$\overrightarrow{P_3}$ -factorization of complete bipartite symmetric digraphs

B. Du

Department of Mathematics Suzhou University Suzhou 215006, P. R. China

Abstract

In this paper, it is shown that a necessary and sufficient condition for the existence of a $\overrightarrow{P_3}$ -factorization of the complete bipartite symmetric digraph $K_{m,n}^*$ is (1) $m + n \equiv 0 \pmod{3}$, (2) $m \leq 2n$, (3) $n \leq 2m$, and (4) 3mn/(m+n) is an integer.

1. Introduction

Let $\overrightarrow{P_3}$ be the directed path on three vertices and let $K_{m,n}^*$ be the complete bipartite symmetric digraph with partite sets V_1 and V_2 , where $|V_1| = m$ and $|V_2| = n$. A spanning subgraph \overrightarrow{F} of $K_{m,n}^*$ is called a $\overrightarrow{P_3}$ -factor if each component of \overrightarrow{F} is isomorphic to $\overrightarrow{P_3}$. If $K_{m,n}^*$ is expressed as an arc-disjoint sum of $\overrightarrow{P_3}$ -factors, then this sum is called a $\overrightarrow{P_3}$ -factorization of $K_{m,n}^*$.

The spectrum problems for P_3 -factorization of the complete graph K_n , the complete bipartite graph $K_{m,n}$ and the complete multipartite graph K_n^m have been completely solved. (See [2, 4, 5, 6].) In this paper a necessary and sufficient condition for the existence of a $\overrightarrow{P_3}$ -factorization of the complete symmetric digraph $K_{m,n}^*$ will be given.

Theorem 1.1 $K_{m,n}^*$ has a $\overrightarrow{P_3}$ -factorization if and only if (1) $m+n \equiv 0 \pmod{3}$, (2) $m \leq 2n$, (3) $n \leq 2m$, and (4) 3mn/(m+n) is an integer.

It is easy to see that a $\overrightarrow{P_3}$ -factorization of $K_{m,n}^*$ gives rise to a P_3 -factorization of $2K_{m,n}$. We get the following as a by-product of Theorem 1.1.

Theorem 1.2 $2K_{m,n}$ has a P_3 -factorization if and only if (1) $m+n \equiv 0 \pmod{3}$, (2) $m \leq 2n$, (3) $n \leq 2m$, and (4) 3mn/(m+n) is an integer.

2. Main result

From simple counting we have

Australasian Journal of Combinatorics <u>19(1999)</u>, pp.275–278

Theorem 2.1 If $K_{m,n}^*$ has a $\overrightarrow{P_3}$ -factorization then (1) $m + n \equiv 0 \pmod{3}$, (2) $m \leq 2n$, (3) $n \leq 2m$, and (4) 3mn/(m+n) is an integer.

We prove the following existence theorem, which is used later in this paper.

Theorem 2.2 If $K_{m,n}^*$ has a $\overrightarrow{P_3}$ -factorization, then $K_{sm,sn}^*$ has a $\overrightarrow{P_3}$ -factorization for every positive integer s.

Proof: Let V_1 , V_2 be the independent sets of $K^*_{sm,sn}$ where $|V_1| = sm$ and $|V_2| = sn$. Divide V_1 and V_2 into s subsets of m and n vertices each, respectively. Construct a new graph G with vertex set consisting of the subsets which were just constructed. In this graph, two vertices are adjacent if and only if the subsets come from disjoint independent sets of $K^*_{sm,sn}$. Thus G is a complete bipartite graph $K_{s,s}$. Noting that the cardinality of each subset identified with a vertex set of G is m or n and that $K_{s,s}$ has a 1-factorization, we see that the desired result is obtained. (1-factorizations of $K_{s,s}$ are discussed in [1, 3].)

Now we start to prove our main result. There are three cases to consider. Case m = 2n: In this case, from Theorem 2.2, $K_{2n,n}^*$ has a $\overrightarrow{P_3}$ -factorization since $K_{2,1}^*$ has a $\overrightarrow{P_3}$ -factorization:

$$x_1y_1x_2, \quad x_2y_1x_1.$$

Case n = 2m: Obviously, $K_{m,2m}^*$ has a $\overrightarrow{P_3}$ -factorization.

