), x, y, t, r are integers and $0<x<m$ and $0<y<n$. We have $x+2 y=m$ and $2 x+y=n$. Hence $r=2(x+y)+x y /(x+y)$. Let $z=x y /(x+y)$, which is a positive integer. And let $(x, 2 y)=d, x=d p, 2 y=d q$, where $(p, q)=1$. Then $d q$ is even and $z=d p q /(2 p+q)$. The following lemmas can be verified.

Lemma 2.3 If $(p, q)=1$, then $(p q, p+q)=1$.
Lemma 2.4 If $(p, q)=1$, then $(p q, 2 p+q)=1$ when $q \equiv 1(\bmod 2)$ and $(p q, 2 p+q)=2$ when $q \equiv 0(\bmod 2)$.
Lemma 2.5 If $(p, q)=1$, then $(p q, 4 p+q)=1$ when $q \equiv 1(\bmod 2),(p q, 4 p+q)=2$ when $q \equiv 2(\bmod 4)$, and $(p q, 4 p+q)=4$ when $q \equiv 0(\bmod 4)$.

Using these p, q, d, the parameters m and n satisfying conditions (1)-(4) can be expressed as follows:

Lemma 2.6 If $(p, q)=1$ and $d p q /(2 p+q)$ is an integer, then for some positive integer s,
(a) $m=2(p+q)(2 p+q) s, n=(4 p+q)(2 p+q) s$ when $q \equiv 1(\bmod 2)$,
(b) $m=\left(p+2 q^{\prime}\right)\left(p+q^{\prime}\right) s, n=\left(2 p+q^{\prime}\right)\left(p+q^{\prime}\right) s$ when $q=2 q^{\prime}$ and $q^{\prime} \equiv 1(\bmod 2)$,
(c) $m=\left(p+4 q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right) s, n=2\left(p+q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right) s$ when $q=4 q^{\prime \prime}$.

We use the following notation for sequences. Let A and B be two sequences of the same length:

$$
A: a_{1}, a_{2}, \ldots, a_{u} \quad B: b_{1}, b_{2}, \ldots, b_{u}
$$

If $b_{i}=a_{i}+c(1 \leq i \leq u)$, then we write $B=A+c$. If $b_{i}=a_{i}+c(\bmod w)$ $(1 \leq i \leq u)$, then we write $B=A+c(\bmod w)$, where the residues $a_{i}+c(\bmod w)$ are integers in the set $\{1,2, \cdots, w\}$.

For the parameters m and n in (a)-(c) when $s=1$, we can construct a $\overrightarrow{P_{3}}$ factorization of $K_{m, n}^{*}$.

It is easy to see that the existence of a P_{3}-factorization of $K_{m, n}$ implies the existence of a $\overrightarrow{P_{3}}$-factorization of $K_{m, n}^{*}$. The following two lemmas come from [5, Lemma 4 and Lemma 6].

Lemma 2.7 If $(p, q)=1, q \equiv 1(\bmod 2)$, and $m=2(p+q)(2 p+q)$, $n=(4 p+q)(2 p+q)$, then $K_{m, n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization.
Lemma 2.8 If $(p, q)=1, q=4 q^{\prime \prime}$, and $m=\left(p+4 q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right)$, $n=2\left(p+q^{\prime \prime}\right)\left(p+2 q^{\prime \prime}\right)$, then $K_{m, n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization.

For our main result we need only to prove the following lemma.
Lemma 2.9 If $(p, q)=1, q=2 q^{\prime}, q^{\prime} \equiv 1(\bmod 2)$, and $m=\left(p+2 q^{\prime}\right)\left(p+q^{\prime}\right)$, $n=\left(2 p+q^{\prime}\right)\left(p+q^{\prime}\right)$, then $K_{m, n}^{*}$ has a $\overrightarrow{P_{3}}$-factorization.
Proof: Let $x=(2 n-m) / 3, y=(2 m-n) / 3, t=(m+n) / 3$, and $r=3 m n /(m+n)$. Then we have $x=p\left(p+q^{\prime}\right), y=q^{\prime}\left(p+q^{\prime}\right), t=\left(p+q^{\prime}\right)^{2}$, and $r=\left(p+2 q^{\prime}\right)\left(2 p+q^{\prime}\right)$. Let $r_{1}=p+2 q^{\prime}, r_{2}=2 p+q^{\prime}, m_{0}=m / r_{1}=\left(p+q^{\prime}\right)$, and $n_{0}=n / r_{2}=\left(p+q^{\prime}\right)$. Consider the two sequences R and C both of length $2\left(p+q^{\prime}\right)$