Case m < 2n and n < 2m: In this case, let x = (2n - m)/3, y = (2m - n)/3, t = (m + n)/3, and r = 3mn/(m + n). Then from conditions (1)-(4), x, y, t, r are integers and 0 < x < m and 0 < y < n. We have x + 2y = m and 2x + y = n. Hence r = 2(x + y) + xy/(x + y). Let z = xy/(x + y), which is a positive integer. And let (x, 2y) = d, x = dp, 2y = dq, where (p, q) = 1. Then dq is even and z = dpq/(2p + q). The following lemmas can be verified.

Lemma 2.3 If (p,q) = 1, then (pq, p+q) = 1.

Lemma 2.4 If (p,q) = 1, then (pq, 2p+q) = 1 when $q \equiv 1 \pmod{2}$ and (pq, 2p+q) = 2 when $q \equiv 0 \pmod{2}$.

Lemma 2.5 If (p, q) = 1, then (pq, 4p+q) = 1 when $q \equiv 1 \pmod{2}$, (pq, 4p+q) = 2 when $q \equiv 2 \pmod{4}$, and (pq, 4p+q) = 4 when $q \equiv 0 \pmod{4}$.

Using these p, q, d, the parameters m and n satisfying conditions (1)–(4) can be expressed as follows:

Lemma 2.6 If (p,q) = 1 and dpq/(2p+q) is an integer, then for some positive integer s,

(a) m = 2(p+q)(2p+q)s, n = (4p+q)(2p+q)s when $q \equiv 1 \pmod{2}$,

(b) m = (p+2q')(p+q')s, n = (2p+q')(p+q')s when q = 2q' and $q' \equiv 1 \pmod{2}$, (c) m = (p+4q'')(p+2q'')s, n = 2(p+q'')(p+2q'')s when q = 4q''.

We use the following notation for sequences. Let A and B be two sequences of the same length:

$$A: a_1, a_2, \ldots, a_u \qquad B: b_1, b_2, \ldots, b_u.$$

If $b_i = a_i + c$ $(1 \le i \le u)$, then we write B = A + c. If $b_i = a_i + c \pmod{w}$ $(1 \le i \le u)$, then we write $B = A + c \pmod{w}$, where the residues $a_i + c \pmod{w}$ are integers in the set $\{1, 2, \dots, w\}$.

For the parameters m and n in (a)–(c) when s = 1, we can construct a $\overrightarrow{P_3}$ -factorization of $K_{m,n}^*$.

It is easy to see that the existence of a P_3 -factorization of $K_{m,n}$ implies the existence of a $\overrightarrow{P_3}$ -factorization of $K_{m,n}^*$. The following two lemmas come from [5, Lemma 4 and Lemma 6].

Lemma 2.7 If (p,q) = 1, $q \equiv 1 \pmod{2}$, and m = 2(p+q)(2p+q), n = (4p+q)(2p+q), then $K_{m,n}^*$ has a $\overrightarrow{P_3}$ -factorization.

Lemma 2.8 If (p,q) = 1, q = 4q'', and m = (p + 4q'')(p + 2q''), n = 2(p + q'')(p + 2q''), then $K_{m,n}^*$ has a $\overrightarrow{P_3}$ -factorization.

For our main result we need only to prove the following lemma.

Lemma 2.9 If (p,q) = 1, q = 2q', $q' \equiv 1 \pmod{2}$, and m = (p + 2q')(p + q'), n = (2p + q')(p + q'), then $K_{m,n}^*$ has a $\overrightarrow{P_3}$ -factorization.

Proof: Let x = (2n-m)/3, y = (2m-n)/3, t = (m+n)/3, and r = 3mn/(m+n). Then we have x = p(p+q'), y = q'(p+q'), $t = (p+q')^2$, and r = (p+2q')(2p+q'). Let $r_1 = p + 2q'$, $r_2 = 2p + q'$, $m_0 = m/r_1 = (p+q')$, and $n_0 = n/r_2 = (p+q')$. Consider the two sequences R and C both of length 2(p+q')

$$R: R', R'' \qquad C: C', C''$$

in which

$$\begin{aligned} &R': \ 1,1,2,2,\cdots,\frac{1}{2}(p+q'),\frac{1}{2}(p+q')\\ &R'': \ \frac{1}{2}(p+q')+1,\frac{1}{2}(p+q')+1,\cdots,(p+q'),(p+q')\\ &C': \ 1,2,3,4,\cdots,(p+q')-1,(p+q')\\ &C'': \ (p+q')+1,(p+q')+2,\cdots,2(p+q')-1,2(p+q'). \end{aligned}$$

Construct p sequences R_i where $R_i = R + (i-1)(p+q')$ $(1 \le i \le p)$. Construct p sequences C_i where $C_i = C + (i-1) \pmod{2(p+q')} + 2(i-1)(p+q')$ $(1 \le i \le p)$. Construct two sequences S and T both of length 2(p+q')

$$S: S', S'' \qquad T: T', T''$$

in which

$$\begin{split} S': & 1, 2, \cdots, (p+q') - 1, (p+q') \\ S'': & (p+q') + 1, (p+q') + 2, \cdots, 2(p+q') - 1, 2(p+q') \\ T': & 1, 3, \cdots, (p+q') - 1, 1, 3, \cdots, (p+q') - 1 \\ T'': & 2, 4, \cdots, (p+q'), 2, 4, \cdots (p+q'). \end{split}$$

Construct q' sequences S_i where $S_i = S + 2(i-1)(p+q') + p(p+q')$ $(1 \le i \le q')$. Construct q' sequences T_i where $T_i = T + (i-1) + p \pmod{(p+q')} + (i-1)(p+q') + 2p(p+q')$ $(1 \le i \le q')$. Consider the two sequences I and J both of the same length

$$I: I', I'' \qquad J: J', J''$$

in which

$$I': R_1, R_2, \cdots, R_p \qquad I'': S_1, S_2, \cdots, S_{q'} \\ J': C_1, C_2, \cdots, C_p \qquad J'': T_1, T_2, \cdots, T_{q'}.$$

Then the length of I and J is 2t. Divide R_i into two subsequences R'_i and R''_i of equal lengths (i = 1, 2, ..., p). And divide T_i into two subsequences T'_i and T''_i of equal lengths (i = 1, 2, ..., q'). Thus we have $R_i : R'_i, R''_i$ and $T_i : T'_i, T''_i$. Let h_k , j_k be the k-th elements of I' and J' respectively (k = 1, 2, ..., 2p(p+q')). When $h_k = h_{k+1}$, join h_k in V_1 and j_k , j_{k+1} in V_2 with a directed path, either $j_k h_k j_{k+1}$ if $h_k \in R'_i$ or $j_{k+1} h_k j_k$ if $h_k \in R''_i$. Let h_k , j_k be the k-th elements of I'' and J'' respectively (k = 1, 2, ..., 2q'(p+q')). When $j_k = j_{k+(p+q')/2}$, join h_k , $h_{k+(p+q')/2}$ in V_1 and j_k in V_2 with a directed path, either $h_{k+(p+q')/2} j_k h_k$ if $j_k \in T'_i$ or $h_k j_k h_{k+(p+q')/2}$ if $j_k \in T''_i$. Construct the digraph \overrightarrow{F} with the two vertex sets $\{h_k\}$ and $\{j_k\}$ and this directed path set. Then \overrightarrow{F} is a $\overrightarrow{P_3}$ -factorization. This digraph is called the $\overrightarrow{P_3}$ -factor constructed from the two sequences I and J.

Construct r_1 sequences I_i where $I_i = I + (i-1)m_0 \pmod{m}$ $(1 \le i \le r_1)$. Construct r_2 sequences J_j where $J_j = J + (j-1)n_0 \pmod{n}$ $(1 \le j \le r_2)$. Construct the $r_1r_2 \overrightarrow{P_3}$ -factors \overrightarrow{F}_{ij} from I_i and J_j $(1 \le i \le r_1, 1 \le j \le r_2)$. Then it is easy to see that the \overrightarrow{F}_{ij} are arc-disjoint and their union is a $\overrightarrow{P_3}$ -factorization of $K_{m,n}^*$.

By applying Theorem 2.2 with Lemmas 2.7 to 2.9, it can be seen that when the parameters m and n satisfy conditions (1)-(4), the digraph $K_{m,n}^*$ has a $\overrightarrow{P_3}$ factorization. This completes the proof of Theorem 1.1

References

- [1] G. Chartrand and L. Lesniak, Graphs and digraphs, 2nd ed. (Wadsworth, California, 1986).
- [2] B. Du, P₃-factorization of complete multipartite graphs, preprint.
- [3] F. Harary, Graph theory, (Addison-Wesley, Massachusetts, 1972).
- [4] J.D. Horton, Resolvable path designs, J. Combin. Theory Ser. A 39 (1985) 117-131.
- [5] K.Ushio, P₃-factorization of complete bipartite graphs, Discrete Math. 72 (1988) 361-366.
- [6] K. Ushio and R. Tsuruno, P₃-factorization of complete multipartite graphs, Graphs and Combinatorics 5 (1989) 385–387.