$$
R: R^{\prime}, R^{\prime \prime} \quad C: C^{\prime}, C^{\prime \prime}
$$

in which

$$
\begin{aligned}
R^{\prime}: & 1,1,2,2, \cdots, \frac{1}{2}\left(p+q^{\prime}\right), \frac{1}{2}\left(p+q^{\prime}\right) \\
R^{\prime \prime}: & \frac{1}{2}\left(p+q^{\prime}\right)+1, \frac{1}{2}\left(p+q^{\prime}\right)+1, \cdots,\left(p+q^{\prime}\right),\left(p+q^{\prime}\right) \\
C^{\prime} & : 1,2,3,4, \cdots,\left(p+q^{\prime}\right)-1,\left(p+q^{\prime}\right) \\
C^{\prime \prime} & :\left(p+q^{\prime}\right)+1,\left(p+q^{\prime}\right)+2, \cdots, 2\left(p+q^{\prime}\right)-1,2\left(p+q^{\prime}\right)
\end{aligned}
$$

Construct p sequences R_{i} where $R_{i}=R+(i-1)\left(p+q^{\prime}\right)(1 \leq i \leq p)$. Construct p sequences C_{i} where $C_{i}=C+(i-1)\left(\bmod 2\left(p+q^{\prime}\right)\right)+2(i-1)\left(p+q^{\prime}\right)(1 \leq i \leq p)$. Construct two sequences S and T both of length $2\left(p+q^{\prime}\right)$

$$
S: S^{\prime}, S^{\prime \prime} \quad T: T^{\prime}, T^{\prime \prime}
$$

in which

$$
\begin{aligned}
S^{\prime} & : 1,2, \cdots,\left(p+q^{\prime}\right)-1,\left(p+q^{\prime}\right) \\
S^{\prime \prime}: & \left(p+q^{\prime}\right)+1,\left(p+q^{\prime}\right)+2, \cdots, 2\left(p+q^{\prime}\right)-1,2\left(p+q^{\prime}\right) \\
T^{\prime}: & 1,3, \cdots,\left(p+q^{\prime}\right)-1,1,3, \cdots,\left(p+q^{\prime}\right)-1 \\
T^{\prime \prime} & : 2,4, \cdots,\left(p+q^{\prime}\right), 2,4, \cdots\left(p+q^{\prime}\right)
\end{aligned}
$$

Construct q^{\prime} sequences S_{i} where $S_{i}=S+2(i-1)\left(p+q^{\prime}\right)+p\left(p+q^{\prime}\right)\left(1 \leq i \leq q^{\prime}\right)$. Construct q^{\prime} sequences T_{i} where $T_{i}=T+(i-1)+p\left(\bmod \left(p+q^{\prime}\right)\right)+(i-1)(p+$ $\left.q^{\prime}\right)+2 p\left(p+q^{\prime}\right)\left(1 \leq i \leq q^{\prime}\right)$. Consider the two sequences I and J both of the same length

$$
I: I^{\prime}, I^{\prime \prime} \quad J: J^{\prime}, J^{\prime \prime}
$$

in which

$$
\begin{array}{ll}
I^{\prime}: R_{1}, R_{2}, \cdots, R_{p} & I^{\prime \prime}: S_{1}, S_{2}, \cdots, S_{q^{\prime}} \\
J^{\prime}: C_{1}, C_{2}, \cdots, C_{p} & J^{\prime \prime}: T_{1}, T_{2}, \cdots, T_{q^{\prime}}
\end{array}
$$

Then the length of I and J is $2 t$. Divide R_{i} into two subsequences R_{i}^{\prime} and $R_{i}^{\prime \prime}$ of equal lengths $(i=1,2, \ldots, p)$. And divide T_{i} into two subsequences T_{i}^{\prime} and $T_{i}^{\prime \prime}$ of equal lengths $\left(i=1,2, \ldots, q^{\prime}\right)$. Thus we have $R_{i}: R_{i}^{\prime}, R_{i}^{\prime \prime}$ and $T_{i}: T_{i}^{\prime}, T_{i}^{\prime \prime}$. Let h_{k}, j_{k} be the k-th elements of I^{\prime} and J^{\prime} respectively $\left(k=1,2, \ldots, 2 p\left(p+q^{\prime}\right)\right.$). When $h_{k}=h_{k+1}$, join h_{k} in V_{1} and j_{k}, j_{k+1} in V_{2} with a directed path, either $j_{k} h_{k} j_{k+1}$ if $h_{k} \in R_{i}^{\prime}$ or $j_{k+1} h_{k} j_{k}$ if $h_{k} \in R_{i}^{\prime \prime}$. Let h_{k}, j_{k} be the k-th elements of $I^{\prime \prime}$ and $J^{\prime \prime}$ respectively $\left(k=1,2, \ldots, 2 q^{\prime}\left(p+q^{\prime}\right)\right)$. When $j_{k}=j_{k+\left(p+q^{\prime}\right) / 2}$, join h_{k}, $h_{k+\left(p+q^{\prime}\right) / 2}$ in V_{1} and j_{k} in V_{2} with a directed path, either $h_{k+\left(p+q^{\prime}\right) / 2} j_{k} h_{k}$ if $j_{k} \in T_{i}^{\prime}$ or $h_{k} j_{k} h_{k+\left(p+q^{\prime}\right) / 2}$ if $j_{k} \in T_{i}^{\prime \prime}$. Construct the digraph \vec{F} with the two vertex sets $\left\{h_{k}\right\}$ and $\left\{j_{k}\right\}$ and this directed path set. Then \vec{F} is a $\overrightarrow{P_{3}}$-factorization. This digraph is called the $\overrightarrow{P_{3}}$-factor constructed from the two sequences I and J.

Construct r_{1} sequences I_{i} where $I_{i}=I+(i-1) m_{0}(\bmod m)\left(1 \leq i \leq r_{1}\right)$. Construct r_{2} sequences J_{j} where $J_{j}=J+(j-1) n_{0}(\bmod n)\left(1 \leq j \leq r_{2}\right)$. Construct the $r_{1} r_{2} \overrightarrow{P_{3}}$-factors $\vec{F}_{i j}$ from I_{i} and $J_{j}\left(1 \leq i \leq r_{1}, 1 \leq j \leq r_{2}\right)$. Then it is easy to see that the $\vec{F}_{i j}$ are arc-disjoint and their union is a $\overrightarrow{P_{3}}$-factorization of $K_{m, n}^{*}$.

By applying Theorem 2.2 with Lemmas 2.7 to 2.9 , it can be seen that when the parameters m and n satisfy conditions (1)-(4), the digraph $K_{m, n}^{*}$ has a $\overrightarrow{P_{3}}$ factorization. This completes the proof of Theorem 1.1

References

[1] G. Chartrand and L. Lesniak, Graphs and digraphs, 2nd ed. (Wadsworth, California, 1986).
[2] B. Du, P_{3}-factorization of complete multipartite graphs, preprint.
[3] F. Harary, Graph theory, (Addison-Wesley, Massachusetts, 1972).
[4] J.D. Horton, Resolvable path designs, J. Combin. Theory Ser. A 39 (1985) 117-131.
[5] K.Ushio, P_{3}-factorization of complete bipartite graphs, Discrete Math. 72 (1988) 361-366.
[6] K. Ushio and R. Tsuruno, P_{3}-factorization of complete multipartite graphs, Graphs and Combinatorics 5 (1989) 385-387.

